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Abstract

With the development and widespread application of wireless sensor networks (WSNs), the amount of sensory data
grows sharply and the volumes of some sensory data sets are larger than terabytes, petabytes, or exabytes, which
have already exceeded the processing abilities of current WSNs. However, such big sensory data are not necessary for
most applications of WSNs, and only a small subset containing critical data points may be enough for analysis, where
the critical data points including the extremum and inflection data points of the monitored physical world during
given period. Therefore, it is an efficient way to reduce the amount of the big sensory data set by only retrieving the
critical data points during sensory data acquisition process. Since most of the traditional sensory data acquisition
algorithms were only designed for discrete data and did not support to retrieve critical points from a continuously
varying physical world, this paper will study such a problem. In order to solve it, we firstly provided the formal
definition of the δ-approximate critical points. Then, a data acquisition algorithm based on numerical analysis and
Lagrange interpolation is proposed to acquire the critical points. The extensive theoretical analysis and simulation
results are provided, which show that the proposed algorithm can achieve high accuracy for retrieving the
δ-approximate critical points from the monitored physical world.
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1 Introduction
The appearance of wireless sensor networks (WSNs)
makes it possible to observe the complicated physical
world with low cost. Nowadays, WSNs are widely used
in many applications, including military defense [1–4],
environment monitoring [5, 6], traffic monitoring [7, 8],
and structural health monitoring [9–11]. Meanwhile, the
amount of sensory data also grows fast with the wide use
of sensor networks. For example, the climate data will
exceed 100 PB in 2020 according to the report in [12].
For the Large Hadron Collider in Europe, if all sensory
data were recorded, the total amount of the sensory data
is nearly 50 EB per day. Similarly, the traffic data, includ-
ing GPS data, the monitoring data captured by electronic
eyes, and so on, also increase rapidly and have already
exceeded petabyte annually. Fortunately, not all sensory
values are necessary for the users’ analysis inmost applica-
tions. Some critical data points, such as maxima, minima,
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and flection points in a monitoring process, may be the
only ones required by the users. Therefore, the algorithms
for retrieving the critical data points from the monitored
physical world are quite important for WSNs.
Currently, it supposes that the sensor nodes sense and

sample the data from the monitored environment with
equal sampling frequency in most of traditional applica-
tions, and the sensory data generated byWSNs is regarded
as a set of discrete values. Under such assumptions, a great
number of query processing techniques on discrete sen-
sory data have been proposed, including the curve query
processing algorithms [13], aggregation query process-
ing algorithms [14–17], top-k query processing algorithms
[18–20], skyline [21, 22], and quantilen [23, 24] query
processing algorithms. Although all the above algorithms
are efficient for processing the discrete sensory data, they
cannot meet the complicated query requirements given
by users and do not support to retrieve the critical data
points in current WSNs since only discrete data were
considered. For example, in the air pollution monitor-
ing application, the users want to estimate the extremum
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pollution values and obtain the period when these val-
ues appear. In the climate monitoring system, the users
may want to know the convexity of the wind velocity or
rainfall curve and acquire the inflection points of such
curves. The reasons the above query requirements cannot
be satisfied by the existing query processing techniques,
which only consider the discrete sensory data, are given
as follows. First, as pointed out by [25, 26], the moni-
tored physical world varies continuously, and the discrete
sensory dataset omits many critical points, such as max-
ima, minima, and flection points from the physical world,
so that the queries of retrieving critical points cannot be
answered since these points do not belong to the discrete
sensory dataset. Second, to answer the queries about the
convexity, monotonicity, or the positions of critical points,
the original data needs to have the continuous first and
second derivatives, which cannot be met by the discrete
sensory dataset either.
To overcome the above problems, Cheng et al. [26]

proposed an adaptive data acquisition algorithm to recon-
struct the physical world as much as possible. For any
given error bound ε, the authors proved that the result
returned by their algorithm is O(ε) approximate to the
monitored physical world, where ε can be arbitrarily
small. Since the sampling frequency of each sensor is
adjusted adaptively according to the variation of the mon-
itored physical world, the algorithm proposed by [26]
samples few sensory data and saves lots of energy on con-
dition that the observation error is guaranteed. However,
since the aim of [26] is to reconstruct the physical world,
the amount of sensory data acquired by the sensors is still
quite large. Considering that many applications may only
want to acquire the critical point information, such as as
maxima, minima, and flection points, according to the
above analysis, therefore, the energy cost of collecting the
sensory data from the monitored physical world can be
further reduced.
Due to the above reasons, we will study the problem of

retrieving the critical points, including the extremum and
inflection points, in the sensor networks. In this paper,
a novel sensory data acquisition algorithm is proposed
based on numerical analysis techniques [27] and Lagrange
interpolation [28] in order to retrieve the critical points
approximately. Such algorithm can adjust the sampling
frequency of sensors adaptively according to the varia-
tion of physical world in order to dramatically reduce
the amount of sensory data. Furthermore, to evaluate the
error of approximate critical points, the formal definitions
of δ-approximate extremum point and δ-approximate
inflection point are firstly provided, where δ denotes
the relative error between the approximate critical point
and the exact one. The correctness of the algorithm is
proved. In summary, the contributions of this paper are
as follows.

