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Abstract

Increasing demand for wireless technology overburdens the existing frequency spectrum due to the licensed
spectrum management. On the other hand, field studies indicate that the spectrum is often underutilized. This leads
to a need to reallocate the spectrum dynamically so that the unlicensed users could access the spectrum not required
by the primary users. Dynamic spectrum access can be achieved by cognitive radio technology which in turn requires
detection of primary user signals at the secondary user locations.
In this paper, we investigate the detection of primary user signals in the environment with impulsive noise. We
propose proper robust detectors to replace several popular detection schemes that have been developed for the
Gaussian noise case. The basis of our development is modelling the noise as consisting of two components, one of
them being Gaussian, which has proven itself as a good model for thermal noise, and the other being uniform, which
appears with certain probability and models the impulsive noise. In this paper, several detectors arising from this
model are proposed and analysed.
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1 Introduction
Spectrum usage is regulated in every part of the world so
that essential services can be provided and be protected
from interference. The spectrum regulatory bodies have
always allocated frequency blocks for different uses and
assigned licenses for those blocks for spectrum users. This
strategy has led to several successful applications, and
nowadays, there is a shortage of spectrum that could be
shared to new innovative applications. At the same time,
there are several field studies that indicate underutiliza-
tion of spectrum [1, 2].
Cognitive radio [3, 4] is a promising new technology

that provides a way for opportunistic and efficient reuse
of radio spectrum resources. The technology allows the
secondary users to occupy radio spectrum in times or
locations where the licensed user does not require it. The
key enabler to this technology is reliable detection of spec-
tral holes which could be used by the secondary users.
In the literature, there are several detectors proposed for
this purpose [5–7], requiring various amounts of infor-
mation about the primary signal. The energy detector
does not require any knowledge about the primary user
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signal, it just detects whether there is an excess energy
above the noise floor. The correlation matrix-based detec-
tors like cyclostationary feature detector, which assumes
that the primary signal, exhibits cyclostationary features,
and the eigenvalue ratio detector, which assumes the pri-
mary signal correlation matrix to have a structure. Finally,
the matched filter for which one needs to know the pri-
mary signal with a great precision. Most popular of them
is probably the energy detector. Its popularity is partly
because of simplicity of the energy detector and partly
because of the low information need about the primary
signal.
In this paper, we discuss the single user techniques for

narrowband spectrum sensing. Individual decisions are
the basis of secondary spectrum usage regardless if the
final decision is made individually or cooperatively by the
cognitive users. Cooperative spectrum exploration and
exploitation are discussed in depth in [8]. The paper [8]
discusses identification and access of the underutilized
spectrum in multiband and multiuser environments. In
this paper, we investigate the decision-making process
in one single node and one frequency band but in the
presence of impulsive noise.
Spectrum sensing for cognitive radio has to cope with

several impairments like fading, shadowing, and presence
of noise. Usually, the noise is assumed to be white and

© 2015 Trump and Khan. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-015-0487-y-x&domain=pdf
http://orcid.org/0000-0003-4374-036X
mailto: tonu.trump@ttu.ee
http://creativecommons.org/licenses/by/4.0/


Trump and Khan EURASIP Journal onWireless Communications and Networking  (2015) 2015:255 Page 2 of 16

Gaussian, but in real-life situations, this does not need to
be the case. In particular, one has to consider the presence
of impulsive noise, both man-made and natural. Man-
made impulsive noise occurs most commonly due to large
electrical discharges. The impulses caused by such dis-
charges have typically short duration and may vary in
strength and frequency. The sources of the impulses are
for instance spark ignition systems of engines, electrical
machinery, discharge lighting and so on. The electromag-
netic pulses may have durations of 5 to 10 ns and may
occur at rates up to several hundred pulses per second
[9]. For sake of simplicity, we model the impulsive noise
in this paper using Bernoulli-Uniform distribution [10].
It is straightforward to extend the results to other distri-
butions. The required knowledge is the probability that
impulse occurs.
To cope with the impulsive noise, one needs to build

some robustness [11, 12] into the detector. One way of
achieving the robustness is by using a heavy tail distri-
bution like Laplace or alpha stable distribution to model
the noise like it is done in [13]. This approach attempts
to model both impulses and the Gaussian noise floor
with one single distribution and derive the algorithm from
there. Another approach is to limit the signal in some
way. For example, extreme limiting can be achieved using
sign algorithm like in [14]. More reluctant limiting can be
attained by using M-estimators as done in [15, 16]. The
exact point where the limiting needs to occur is however
left open in the previous works. In this paper, we derive
the exact location for limiting the input signal based on
our composite noise model.
In this paper, we will develop all three kinds of robust

detectors. The derivation is based onmodelling the impul-
sive component of the noise explicitly by a uniform distri-
bution and preserving the Gaussian noise component as
usual. The choice of the uniform distribution to model the
impulses is motivated by the fact that we do not have any
information about the amplitude of the impulsive noise
other than the fact that in any practical equipment, there
is a certain limit on how large the amplitude entering the
device can be. This practical limit determines the end-
points of the uniform distribution. In the analysis part
of the paper, we derive the formulae for probabilities of
detection, PD, and false alarm, PF , of the proposed detec-
tors if it is mathematically tractable. Otherwise, we restrict
ourselves with the results obtained using numerical tech-
niques.
For the sake of simplicity, we will assume throughout

the paper that the signals are real valued. Extension to
the complex case is straightforward. The italic, boldface
lowercase and boldface uppercase letters will be used for
scalars, column vectors and matrices, respectively. The
superscript T denotes transposition of a matrix, the oper-
ator E[ ·] denotes mathematical expectation and det[·]

stands for determinant of a matrix. The operators min and
max extract the absolutely largest and the smallest of their
arguments, respectively.
This paper is organized as follows. In Section 2, we

have discussed our data model and derived a approxi-
mate probability density function (PDF) for the noise. In
Section 3, we have introduced a robust detection scheme
based on well-known energy detector. Robust detector
using full knowledge of the primary signal is proposed
in Section 4. Robust correlation matrix-based (eigenvalue
and cyclostationary) detectors are examined in Section 5.
Our simulation results are given in Section 6. Section 7
concludes the paper.