1. The formal definitions of δ-approximate extremum
point and δ-approximate inflection point are firstly
proposed. The problem of acquiring critical points
from the monitored physical world is also defined.

2. Two critical point aware data acquisition algorithms
are proposed based on numerical analysis [27] and
Lagrange interpolation [28] techniques. The
algorithms can adjust the sampling frequency of the
sensors automatically according to variation of the
physical world. The correctness of the algorithms is
proved and the complexities of the algorithms are
analyzed.

3. The extensive simulations on the real data set are
carried out. The experimental results show that both
of the precision and recall rate of our proposed
algorithms are quite high to retrieve δ-approximate
extremum point and δ-approximate inflection point
from the monitored physical world.

The organization of the paper is as follows. Section 2
gives the problem definition. Section 3 provides the math-
ematical foundations of the algorithms. Section 4 pro-
poses two critical points aware data acquisition algo-
rithms, to retrieve the δ-approximate extremum point
and δ-approximate inflection point, respectively. Section 5
shows the experimental results. Section 6 discusses the
related work of the paper. Finally, section 7 concludes the
whole paper.

2 Problem definition
LetN denote the number of sensor nodes in a givenWSN,
and V = {1, 2, · · · ,N} be the set of sensor nodes, where
i (1 ≤ i ≤ N) denotes the ID of a sensor node.
Suppose that ts and tf denote the start and final time

in monitoring the physical world by a WSN, respectively.
Therefore, the variation of the physical world monitored
by sensor node i can be regarded as a curve. We use
Si (1 ≤ i ≤ N) to denote such curve. According to
the discussion in [26], the physical world always varies
continuously and Si is smooth enough to have a contin-
uous fourth-order derivative, i.e., Si ∈ C4[ ts, tf], where
C4[ ts, tf] denotes the set of functions whose fourth-order
derivative is continuous in [ ts, tf].
In this paper, the critical points considered by us are

extremum points and inflection points of the physical
curve Si (1 ≤ i ≤ N). Since Si has the continu-
ous fourth-order derivative according to the above anal-
ysis, the extremum points of Si in range [ ts, tf] can
be denoted by

{
x|S(1)

i (x) = 0
∧

x ∈[ ts, tf]
}
; similarly, the

inflection points of Si in [ ts, tf] can be denoted by{
x|S(2)

i (x) = 0
∧

x ∈[ ts, tf]
}
, where S(1)

i and S(2)
i are the

first and second derivatives of Si, respectively.
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Since when the critical points will appear in the future is
unknown, it requires that the sampling frequency should
be infinite to obtain all the critical points of Si exactly,
which is almost impossible. Thus, we will study the sen-
sory data acquisition algorithm to retrieve the critical
points, including the extremum points and the inflec-
tion points, approximately. To evaluate the relative error
between the approximate critical points and the exact
critical points, the δ-approximate extremum point and
δ-approximate inflection point are defined as follows.

Definition 1. (δ-approximate extremum points) x̂i
from Ŝi is called as a δ-approximate extremum point if and
only if ∃xi ∈[ ts, tf] satisfying |x̂i−xi|

xi ≤ δ and S(1)
i (xi) = 0.

Definition 2. (δ-approximate inflection points) x̂i is
called as a δ-approximate inflection point if and only if
∃xi ∈[ ts, tf] satisfying that S(2)

i (xi) = 0 and |x̂i−xi|
xi ≤ δ.

The intuition of our algorithm is to forecast the first and
second derivatives of Si using the current collected sen-
sory data. If the first or second derivative is close to 0, then
the sampling frequency increases. Otherwise, we reduce
the sampling frequency in order to save energy. Since
the physical world varies continuously, it is acceptable to
use the history sensory data to forecast the future. The
detailed algorithm is presented in Section 4, and the for-
mal definition of retrieving the approximate critical points
from physical world is given as follows.

Input:

1. The start and final time of monitoring, t0(= ts)
and tf

2. The maximum bound of the sampling frequency
of a sensor node, fmax

3. The step-size increment t′ and the decrease factor
α

Output: The sets of approximate extremum and
inflection points in [ ts, tf], X1 and X2

We verify that the precision and the recall rate of our
algorithms are quite high on condition that δ-approximate
extremum points and δ-approximate inflection points are
collected. To improve the readability of the whole paper,
the table of the symbols used in this paper is given in
Table 1.

3 Mathematical foundations
Let tc denote the current sampling time, tc−1 denote the
last sampling time before tc, and t 2c−1

2
be the median

of tc and tc−1. For each sensor node i (1 ≤ i ≤ N),
Si

(
t 2c−1

2

)
should always be sampled besides Si(tc−1) and

Table 1 The meanings of symbols

Symbols Meanings

δ The relative error of the approximate critical point

N The number of sensor nodes in a given WSN

V = {1, 2, ..N} The set of sensors

i The ID of a sensor node

Si The real physical world curve at node i’s location

Si(t) The sensed value of sensor node i at time t

Si(k)(t) The k-order derivative of Si at time t.

Ŝi
(k)

(t) The estimation of the k-order derivative of Si at time t.

X1 The extremum point set returned by our algorithm.

X2 The inflection point set returned by our algorithm.

ts The start time of an observation period

tf The final time of an observation period

tc The current data sampling time slot

fmax The maximum sampling frequency

t′ The step-size increment

α The decrease factor

Si(tc) in [ tc−1, tc]. Based on such operations and a three-
point central difference formula [27], the first and second
derivatives of Si at t 2c−1

2
can be estimated by the following

two formulas.

Ŝi
(1) (

t 2c−1
2

)
= Si(tc)−Si(tc−1)

2h − h2
6 S

(3)
i

(
t 2c−1

2

)
(1)

Ŝi
(2) (

t 2c−1
2

)
=

Si(tc)−2Si(t 2c−1
2

)+Si(tc−1)

h2 − h2
12S

(4)
i

(
t 2c−1

2

)
(2)

where h = t 2c−1
2

− tc−1 = tc − t 2c−1
2

denotes the half length
of the sampling interval.
The following theorem guarantees that the difference

between Ŝi
(1) (

t 2c−1
2

)
and S(1)

i

(
t 2c−1

2

)
is determined by h2.

Theorem 1.
∣∣∣S(1)

i

(
t 2c−1

2

)
− Ŝi

(1) (
t 2c−1

2

)∣∣∣ =
∣∣∣ h26 {

S(3)
i(

t 2c−1
2

)
− S(3)

i (ξ)
}∣∣∣, where ξ ∈ [tc−1, tc].

Proof. Based on Taylor Series, we have

Si(tc) = Si
(
t 2c−1

2

)
+ hS(1)

i

(
t 2c−1

2

)
+ h2

2
S(2)
i

(
t 2c−1

2

)
+ h3

3!
S(3)
i (ξ1)
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Similarly

Si(tc−1) = Si
(
t 2c−1

2

)
− hS(1)

i

(
t 2c−1

2

)
+ h2

2
S(2)
i

(
t 2c−1

2

)
− h3

3!
S(3)
i (ξ2)

where ξ1 ∈
[
t 2c−1

2
, tc

]
and ξ2 ∈

[
tc−1, t 2c−1

2

]
. Therefore,

Si(tc)−Si(tc−1) = 2hS(1)
i

(
t 2c−1

2

)
+h3

3!

(
S(3)
i (ξ1) + S(3)

i (ξ2)
)

(3)

Let M and m be the maximum and minimum values
of S(3)

i (t) for any t ∈ [tc−1, tc]. Since ξ1, ξ2 ∈ [tc−1, tc],

m ≤ S(3)
i (ξ1)+S(3)

i (ξ2)
2 ≤ M. Furthermore, since Si has the

continuous third-order derivative, ∃ξ ∈ [tc−1, tc] satis-
fies that S(3)

i (ξ) = S(3)
i (ξ1)+S(3)

i (ξ2)
2 . Therefore, according to

Formula (3),we have

S(1)
i

(
t 2c−1

2

)
= Si(tc) − Si(tc−1)

2h
− h2

6
S(3)
i (ξ) (4)

Comparing Formula (3) with Formula (1), we have

∣∣∣S(1)
i

(
t 2c−1

2

)
− Ŝi

(1) (
t 2c−1

2

)∣∣∣ =
∣∣∣∣h26

{
S(3)
i

(
t 2c−1

2

)
− S(3)

i (ξ)
}∣∣∣∣ .

Theorem 2.
∣∣∣S(2)

i

(
t 2c−1

2

)
− Ŝi

(2) (
t 2c−1

2

)∣∣∣ =
∣∣∣ h212 (

S(4)
i(

t 2c−1
2

)
− S(4)

i (ξ)
)∣∣∣, where ξ ∈ [tc−1, tc].

The proof of Theorem 2 is similar as that of Theorem 1.
These two theorems indicate that the difference between
the exact critical points and the approximate ones calcu-
lated by Formulas (1) and (2) can be arbitrary small with
the decline of h.
In Theorems 1 and 2, S(3)

i

(
t 2c−1

2

)
and S(4)

i

(
t 2c−1

2

)
can be

estimated by Lagrange interpolation. The sensory values
collected by sensor node i (1 ≤ i ≤ N) in the last and cur-
rent sampling intervals, i.e., Si(tc−2), Si

(
t 2c−3

2

)
, Si(tc−1),

Si
(
t 2c−1

2

)
and Si(tc), are used.

Let L1(t) and L2(t) denote the Lagrange interpola-
tion polynomials to estimate S(3)

i

(
t 2c−1

2

)
and S(4)

i

(
t 2c−1

2

)
,

respectively. The construction of L1(t) and L2(t) are
shown in the Appendix. Therefore, S(3)

i (t) can be esti-
mated by the following formula, where t ∈

[
t 2c−3

2
, tc

]
.