2 Datamodel
We consider the problem of detecting the presence of pri-
mary users in a given frequency band [6, 17]. Suppose that
at time nwe have receivedM samples of signal x(n) andwe
have stacked the samples into a vector x(n). The detection
problem we need to solve is [18]

H0 : x(n) = v(n)

H1 : x(n) = s(n) + v(n), (1)

i.e. the received waveform x(n) may be noise v(n) only or
it may consist of a sum of the primary user signal s(n)

and noise v(n). The detector has to decide which of the
hypotheses is more likely given the received waveform
x(n).
We assume that the noise v(n) comprises a weighted

sum of zero mean additive white Gaussian noise process
and an additional impulsive noise component. The PDF of
the Gaussian component is as follows:

pg (x) = 1√
(2π)M det(R)

exp
(

−x(n)TR−1x(n)

2

)
,

(2)

where R is the correlation matrix of the Gaussian noise
and we have assumed that the noise has a zero mean.
The impulsive noise component is assumed not to be

present most of the time but appears with certain proba-
bility c so that the impulsive component obeys the proba-
bility density function

pi(x) =
{ c

(b−a)M + (1 − c)δ(x), b < x(n) < a,∀n
0, otherwise

,

(3)

with 0 < c < 1, a and b being the lower and upper lim-
its on the values that the impulsive noise can take and δ(·)
denotes the Dirac delta function. In practice, a and bmay
for instance be the smallest and largest numbers that can
be represented at the output of analogue-to-digital (A/D)
converter. For the sake of simplicity, we assume that b =
−a. The uniform distribution is selected because of its
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maximum entropy property, i.e. there is nothing assumed
to be known about the origin of the impulses. For instance,
the impulses may arise due to failures of the A/D con-
verter or some interferences that are not well modelled by
a Gaussian noise process.
The noise vector v(n) is thus according to our assump-

tion a sum of two components

v(n) = vg(n) + vi(n), (4)

where vg(n) is the Gaussian component and vi(n) is the
impulsive noise component at time n. The noise model
obtained this way is intuitively very satisfying as most
of the time the noise is actually Gaussian, and in addi-
tion to that, there are relatively rare impulses present. It
is believed that this model represents the actual situation
rather accurately.
The PDF of v(n) thus consists of two additive compo-

nents and is, as such, a convolution of the individual PDFs.
This can be evaluated as follows:

pv(v)=
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
1√

(2π)M det(R)
exp

(
−u(n)TR−1u(n)

2

)

·
[

c
(b − a)M

W(v-u ) + (1 − c)δ(v − u )

]
du,

(5)

whereW(x) is a function that equals one if all the compo-
nents of the argument vector x lie between a and b and is
zero otherwise. Integration goes over all the components
of vector u. For two-dimensional case, the PDF is depicted
in the left side of Fig. 1 for b = −a = 10, c = 0.05 and

R =
[

1 0.5
0.5 1

]
.

The integral is quite complicated to evaluate and even
more complicated to use in actual equipment, and we
therefore approximate it with

pav(v) = β max
[

1 − c√
(2π)M det(R)

exp
(

− v(n)TR−1v(n)

2

)
,

c
(b − a)M

]
,

(6)

where the constant β is a normalization factor used to
guarantee that the approximate PDF integrates to unity.
In fact, we have replaced the sum in (4) with max opera-
tor. This is intuitively reasonable as impulsive noise is, by
definition, a short pulse having a large amplitude. Hence,
if a noise impulse is present, the amplitude of it is usually
much larger than any other signal or noise components
and the error made by replacing summation with max
operator is relatively small. If the impulsive noise is not
present, we have only the Gaussian component and the
max operator holds again.

For this result to hold, we have assumed that b − a is
much larger than σ and also much larger than any pos-
sible signal component in the received waveform. This is
a reasonable assumption if we think of a and b as being
the limits of the dynamic range that is available for the
waveform. Then, the impulsive noise can take any value
inside these limits, and in fact, it is distinguishable from
the Gaussian noise component only if it takes on abso-
lutely large values as compared to the rest of the waveform
components. If we assume that the waveform is obtained
via an analogue-to-digital converter operating in the range
a < x(n) < b, we see that the Gaussian component
gets limited, too. Another interpretation of changing the
summation with picking the one with the largest absolute
value would be that if impulses are present, they replace
the original samples as it would in fact be in the case of
A/D converter failures.
The approximation is depicted in the right side of Fig. 1

using the same parameters as before. One can see that pv
and pav are indeed very close to each other.
The border between the part determined by Gaussian

component and the component determined by the uni-
form component is given by the following:

1 − c√
(2π)M det(R)

exp
(

−v(n)TR−1v(n)

2

)
= c

(b − a)M
.

(7)

Taking the logarithm from both sides the above can be
rewritten as

v(n)TR−1v(n) = −2 ln
(

c
1 − c

√
(2π)M det(R)

(b − a)M

)
, (8)

which is an equation of anM–dimensional ellipse.
Several algorithms discussed in this paper are based on

the correlation matrix of the observed data. The data is
however contaminated by the impulsive noise so the first
thing to do is to obtain a robust estimate of the correlation
matrix. To do so, assume that we have observedN statisti-
cally independent realizations of vector x. The likelihood
function is given by the following:

p(x;R)=
N−1∏
n=0

β max
[

1 − c√
(2π)M det(R)

exp
(

− x(n)TR−1x(n)

2

)
,

c
(b − a)M

]
.

(9)

The log-likelihood function is thus

ln p(x;R) = max
[
N ln

β(1 − c)√
(2π)M

− N
2
ln det(R)

−
N−1∑
n=0

(
x(n)TR−1x(n)

2

)
, ln

Nβc
(b − a)M

]
.

(10)
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Fig. 1 Exact (left) and approximate (right) PDFs in two-dimensional case. This illustrates the difference between exact and approximate PDFs in
non-Gaussian case

Computing derivative of the log-likelihood function
with respect to matrix R [19] results in

∂ ln p(x;R)

∂R
= max

[(
RT

)−1 N−1∑
n=0

(
x(n)x(n)T

)T (
RT

)−1

−1
2

(
RT

)−1
, 0

]
.

(11)

Setting the derivative to zero and using the first expres-
sion under themax operation in (11), we obtain

R̂T =
N−1∑
n=0

x(n)x(n)T . (12)

From the second expression, we obtain the equality 0 =
0. This result means that there is no information about R
to gain from vectors falling outside the ellipse (8), and we
can ignore them. Unfortunately, the borders of the area
of interest depend on the unknown matrix R and thus we
cannot use the result directly.
Instead, we can find the borders of the area of interest

projecting the ellipse to the axes defined by the signal sam-
ples and treat specially the samples that fall outside the
hypercube. The length of projection of an ellipse centred
at the origin is given by [20]

l =
∥∥∥∥L−1u
uTu

∥∥∥∥ , (13)

where L is the lower triangular Cholesky factor [21] ofR−1

so that

R−1 = LLT (14)

and the vector u shows the line we want to project the
ellipse on.
In our case, the vector u is a vector along one of the

coordinate axes and hence has one element equal to unity
and the rest of them equal to zero. It follows from (14) that
R = L−TL−1 and hence, the projection is determined by
the Cholesky factor of the covariance matrix R. Squaring
(13), we have

l2 = uTRu, (15)

which is an element of the matrix R lying on its main
diagonal. The elements of the main diagonal of a Toeplitz
covariance matrix are however all equal to the variance
of the signal σ 2. Using (8), we now conclude that all the
ellipses are confined in a hypercube with squared length
side

η = −2σ 2 ln
(

c
1 − c

√
(2π)MMσ 2

(b − a)M

)
, (16)

where we have used det(R) = Mσ 2. Hence, we find
that the signal samples that are larger than √

η are due
to the impulsive noise and can be eliminated to gain a
robust covariance estimate. For two-dimensional case, the
ellipses forming the borders between Gaussian and uni-
form areas are illustrated in Fig. 2 for σ 2 = 1, b = −a =
100, c = 10−4 and the different correlation coefficients ρ.
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Fig. 2 The border ellipses for correlation. Ellipse for different correlation coefficient as ρ = 0, 0.5, 0.7, 0.8 and 0.9

There are several possibilities what to do with the sam-
ples greater than √

η resulting in slightly different algo-
rithms. First, we can limit the signal at level √

η. This
approach will be referred to as limiting detector. Sec-
ond, we can replace the samples grater than √

η with
zeros. This is referred to as nullifying detector. To distin-
guish between the two detectors, we introduce a variable
κ which takes value one in case of the limiting detector
and value zero in case of the nullifying detector. We shall
investigate these options closer in the sequel of the paper.

3 Energy detector
3.1 Derivation
In this section, we consider a detector that does not use
the possible dependencies between the sequential samples
and hence, our data model reduces to the M = 1 dimen-
sional model. The conditional probability density of the
received waveform being noise only can be written as

p(x|H0) =

⎧⎪⎨
⎪⎩

β0 max
(

1−c√
2πσn

e
− x2

2σ2n , c
b−a

)
a < x < b

0, otherwise
(17)

and the conditional probability density of the received
waveform being signal plus noise as

p(x|H1) = β1 max
(

1 − c√
2π(σ 2

n + σ 2
s )

e
− x2

2(σ2n+σ2s ) ,
c

b − a

)

(18)

if a < x < b and 0, otherwise. The variables σ 2
s and

σ 2
n denote the variances of primary user signal and noise,

respectively. Let us also denote a common variance as

σ 2
l =

{
σ 2
n l = 0

σ 2
n + σ 2

s l = 1 .

With this notation, we can express the conditional PDFs
corresponding to our two hypotheses for l = 0, 1 as

p(x|Hl) =

⎧⎪⎨
⎪⎩

βl max
(

1−c√
2πσl

e
− x2

2σ2l , c
b−a

)
a < x < b

0, otherwise
.

(19)

The normalization factors βl can be found by solving∫ b
a p(x|Hl)dx = 1 for βl. This results in

βl =
[
(1 − c)erf

(√
ηl

2σ 2
l

)
+ c

(
1 − 2√ηl

b − a

)]−1

,

(20)

where erf(x) = 2√
π

∫ x
0 exp(−t2)dt and

ηl = −2σ 2
l ln

⎛
⎜⎝ c
1 − c

√
2πσ 2

l

b − a

⎞
⎟⎠ (21)

is the intersection point of the Gaussian and uniform
distributions.
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We can give to PDFs of x in the interval a ≤ x ≤ b a
more convenient form for future derivation

p(x|Hl) = βl max

⎛
⎜⎝ 1 − c√

2πσ 2
l

e
− x2

2σ2l ,
c

b − a

⎞
⎟⎠

= βl(1 − c)√
2πσ 2

l

e
− 1

2σ2l
min(x2,ηl)

.