S(3)
i (t) ≈ L(3)

1 (t)

= 6

⎡
⎣ Si

(
t 2c−3

2

)
(
t 2c−3

2
− tc−1

) (
t 2c−3

2
− t 2c−1

2

) (
t 2c−3

2
− tc

)
+ Si(tc−1)(

tc−1 − t 2c−3
2

) (
tc−1 − t 2c−1

2

)
(tc−1 − tc)

+
Si

(
t 2c−1

2

)
(
t 2c−1

2
− t 2c−3

2

) (
t 2c−1

2
− tc−1

) (
t 2c−1

2
− tc

)

+ Si(tc)(
tc − t 2c−3

2

)
(tc − tc−1)

(
tc − t 2c−1

2

)
⎤
⎦

(5)

Besides, S(4)
i (t) can be estimated by the following for-

mula, where t ∈ [tc−2, tc].

S(4)
i (t) ≈ L(4)

2 (t)

= 24

⎡
⎣ Si(tc−2)(

tc−2 − t 2c−3
2

)
(tc−2 − tc−1)

(
tc−2 − t 2c−1

2

)
(tc−2 − tc)

+
Si

(
t 2c−3

2

)
(
t 2c−3

2
− tc−2

) (
t 2c−3

2
− tc−1

) (
t 2c−3

2
− t 2c−1

2

) (
t 2c−3

2
− tc

)
+ Si(tc−1)

(tc−1 − tc−2)
(
tc−1 − t 2c−3

2

) (
tc−1 − t 2c−1

2

)
(tc−1 − tc)

+
Si

(
t 2c−1

2

)
(
t 2c−1

2
− tc−2

) (
t 2c−1

2
− t 2c−3

2

) (
t 2c−1

2
− tc−1

) (
t 2c−1

2
− tc

)

+ Si(tc)

(tc − tc−2)
(
tc − t 2c−3

2

)
(tc − tc−1)

(
tc − t 2c−1

2

)
⎤
⎦

(6)

The error of such estimation is bounded by Theorem 3,
which is very small in practice.

Theorem 3. The errors generated by Formulas (5)

and (6) equal to γ1(t) = S(4)
i (ξ)

4

[
4t −

(
t 2c−3

2
+ tc−1+

t 2c−1
2

+ tc
)]

and γ2(t) = S(5)
i (ξ)

5

[
5t −

(
tc−2 + t 2c−3

2
+

tc−1 + t 2c−1
2

+ tc
)]

, respectively.

Proof. According to the property of Lagrange interpo-
lation [28], the interpolation remainder, denoted by R(x)
satisfies that

R(x) = f (x) − Lf (x) = f (n+1)(ξ)

(n + 1)!
ω(x) (7)
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where f (x) is a function whose nth-order derivative is con-
tinuous, and Lf (x) is n-degree Lagrange interpolation of
f (x), x0, x1, · · · , xn denote the interpolation points, and
ξ ∈[ x0, xn].
Therefore, the three-order interpolation remainder of

L1(t) satisfies that

γ1(t) = R(3)(t) = S(4)
i (ξ)

4!
ω

(3)
1 (t)

= S(4)
i (ξ)

4

[
4t −

(
t 2c−3

2
+ tc−1 + t 2c−1

2
+ tc

)]
(8)

which is the error generated during estimating S(3)
i (t).

The fourth-order interpolation remainder of L2(t) satis-
fies that

γ2(t) = R(4)(t) = S(5)
i (ξ)

5!
ω

(4)
2 (t)

= S(5)
i (ξ)

5

[
5t −

(
tc−2 + t 2c−3

2
+ tc−1 + t 2c−1

2
+ tc

)]
(9)

which is the error generated during estimating S(4)
i (t).

Thus, Theorem 3 is proved.
Theorem 3 also verifies that the error generated by

Lagrange interpolation estimation is also very small.

4 Critical point aware data acquisition algorithm
According to the analysis in Section 3, tc and tc−1 denote
the current sampling time and the last one before tc,
respectively. t 2c−1

2
is themedian time slot of tc and tc−1. Let

fmax be the maximum sampling frequency that a sensor
node can achieve.
Based on such symbols, the whole critical point aware

data acquisition algorithm can be divided into two phases.
The first one is the initial phase, the sampling frequency
in such phase is set to be fmax in order not to omit any crit-
ical points. The second one is the maintenance phase; the
sampling frequency in such phase is determined accord-
ing to the variation of physical world. Since the variation
of the monitored physical world in the future is unknown,
the posterior estimation is adopted, that is, the history
sensory data collected in the current time will be used to
estimate the variation of the monitored physical world in
the future. Because the physical world always varies con-
tinuously, such estimation is acceptable and can achieve
high precision.
Specifically, the critical point aware data acquisition

algorithm consists of the following five steps.

Step 1. Sample sensory values at time t0, t 1
2
, t1, where

t 1
2

= t0 + 1
fmax

and t1 = t 1
2

+ 1
fmax

. That is, we

initialize h with the minimum sampling interval 1
fmax

.
Initialize c with 2, then execute a loop until tc > tf .
Step 2. Sensor node i (1 ≤ i ≤ N) samples the
sensory values at time t 2c−1

2
and tc, where

t 2c−1
2

= tc−1 + h and tc = t 2c−1
2

+ h. Using the sensory
values sampled in the current and last sampling
intervals, i.e., Si(tc−2), Si

(
t 2c−3

2

)
, Si(tc−1), Si

(
t 2c−1

2

)
and Si(tc), the Lagrange interpolation polynomial can
be constructed. Therefore, S(3)

i (t) and S(4)
i (t) can be

obtained according to Formulas (5) and (6) for
t ∈

[
t 2c−3

2
, tc

]
and t ∈ [tc−2, t − c] respectively.

Step 3. Call the extremum point retrieving algorithm
to obtain the extremum point in current sampling
interval and determine the length of the next possible
sampling interval h1, the detailed method is shown in
Section 4.1.
Step 4. Similarly, call the inflection points retrieving
algorithm to collect the inflection point and
determine the length of the next possible sampling
interval h2. The detailed algorithm is given in
Section 4.2.
Step 5. Finally, select the minimum one returned by
the above two steps to be the adopted length of the
next sampling interval, i.e., h = min{h1, h2}, which
avoids omitting critical points. Go to step 2 with
increasing c by 1, and start a new loop until tc > tf .

The detailed critical point aware data acquisition algo-
rithm is shown in Algorithm 1.

4.1 Extremum point retrieving algorithm
The extremum point retrieving algorithm has four steps.

Step 1. Sensor i (1 ≤ i ≤ N) estimates the the first
derivative Ŝi

(1) (
t 2c−1

2

)
based on Formula (1).

Meanwhile, Ŝi
(2) (

t 2c−1
2

)
should be computed

according to Formula (2).
Step 2. Find extremum point in

[
t 2c−3

2
, t 2c−1

2

]
. If

Ŝi
(1) (

t 2c−1
2

)
= 0, return the extremum point t 2c−1

2
.

Otherwise, compare Ŝi
(1) (

t 2c−1
2

)
and Ŝi

(1) (
t 2c−3

2

)
calculated in last loop. If Ŝi

(1) (
t 2c−1

2

)
× Ŝi

(1) (
t 2c−3

2

)
< 0, there must be an extremum point in[
t 2c−3

2
, t 2c−1

2

]
. Then, retrieve the extremum point by

curve tessellation techniques [29].
Step 3. There exists three cases that need to be
considered when determining the length of the next
sampling interval.
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Algorithm 1: Critical point aware data acquisition
algorithm
Input: t0(= ts), fmax, t′, the decrease factor α.
Output: The set of extremum points X1 and the set

of inflection points X2
1 c ← 2, h ← 1

fmax

2 Sample sensory values at
{
tj/2|0 ≤ j ≤ 2

∧
tj/2−

t(j−1)/2 = 1/fmax
}
;

3 while tc < tf do
4 Sample sensory values at t 2c−1

2
, tc;

5 Construct third order Lagrange interpolation and
estimate S(3)

i (t)
(
t ∈

[
t 2c−3

2
, tc

])
according to

Formula (5);
6 Construct fourth order Lagrange interpolation

and estimate S(4)
i (t) (t ∈ [tc−2, tc]) according to

Formula (6);
7 (y1, h1) = extremum point retrieving(

Si(tc−1), Si
(
t 2c−1

2

)
, Si(tc), h, S(3)

i (t), S(4)
i (t)

)
;

8 (y2, h2) = infection point retrieving(
Si(tc−1), Si

(
t 2c−1

2

)
, Si(tc), h, S(3)

i (t), S(4)
i (t)

)
;

9 X1 = X1
⋃

y1, X2 = X2
⋃

y2, h = min{h1, h2};
10 t 2c+1

2
= tc + h, tc+1 = tc + 2h, c ← c + 1;

11 Return X1 and X2

1. If Ŝi
(2) (

t 2c−1
2

)
× Ŝi

(1) (
t 2c−1

2

)
> 0, which means that

the first derivative of the physical world increases or
decreases monotonously; therefore, the extremum
point may not be contained in the next sampling
interval [tc, tc+1], so that the length of the next
sampling interval should be increased in order to
save energy. In summary, let h and h1 denote the half
length of the current and next sampling interval, then
h1 = h+ t′, where t′ is a given constant to denote the
step size increment.

2. If Ŝi
(2) (

t 2c−1
2

)
× Ŝi

(1) (
t 2c−1

2

)
< 0 and

∣∣∣Ŝi(2) (
t 2c−1

2

)∣∣∣
×2h >

∣∣∣Ŝi(1) (
t 2c−1

2

)∣∣∣, which means that the next
extremum point is more likely to be included in the
next sampling interval; thus, we decrease the length
of sampling interval in order to catch the extremum
point. Therefore, h1 is set to be h1 = max

{
1

fmax
,αh

}
,

where α is a decreasing factor and 0 < α ≤ 1.
3. Otherwise, the ratio between

∣∣∣Ŝi(2) (
t 2c−1

2

)∣∣∣ and∣∣∣Ŝi(1) (
t 2c−1

2

)∣∣∣ will be considered, if ∣∣∣Ŝi(1) (
t 2c−1

2

)∣∣∣ ≥(
2h + t′

) ×
∣∣∣Ŝi(2) (

t 2c−1
2

)∣∣∣, h1 = h + t′.