(22)

PDFs of y = x2 are then p(y) = p(x)
dy
dx

and hence

p(y|Hl) = βl(1 − c)√
2πyσ 2

l

e
− 1

2σ2l
min(y,ηl)

. (23)

The minimum operation in the above equation gives us
the limiting nonlinearity and hence the limiting detector.
To include also the nullifying detector into our common
discussion, we introduce a new variable

zE = h(y) =
{

y, 0 ≤ y ≤ η

κη, y > η
, (24)

so that we have

p(y|Hl) = βl(1 − c)√
2πyσ 2

l

e
− 1

2σ2l
zE,l

. (25)

The function h(y) is saturation nonlinearity if κ = 1 and
a nullifying nonlinearity if κ = 0.
Suppose that we have made N observations of the vari-

able y and we have collected these observations into a
vector y and also assume that the observations at different
time instances are statistically independent of each other,
then the joint probability density function is a product of
the individual probability densities

p(y | Hl) = ∏N
n=1 p(y(n) | Hl), l = 0, 1. (26)

The likelihood ratio for the above hypothesis reads

L(y) =
N∏

n=1

β1
β0

√
σ 2
0

σ 2
1

e
− 1

2σ21
zE,1(n)

e
− 1

2σ20
zE,0(n)

. (27)

Taking the logarithm of both sides of (27) and simplify-
ing, we readily obtain the log-likelihood ratio


(y) = N
2
ln

(
β2
1σ

2
0

β2
0σ

2
1

)
− 1

2σ 2
1

N∑
n=1

zE,1(n) + 1
2σ 2

0

N∑
n=1

zE,0(n).

(28)

Our detector thus needs to decide in favour of H1 if the
log-likelihood ratio is larger than a threshold. Otherwise,
the hypothesis H0 is selected.

If there is no impulsive noise, i.e. c → 0, we have

lim
c→0

ηl = −2σ 2
l ln(0) = ∞

lim
c→0

βl = 1

lim
c→0

N
2
ln

(
β2
1σ

2
0

β2
0σ

2
1

)
= N

2
ln

(
σ 2
0

σ 2
1

)

and the test reduces to an ordinary energy detector

1
N

N∑
n=1

y(n) >
σ 2
0 σ 2

1
σ 2
1 − σ 2

0
ln

(
σ 2
0

σ 2
1

)
. (29)

3.2 Asymptotic analysis
In this section, we perform the asymptotic analysis of the
detector in case of large N . We first note that the detector
computes if

1
2σ 2

0

1
N

N∑
n=1

zE,0(n) − 1
2σ 2

1

1
N

N∑
n=1

zE,1(n) > γ , (30)

where

γ = 
(y)
N

− 1
2
ln

(
β2
1σ

2
0

β2
0σ

2
1

)
.

We thus need to find a difference between weighted
arithmetical means of saturated or nullified variables and
compare the result to a threshold in order to perform the
detection.
The probability density function of zE,k = h(y) is given

by [10].

pzE (zE,k) = py(y)
dzE,k
dy

∣∣∣∣∣∣
y=h−1

i (zE,k)

. (31)

For the sake of simplicity, let us assume that b = −a. We
need to investigate PDFs in four different cases, two sums
in (30), k = 0, 1, and two hypothesis l = 0, 1. Substituting
(25) into above in those four cases, we get the following
four PDFs:

p(zE,0|H0) = β0(1 − c)√
2πzE,0σ 2

0

e
− zE,0

2σ20 �(0, η0)

+ cβ0

(
1 −

√
η0
b

)
δ(zE,0 − κη0)

(32)

if l = 0 and k = 0,

p(zE,1|H0) = β0(1 − c)√
2πzE,1σ 2

0

e
− zE,1

2σ20 �(0, η0) + cβ0
2b√zE,1

�(η0, η1)

+ cβ0

(
1 −

√
η1
b

)
δ(zE,1 − κη1)

(33)
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if l = 0 and k = 1,

p(zE,0|H1) = β1(1 − c)√
2πzE,0σ 2

1

e
− zE,0

2σ21 �(0, η0)

+
[
β1(1 − c)

(
erf

√
η1

2σ 2
1

− erf
√

η0

2σ 2
1

)

+β1c
(
1 −

√
η1
b

) ]
δ(zE,0 − κη0)

(34)

if l = 1 and k = 0 and

p(zE,1|H1) = β1(1 − c)√
2πzE,1σ 2

1

e
− zE,1

2σ21 �(0, η1)

+ β1c(b − √
η1)

b
δ(zE,1 − κη1)

(35)

if l = 1 and k = 1. The function �(c, d) equals one
between c and d and is zero otherwise. The cases are illus-
trated in Fig. 3. The main body of the PDFs is identical
for limiting and nullifying detectors. The delta impulses
that distinguish the two are plotted in dashed line for the
case of limiting detector and in dashed dotted line for
nullifying detector.

Combining the results, we can reach a common expres-
sion covering all the cases as

p(zE,k |Hl) = βl(1 − c)√
2πσ 2

l zE,k
e
− zE,k

2σ2l �(0, ηm1)

+ m2
β0c

2b√zE,k
�(η0, η1) + δ(zE,k − κηk)θk,l ,

(36)

where θk,l = βl(1 − c)m3

[
erf

(√
η1
2σ 2

1

)
− erf

(√
η0
2σ 2

1

)]
+βlc

(
1 −

√
ηm4
b

)
, m1 = 1, if l = 1 and k = 1 and is zero

otherwise; m2 = 1, if l = 0 and k = 1 and is zero other-
wise; m3 = 1, if l = 1 and k = 0 and is zero otherwise;
m4 = 0, if l = 0 and k = 0 and is one otherwise.
This distribution has mean

E
[
zE,k |Hl

] = βl(1 − c)

⎡
⎣σ 2

l erf
(√

ηm1

2σ 2
l

)
−

√
2σ 2

l ηm1

π
e
− ηm1

2σ2l

⎤
⎦

+ β0c
3b

(
η

3
2
1 − η

3
2
0

)
m2 + ηkκθk,l

(37)

and second moment

E
[
z2E,k |Hl

] = βl(1−c)

⎡
⎣3σ 4

l erf
(√

ηm1

2σ 2
l

)
−

√
2σ 2

l ηm1

π
e
− ηm1

2σ2l
(
ηm1 +3σ 2

l
)⎤⎦

+ β0c
5b

(
η

5
2
1 − η

5
2
0

)
m2 + (κηk)

2θk,l .

(38)

Fig. 3 Probability density functions of the four cases. This shows the PDFs of four different conditions in robust energy detection
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The cross-correlation between zE,0 and zE,1 is perfect
if zE,1 < η0 and in this case, E[ zE,0zE,1|Hl]= E[ z2E,0|Hl].
This happens with probability

P(zE,1 < η0) =
∫ η0

0
pzE (zE,1|Hl)dzE,1

= βl(1 − c)erf
(√

η0

2σ 2
l

)
.

(39)

If zE,1 > η0 and we consider the limiting detector,
i.e. κ = 1, we have zE,0 = η0 and hence E[ zE,0zE,1]=
η0EzE,1>η0 [ zE,1] , where EzE,1>η0 [ zE,1] is the mean of zE,1
above η0. In case of the nullifying detector where κ = 0 if
zE,1 > η0, we have zE,0 = 0 and consequently E[ zE,0zE,1]=
0. The occasion zE,1 > η0 occurs with probability 1 −
P(zE,1 < η0) and the cross-correlation is therefore

E
[
zE,0zE,1|Hl

] = P(zE,1 < η0)E
[
z2E,0|Hl

]
+ [

1−P(zE,1 < η0)
]
κη0EzE,1>η0

[
zE,1|Hl

]
.

(40)

Examining (30), we see that to proceed we need the
moments of the variable

wE = 1
2σ 2

0
zE,0 − 1

2σ 2
1
zE,1. (41)

The mean of wE is

E [wE|Hl] = E[zE,0|Hl]
2σ 2

0
− E[zE,1|Hl]

2σ 2
1

(42)

and its second moment equals

E
[
w2
E|Hl

] =
E

[
z2E,0|Hl

]
4σ 4

0
− 2E

[
zE,0zE,1|Hl

]
4σ 2

0 σ 2
1

+
E

[
z2E,1|Hl

]
4σ 4

1
.

(43)

The variance is equal to

σ 2
E,Hl

= E
[
w2
E|Hl

] − E2[wE|Hl] . (44)

Let us now note that according to (30), the detector
computes a sample average of N independent and identi-
cally distributed (i.i.d.) random variables wE . According
to the central limit theorem [10], the distribution of such a
sum approaches Gaussian with mean E [wE|Hl] and vari-

ance
σ 2
E,Hl
N , l = 0, 1 when N increases, independent of

the shape of the original distribution of the variables wE .
We can therefore for large N evaluate the probability of
correct detection as

PD =
∫ ∞

γ

pwE (wE | H1)dwE

= 1
2
erfc

(
(γ − E[wE | H1] )

√
N√

2σE,H1

)
.

(45)

The probability of fault alarm is correspondingly

PF =
∫ ∞

γ

pwE (wE | H0)dwE

= 1
2
erfc

(
(γ − E[wE | H0] )

√
N√

2σE,H0

)
.

(46)

The threshold γ and the number of samples N that are
required to reach given PF and PD can be found by solving
system of equations formed by (45) and (46){ √

2σE,H0erfc−1(2PF) = [γ − E(wE|H0)]
√
N√

2σE,H0erfc−1(2PD) = [γ − E(wE|H1)]
√
N . (47)

Solving the system for N and γ , we obtain that in order
to reach the operating point (PF ,PD), we need⎧⎪⎪⎨

⎪⎪⎩
N = 2

[
σE,H0 erfc

−1(2PD)−σE,H0 erfc
−1(2PF )

E(wE|H0)−E(wE|H1)

]2
γ = σE,H0 erfc

−1(2PD)E(wE|H0)−σE,H0 erfc
−1(2PF )E(wE|H1)

σE,H0 erfc
−1(2PD)−σE,H0 erfc

−1(2PF )

.

(48)

It should be noted that the energy detector assumes
that the Gaussian noise level is known. If there is some
uncertainty, the performance of the energy detector will
deteriorate [22].

4 Coherent detection
As in the previous section, we are dealing here with a one-
dimensional problem, but in this case, we assume that the
primary user signal s(n) is known. Using this knowledge,
we are going to build a detector that is able to detect the
primary signal in noise.

4.1 Derivation
The conditional probability density of the received wave-
form being noise only is given by (17) and the conditional
probability density of the received waveform being signal
plus noise as

p(x|H1) =
⎧⎨
⎩ β max

(
1−c√
2πσ

e−
(x−s)2
2σ2 , c

b−a

)
, a < x < b

0, otherwise
.