In other situations, h1 maintains the last sampling
interval h.

Step 4. Return h1 and the extremum point.

The detailed algorithm is shown in Algorithm 2.

Algorithm 2: Extremum point retrieving algorithm

Input: fmax, t′, α, Si(tc), Si
(
t 2c−1

2

)
, Si(tc−1), h,

S(3)
i

(
t 2c−1

2

)
, S(4)

i

(
t 2c−1

2

)
Output: h1, y1

1 Ŝi
(1)(t 2c−1

2

)
= Si(tc)−Si(tc−1)

2h − h2
6 S

(3)
i

(
t 2c−1

2

)
;

2 Ŝi
(2)(t 2c−1

2

)
=

Si(tc)−2Si
(
t 2c−1

2

)
+Si(tc−1)

h2 − h2
12S

(4)
i

(
t 2c−1

2

)
;

3 y1 = ∅;
4 h1 = h;
5 if Ŝi

(1) (
t 2c−1

2

)
× Ŝi

(1) (
t 2c−3

2

)
< 0 then

6 y1 is determined by curve tessellation techniques
[29] in

[
t 2c−3

2
, t 2c−1

2

]
;

7 if Ŝi
(1) (

t 2c−1
2

)
== 0 then

8 y1 =
{
t 2c−1

2

}
;

9 if Ŝi
(2) (

t 2c−1
2

)
× Ŝi

(1) (
t 2c−1

2

)
> 0 then

10 h1 = h + t′;
11 else
12 if

∣∣∣Ŝi(2) (
t 2c−1

2

)∣∣∣ × 2h >

∣∣∣Ŝi(1) (
t 2c−1

2

)∣∣∣ then
13 h1 = max

{
1

fmax
,αh

}
;

14 else
15 if

∣∣∣Ŝi(1)(t 2c−1
2

)∣∣∣≥(2h+t′)×
∣∣∣Ŝi(2) (

t 2c−1
2

)∣∣∣ then
16 h1 = h + t′;
17 Return h1 and y1;

4.2 Inflection point retrieving algorithm
The inflection point retrieving algorithm also has four
steps and can be constructed by similar method shown in
above section.

Step 1. Sensor i (1 ≤ i ≤ N) estimates the the first
derivative Ŝi

(1) (
t 2c−1

2

)
and second derivative

Ŝi
(2) (

t 2c−1
2

)
based on Formula (1) and Formula (2).

Step 2. Find inflection point in
[
t 2c−3

2
, t 2c−1

2

]
. If

Ŝi
(2) (

t 2c−1
2

)
= 0, inflection point is t 2c−1

2
and return
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it. Otherwise, compare Ŝi
(2) (

t 2c−1
2

)
and Ŝi

(2) (
t 2c−3

2

)
calculated in last loop. If Ŝi

(2) (
t 2c−1

2

)
× Ŝi

(2) (
t 2c−3

2

)
< 0, there must be an inflection point in

[
t 2c−3

2
, t 2c−1

2

]
we have missed. Then, retrieve the inflection point by
curve tessellation techniques [29].
Step 3. There exists three cases that need to be
considered when determining the length of the next
sampling interval.

1. If S(3)
i

(
t 2c−1

2

)
× Ŝi

(2) (
t 2c−1

2

)
> 0, which means that

the second derivative of the physical world increases
or decreases monotonously; therefore, the inflection
point may not exist in the next sampling interval
[ tc, tc+1]. In order to save energy, increasing the
length of the next sampling interval. That is, increase
the half length of sampling interval h2 = h + t′,
where t′ is a given constant to denote the step size
increment.

2. If S(3)
i

(
t 2c−1

2

)
× Ŝi

(2) (
t 2c−1

2

)
< 0 and

∣∣∣S(3)
i

(
t 2c−1

2

)∣∣∣×
2h >

∣∣∣Ŝi(2) (
t 2c−1

2

)∣∣∣, which means that the next
inflection point is more likely to be included in the
next sampling interval; thus, we decrease the length
of sampling interval in order to catch the inflection
point. Therefore, h2 is set to be h2 = max

{
1

fmax
,αh

}
,

where α is a decreasing factor and 0 < α ≤ 1.
3. Otherwise, the ratio between

∣∣∣S(3)
i

(
t 2c−1

2

)∣∣∣ and∣∣∣Ŝi(2) (
t 2c−1

2

)∣∣∣ will be considered, if ∣∣∣Ŝi(2) (
t 2c−1

2

)∣∣∣ ≥
(2h + t′) ×

∣∣∣S(3)
i

(
t 2c−1

2

)∣∣∣, increase h2 with t′,
h2 = h + t′.

In other situations, h2 maintains the last sampling
interval h.

Step 4. Return h2 and the inflection point.

The detailed algorithm is shown in Algorithm 3.
In each sampling interval, the complexity of the above

algorithm is O(1) since it only needs to sample two sen-
sory values and the first and second derivatives can be
calculated in O(1). Therefore, the total complexity of
Algorithm 1 is determined by the number of sampling
interval it includes.
In the best case, the half length of sampling interval, h,

increases t′ every loop. Therefore, there existsO
(√

tf−ts
t′

)
sampling intervals, so that theminimum complexity of the

above algorithm is O
(√

tf−ts
t′

)
.

Algorithm 3: Inflection point retrieving algorithm

Input: fmax, t′, α, Si(tc), Si
(
t 2c−1

2

)
, Si(tc−1), h,

S(3)
i

(
t 2c−1

2

)
, S(4)

i

(
t 2c−1

2

)
Output: h2, y2

1 Ŝi
(2)(t 2c−1

2

)
=

Si(tc)−2Si
(
t 2c−1

2

)
+Si(tc−1)

h2 − h2
12S

(4)
i

(
t 2c−1

2

)
;

2 y2 = ∅;
3 h2 = h;
4 if Ŝi

(2) (
t 2c−1

2

)
× Ŝi

(2) (
t 2c−3

2

)
< 0 then

5 y2 is determined by curve tessellation techniques
[29] in [ t 2c−3

2
, t 2c−1

2
];

6 if Ŝi
(2) (

t 2c−1
2

)
== 0 then

7 y2 =
{
t 2c−1

2

}
;

8 if S(3)
i

(
t 2c−1

2

)
× Ŝi

(2) (
t 2c−1

2

)
> 0 then

9 h2 = h + t′;
10 else
11 if

∣∣∣S(3)
i

(
t 2c−1

2

)∣∣∣ × 2h >

∣∣∣Ŝi(2) (
t 2c−1

2

)∣∣∣ then
12 h2 = max

{
1

fmax
,αh

}
;

13 else
14 if

∣∣∣Ŝi(2) (
t 2c−1

2

)∣∣∣≥(2h+t′)×
∣∣∣S(3)

i

(
t 2c−1

2

)∣∣∣ then
15 h2 = h + t′;
16 Return h2 and y2;

In the worst case, the sampling frequency is always fmax,
so that the maximum complexity of the above algorithm
is O

(
fmax(tf − ts)

)
. However, the worst case requires

that there should exist lots of critical points in [ts, tf],
which is rarely happened. Therefore, in practice, the com-
plexity of our algorithm is much better than the worst
case.

4.3 Discussion: the method for estimating missing critical
points

If the product of the first derivatives of t 2c−3
2

and t 2c−1
2

is

less than 0, i.e., Ŝi
(1) (

t 2c−1
2

)
× Ŝi

(1) (
t 2c−3

2

)
< 0, then there

exists an extremum point in range
(
t 2c−3

2
, t 2c−1

2

)
which is

not captured by our extremum point retrieving algorithm.
Since such missing extremum points are also very impor-
tant for users’ observation, the method for estimating
these missing critical points are required. The traditional
methods, such as curve tessellation techniques [29], are
too complicate to solve such problem, and not practical
for WSNs. However, in some situations, the missing crit-
ical points can be obtained easily just as shown in the
following Theorem 4.
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Theorem 4. When Ŝi
(1) (

t 2c−1
2

)
× Ŝi

(1) (
t 2c−3

2

)
< 0 or

Ŝi
(2) (

t 2c−1
2

)
× Ŝi

(2) (
t 2c−3

2

)
< 0, tc−1 is a δ-approximate

critical point of Si, if
max

{∣∣∣∣tc−1−t 2c−3
2

∣∣∣∣,
∣∣∣∣tc−1−t 2c−1

2

∣∣∣∣
}

t 2c−3
2

≤ δ.

Proof. When Ŝi
(1) (

t 2c−1
2

)
× Ŝi

(1) (
t 2c−3

2

)
< 0 or

Ŝi
(2) (

t 2c−1
2

)
× Ŝi

(2) (
t 2c−3

2

)
< 0, there must exist a

critical point in
[
t 2c−3

2
, t 2c−1

2

]
, since Si has continuous

fourth-order derivative. We denote the critical point as
t, t ∈

[
t 2c−3

2
, t 2c−1

2

]
. According to the definitions of δ-

approximate extremum and inflection points, tc−1 is a
δ-approximate critical point if and only if |tc−1−t|

t ≤ δ.
Since t ∈

[
t 2c−3

2
, t 2c−1

2

]
, therefore, |tc−1 − t| ≤

max
{∣∣∣tc−1 − t 2c−3

2

∣∣∣ , ∣∣∣tc−1 − t 2c−1
2

∣∣∣}. As the condition

shows,
max

{∣∣∣∣tc−1−t 2c−3
2

∣∣∣∣,
∣∣∣∣tc−1−t 2c−1

2

∣∣∣∣
}

t 2c−3
2

≤ δ, then

|tc−1 − t|
t 2c−3

2

≤
max

{∣∣∣tc−1 − t 2c−3
2

∣∣∣ , ∣∣∣tc−1 − t 2c−1
2

∣∣∣}
t 2c−3

2

≤ δ.