(49)

With this approximation, the signal to be detected
appears as the mean value of the Gaussian process while
the impulsive noise component is not affected by the
presence or absence of the signal.
The factor β is used in the above equations to scale p to

satisfy the requirements for probability density function
and can be found by solving∫ b

a
p(x|H0)dx = 1 (50)
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for β . Note, however, that the particular value of β does
not affect the resulting detector, and we do not therefore
pursue the issue any further.
Instead, we proceed simplifying the expressions for

probability densities p(x|H0) and p(x|H1). As the two dif-
fer just by the mean value of the Gaussian process, we
concentrate only at p(x|H1) for the moment. An expres-
sion for p(x|H0) will follow by similar calculations. For
p(x|H1), we have

p(x|H1) = β max
(

1 − c√
2πσ

e−
(x−s)2
2σ2 ,

c
b − a

)
(51)

= β(1 − c)√
2πσ

max
[
e−

(x−s)2
2σ2 , eln

(
c

1−c

√
2πσ
b−a

)]

= β(1 − c)√
2πσ

e−
1

2σ2
min

(
(x−s)2,−2σ 2 ln

(
c

1−c

√
2πσ
b−a

))
.

With this result and assuming that we have received N
samples of waveform x(n) that are statistically indepen-
dent of each other, we can now design the likelihood ratio
test as follows. The log-likelihood ratio can be written as

ln� = ln
∏N

n=1 p(x|H1)∏N
n=1 p(x|H0)

=− 1
2σ 2

N∑
n=1

min
(
(x(n)−s(n))2,−2σ 2 ln

(
c

1−c

√
2πσ

b−a

))

+ 1
2σ 2

N∑
n=1

min
(
x(n)2,−2σ 2 ln

(
c

1 − c

√
2πσ

b − a

))
.

(52)

The hypothesis H1 is selected if the log-likelihood ratio
is greater than a threshold and the hypothesis H0 oth-
erwise. Cancellation of the common terms in the above
equation results in the limiting detector.
Select H1 if

N∑
n=1

min
(
(x(n) − s(n))2, η

) −
N∑

n=1
min

(
x(n)2, η

)
> γ ′,

(53)

and H0 otherwise. In the above, η is given by (16), and
γ ′ is the threshold selected in accordance with the a pri-
ori probabilities and costs given to the different possible
events [23].
The structure of the resulting robust limiting detector is

shown in Fig. 4. The corresponding nullifying detector is
obtained by setting the samples that are absolutely larger
than √

η to zero.

4.2 Asymptotic analysis
As derived in the previous subsection, the detector needs
to compute two arithmetic means and compare the result
of their difference to a threshold

1
N

N∑
n=1

min
(
(x(n) − s(n))2, η

)− 1
N

N∑
n=1

min
(
x(n)2, η

)
> γ .

(54)

To perform our analysis, we assume that the signal s is
small so that the intersection points of Gaussian and uni-
form distributions η computed for the two sums in the
above equation are close to each other.
Again, we have two sums k = 0, 1 and two hypothe-

ses l = 0, 1 we need to consider and let us again denote
the variables under summations by zC so that zC,0 =
min

(
(x(n) − s(n))2, η

)
and zC,1 = min

(
x(n)2, η

)
. In the

case k = 0 and l = 0, the received signal comprises of
noise only and the PDF for both limiting and nullifying
detector is hence

p(zC,0|H0) = β(1 − c)
2
√
2πzC,0σ

e−
zC,0
2σ2 �(0, η)

+ (1 −
√

η

b
)cβδ(zC,0 − κη).

(55)

Likewise, in the case k = 1 and l = 0, we have

p(zC,1|H0) = β(1 − c)
2
√
2πzC,1σ

e−
zC,1
2σ2 �(0, η)

+ (1 −
√

η

b
)cβδ(zC,1 − κη).

(56)

In case of H1, the received signal x includes the signal
component s in addition to the noise. It turns out that the
problem is symmetric with

p(zC,0|H1) = p(zC,1|H0) (57)

and

p(zC,1|H1) = p(zC,0|H0). (58)

Next, we need to find the moments of the distributions.
The mean in case of k = 0 and l = 0 equals

E[ zC,0|H0] = β(1 − c)
2
√
2πσ

{√
2πσ(s2 + σ 2)

[
erf

√
η − s√
2σ

+erf
√

η + s√
2σ

]
− 2σ 2

[
(
√

η + s)e−
(
√

η−s)2

2σ2

+(
√

η − s)e−
(
√

η+s)2

2σ2

]}
+ κη

(
1 −

√
η

b

)
cβ

(59)
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Fig. 4 Structure of the proposed robust detector

and the second moment equals

E
[
z2C,0|H0

]= β(1 − c)
2
√
2πσ

{√
2πσ(s4 + 6s2σ 2 + 3σ 4)

[
erf

√
η − s√
2σ

+erf
√

η + s√
2σ

]
+2σ 2e−

(
√

η+s)2

2σ2
[−η

√
η−√

η
(
s2+3σ 2)

+ηs + s3 + 5sσ 2 − 2σ 2e−
(
√

η−s)2

2σ2
[
η
√

η + √
η

×(s2 + 3σ 2) + ηs + s3 + 5sσ 2]}
+ (κη)2

(
1 −

√
η

b

)
cβ .

In case of k = 1 and l = 0, we have

E[zC,1|H0]=β(1−c)σ 2erf
( √

η√
2σ

)
− 2β(1−c)√

2π
σ
√

ηe−
η

2σ2

+ κη

(
1 −

√
η

b

)
cβ

(60)

and

E
[
z2C,1|H0

] = 3β(1 − c)σ 4erf
( √

η√
2σ

)

− 2β(1 − c)√
2π

√
ησ e−

η

2σ2
(
η + 3σ 2)

+ (κη)2
(
1 −

√
η

b

)
cβ .

Naturally, it holds that E
[
zC,0|H1

] = E
[
zC,1|H0

]
,

E
[
zC,1|H1

] = E
[
zC,0|H0

]
, E

[
z2C,0|H1

]
= E

[
z2C,1|H0

]
and

E
[
z2C,1|H1

]
= E

[
z2C,0|H0

]
. The noise is the same in both

sums while the signal s only appears in one of the sums. As

we have assumed, the signal and noise to be independent
the cross correlation is

E
[
zC,0zC,1

] = E
[
z2C,1|H0

]
(61)

no matter what hypothesis we are interested in.
To proceed, we need the moments of the variable

wC = zC,0 − zC,1. (62)

The mean of wC is

E [wC |Hl] = E
[
zC,0|Hl

] − E
[
zC,1|Hl

]
(63)

the second moment is

E
[
w2
C |Hl

] = E
[
z2C,0|Hl

]− 2E
[
zC,0zC,1|Hl

]+E
[
z2C,1|Hl

]
.

(64)

The variance equals

σ 2
C,Hl

= E
[
w2
C |Hl

] − E2[wC |Hl] . (65)

We see that in case of coherent detection the terms
involving κ cancel from the expressions of the moments of
wC and consequently the nullifying and limiting detectors
behave equally in this case.
Let us now note that according to (54), the detector

computes a sample average of N i.i.d. random variables
wC . According to the central limit theorem [10], the dis-
tribution of such a sum approaches Gaussian with mean

E[wC |Hl] and variance
σ 2
C,Hl
N , l = 0, 1 when N increases,

independent of the shape of the original distribution of the
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variables wC . We can therefore for large N evaluate the
probability of correct detection as

PD =
∫ ∞

γ

pwC (wC | H1)dwC

= 1
2
erfc

(
(γ − E[wC | H1] )

√
N√

2σC,H1

)
.

(66)

The probability of false alarm is correspondingly

PF =
∫ ∞

γ

pwC (wC | H0)dwC

= 1
2
erfc

(
(γ − E[wC | H0] )

√
N√

2σC,H0

)
.

(67)

5 Robust detectors based on correlationmatrix
In this section, we consider the detectors that are based on
autocorrelation of the received signal like eigenvalue ratio
test and cyclostationary feature detector.

5.1 Eigenvalue ratio detector
It was recently proposed to use the eigenvalues of the
correlation matrix of the received signal for detection
purposes [4, 24]. The method consists of computing the
sample covariance matrix which is given by

R̂x = 1
K

K−1∑
k=1

x(k)xH(k), (68)

where N is number of collected samples of the received
signal. Then, computing its maximum and minimum
eigenvalues λmax and λmin, it is then decided that the sig-
nal is present if T(x) = λmax/λmin > γ , where γ is the
threshold of the test.
It is demonstrated in [24] that based upon the the-

ory of random matrices [25], one can obtain approximate
expressions for the probability of false alarm and proba-
bility of detection of this detector if the noise is Gaussian.
For non-Gaussian noise, the analysis is considered to be
mathematically untractable.

5.2 Cyclostationary detector
The oversampled modulated signals exhibit cyclostation-
arity due to hidden periodicities caused by cyclic prefix,
pilot carrier, sampling, multiplexing, coding and modu-
lation etc. This means that some of the statistics of the
received signal exhibit periodicity if the primary signal is
present. In particular, the statistics are mean and autocor-
relation function. This property can be used to distinguish
between signal and noise which are stationary in nature,

even at low signal-to-noise ratio (SNR) regimes [6, 26].
The detector computes the spectral correlation function

Sα
xx(f ) =

∞∑
k=−∞

rαx (k)e−j2π fk , (69)

where

rαxx(k) = E
[
x(n)x∗(n + k)e−j2παn] , (70)

and α is the cyclic frequency. The cyclostationary detector
then evaluates∥∥Sα

xx( f )
∥∥2 > γ . (71)

In this paper, the results are based on single cycle detec-
tor [6]. It should be noted that the cyclostationary detector
assumes a knowledge of the cyclic frequency α. The anal-
ysis of the test is again not mathematically tractable;
however, it is known [27] that approximate expression for
the probability of false alarm in Gaussian case is given by

Pf ≈ exp
[
− (2N + 1)γ 2

2σ 4

]
. (72)

5.3 Robust detection
Robust counterparts of the correlation matrix based
detectors are obtained by substituting a robust correlation
matrix estimate as it was discussed in Section 2 (12)

Rr =
{
R, ifx ≤ η

κη, otherwise (73)

into (70) and (68).

6 Simulation results
6.1 Energy detector
In Fig. 5, we plot the receiver operating characteristic
(probability of detection as a function of probability of

Fig. 5 ROCs of limiting and nullifying energy detectors. This illustrates
the difference in the ROCs of two proposed robust energy detectors
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false alarm) (ROC) of the nullifying and limiting energy
detectors with parameters σ 2

n = 1, σ 2
s = 2, c = 0.001,N =

30 and b = −a = 100. The data signal used in this
simulation is white Gaussian random process so that the
signal to ambient Gaussian noise ratio is 3 dB. We see
that the difference between the two is relatively small with
the limiting detector being superior. We therefore use
only the limiting detector in the following energy detector
simulation examples.
Next, we investigate how many samples should the

detector involve for our analysis to apply. In the simula-
tion example, we have used the following parameters to
compute the probability of miss Pm(γ ) = 1 − PD(γ ) :
σ 2
n = 1, σ 2

s = 2, c = 0.01 and b = −a = 100. In Fig. 6,
one can see that with N = 5, the simulation and the-
ory vaguely remember each other. The situation improves
if we increase the number of samples to 15 and already
with N = 30 the theoretical curve and simulation dots
are rather close to each other. The simulation points are
averages over 1 million independent trials. We note that
N = 30 is much smaller thanN found from (48) for signal-
to-noise ratios required for proper operation of the energy
detector in cognitive radio applications. A similar result
can be obtained for the probability of false alarm PF .
Figure 7 depicts the dependence of the probability of

false alarm from the number of samples N for ordi-
nary energy detector if there is no impulsive noise (black
dashed line). It also shows the curves corresponding to
the ordinary energy detector (blue line) and the proposed
robust detector (magenta line) in the presence of impul-
sive noise with intensity c = 0.001. For comparison, we

show the results of the robust Lp norm detector with p = 1
(red line) and p = 1.5 (green line) of [13] in the same
noise. The proposed limiting detector operates in these
conditions almost as well as the ordinary energy detector
in Gaussian noise and outperforms all the others.

6.2 Coherent detection
In the case of known primary signal, we present graphs
for probability of detection and probability of false alarm
as functions of the threshold γ . The comparison of theo-
retical and simulation results for the case s = 1, σ 2

n = 1,
c = 0.01, a = −100, b = 100 and N = 100 is given in
Fig. 8. One can see that for low values of threshold, both
probabilities are close to unity. Then, the probability of
false alarm starts decreasing followed by the probability
of detection, and for high threshold values, both proba-
bilities are close to zero. One can also observe that the
theoretical and simulation results match each other well.

6.3 Correlation matrix-based detection
6.3.1 Eigenvalue ratio detector
Here, we compare the proposed detector with two other
recently proposed robust detectors. The first of them is
the detector using sign correlation as proposed in [14].
The second one is a Huber M-estimate-type detector

proposed in [16].
Figure 9 shows the ROCs of the detectors. All the

curves in this subsection are obtained for simulations.
The number of samples in each trial was 100, and the
curves are averages over 100,000 trials. Since wave s(n) =
A sin(0.32πn + ϕ0) with ϕ0 being a random initial phase,

Fig. 6 Probability of detection as a function of threshold
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Fig. 7 Probability of false alarm as function of N

uniformly distributed in the interval [−π ,π ] was used as
the input signal. The signal power was 0.5, and the Gaus-
sian noise variance was set to σ 2 = 1. For each run,
we constructed a 10 × 10 covariance matrix to calculate
the eigenvalues. The limits of impulsive noise were set to
a = −100 and b = 100. The probability of impulses was
c = 0.01 in the simulation.
The blue line is performance of the ordinary eigenvalue

ratio detector, designed for Gaussian noise, in case there
is no impulsive noise. The green line represents the per-
formance of this detector in the presence of impulsive
noise. One can see that in the presence of the impulsive

noise performance of the detector is significantly deteri-
orated. The cyan line is the performance of the limiting
detector and the red line is that of the detector that forces
the samples that include suspected impulses to zero. The
black line is the detector based on the sign correlation
and the magenta line is the performance of the detec-
tor that uses M-estimate of the correlation matrix with
ah = 8.
One can see that the detector that sets samples with sus-

pected impulses to zero performs best giving almost as
good performance as the ordinary eigenvalue ratio detec-
tor in Gaussian noise. The performance of the limiting

Fig. 8 Probabilities of detection and miss
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Fig. 9 ROCs of eigenvalue ratio detectors

detector is somewhat worse than that of these two. Both
detectors proposed in this paper outperform the detec-
tor using M-estimate of correlation matrix with ah = 8
and the algorithm using sign correlation. We see that the
nullifying detector performs almost as good as the usual
detector in Gaussian noise and the other detectors are
somewhat worse. The signal and noise parameters are the
same as in the earlier simulation examples.

In Fig. 10, we show the probability of miss as a func-
tion of noise power. We have selected the same signal and
noise as before but now the noise variance is varied from
0.1 to 5 keeping the signal power equal to 0.5. The impulse
probability c = 0.01 with b = −a = 100. The detec-
tion threshold is γ = 5 in this simulation. It can be seen
that if the noise variance increases the probability of miss
becomes higher for all the detectors.

Fig. 10 Dependence of probability of miss of on noise power
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6.3.2 Cyclostationary detector
In Fig. 11, we show the ROCs for the cyclostationary
detectors. We have used the same simulation parameters
as we used in simulating the eigenvalue ratio detectors
except that the input signal is amplitudemodulated so that
it shows cyclostationary behaviour and the SNR is −5 dB.
The performance of ordinary cyclostationary detector

is represented by blue line, in case there is only Gaussian
noise. The performance of same detector in the presence
of impulsive noise is represented by green line. It is clearly
visible from the figure that impulsive noise significantly
deteriorates performance of the detector. The cyan line
shows the performance of the limiting detector and the
red line that of the nullifying detector in impulsive noise.
The black and the magenta lines are for the sign correla-
tion and the Huber detectors, respectively. Once again, it
is evident that the nullifying detector gives in impulsive
noise better performance than the other robust detectors.
Finally, we show the probability of detection as function

of impulse probability c in Fig. 12. The probability of false
alarm is kept constant Pf = 0.01, the impulse probability
c changes from 10−4 to 10−1 and the SNR is −5 dB. Here,
we see that the performance of the nullifying detector is
superior being in case of low and moderate impulse prob-
abilities almost as good as the ordinary detector without
impulsive noise. This is followed by the limiting detector
and the others.

7 Conclusions
This paper addresses the problem of reliable detection in
the presence of impulsive noise. We base our derivation
on the noise model that explicitly includes two parts, one
of them being Gaussian to model thermal noise and the
other being uniform to model the rare impulses. We have
investigated two versions of the resulting robust detec-
tors, and it turns out that for energy detector limiting,

Fig. 11 ROCs of the cyclostationary detectors

Fig. 12 Probability of detection of the cyclostationary detector as
function of impulse probability

the noise works best; there is no difference in perfor-
mance of nullifying detector and limiting detector in case
of coherent detection, and finally, in case of correlation
matrix-based detectors, the nullifying approach works
best. The detectors perform almost as well as the ordinary
detectors, derived for Gaussian noise if the noise actually
is Gaussian.
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