Besides, since t ≥ t 2c−3
2
, then |tc−1−t|

t ≤ |tc−1−t|
t 2c−3

2
≤ δ.

That is, |tc−1−t|
t ≤ δ. Therefore, tc−1 is a δ-approximate

critical point.
According to Theorem 4, the missing extremum points

can be obtained by following three steps.

Step 1. Judge whether tc−1 is a δ-approximate
extremum point by Theorem 4.
Step 2. Use the the values Ŝi

(1) (
t 2c−3

2

)
, Ŝi

(2) (
t 2c−3

2

)
,

Ŝi
(1) (

t 2c−1
2

)
and Ŝi

(2) (
t 2c−1

2

)
to locate the interval

where the approximate extremum point is in.
Step 3. Use the Lagrange interpolation polynomial
we constructed before to estimate the sampling value
of the estimated extremum point.

The detailed algorithm for estimating the missing
extremum point is shown in Algorithm 4. As shown in the
algorithm, we use the linear function to estimate approx-
imate extremum point if the condition in Theorem 4 is
not satisfied, and more complicated situation will be con-
sidered in our future works. For the missing inflection
points, the similarly method can be adopted to retrieve
them approximately.
The complexity of Algorithm 4 is O(1). The algorithm

only needs to conduct compares and additions which can
be calculated in O(1). So the method for estimating these
missing critical points is efficient.

Algorithm4:The algorithm of estimating themissing
extremum points

Input: tc−2, t 2c−3
2
, tc−1, t 2c−1

2
, tc, Ŝi

(2) (
t 2c−1

2

)
,

Ŝi
(1) (

t 2c−1
2

)
, Ŝi

(2) (
t 2c−3

2

)
, Ŝi

(1) (
t 2c−3

2

)
Output: x, y

1 if
max

{∣∣∣∣tc−1−t 2c−3
2

∣∣∣∣,
∣∣∣∣tc−1−t 2c−1

2

∣∣∣∣
}

t 2c−3
2

≤ δ then

2 y = tc−1;

3 a =
∣∣∣∣∣∣
Ŝi

(2)
(
t 2c−1

2

)

Ŝi
(1)

(
t 2c−1

2

)
∣∣∣∣∣∣; b =

∣∣∣∣∣∣
Ŝi

(2)
(
t 2c−3

2

)

Ŝi
(1)

(
t 2c−3

2

)
∣∣∣∣∣∣;

4 if a > b then
5 y = t 2c−3

2
+ 1

4

(
t 2c−1

2
− t 2c−3

2

)
;

6 else
7 if a == b then
8 y = 1

2

(
t 2c−3

2
+ t 2c−1

2

)
;

9 else
10 y = t 2c−3

2
+ 3

4

(
t 2c−1

2
− t 2c−3

2

)
;

11 Return y;

4.4 Discussion: the in-network cooperation and
communication algorithms

The above algorithms are all about single sensor’s sens-
ing strategies, which can reduce sensory data. Obviously,
when in-network cooperation and communication is con-
sidered, the sensory data can be further reduced. Since
sensory data is spatially-related, not all the sensors need
to transmit their critical points. That is, when two sen-
sors are close enough, the critical points of their sensory
data may appear at the same time. In this situation, not
all the critical points need to be transmitted since they
may present the same area. We design an algorithm for
the in-network cooperation and communication, which
can further reduce the transmitting sensory data and the
communication energy.
Firstly, we divide the sensors into clusters according

to their positions. We divide the monitored area into
squares, whose length of the side is D. The length of the
side D is given by the users according to the specified
applications. Each cluster has a cluster head, and all the
sensor nodes in the cluster transmit their critical points
to the cluster head. All cluster heads compose a spanning
tree, where the base station is the root of the spanning
tree and cluster heads transmit the critical points along
the spanning tree. Secondly, each time a sensor samples
a critical point, it transmit the critical point and its posi-
tion to the cluster head. The cluster head will determine
whether the critical points it received need to be reduced
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according to the positions. When the distance of two crit-
ical points is less than L, only one of the critical points
will be transmitted, where L is a parameter given by the
users. The detailed algorithm of in-network cooperation
and communication is shown in the Algorithm 5.
This algorithm employs the spatial correlation of the

sensors, which can further reduce the transmitting energy.
Only simple in-network cooperation and communication
is considered in the algorithm, since this paper mainly
focuses on requiring critical points by single sensor. In the
future work, we will study the in-network cooperation to
further reduce the energy consumption.

Algorithm5:The algorithmof in-network cooperation
and communication
Input: D, L
Output: Critical points set S

1 Divide the monitored area into squares, whose length
of the side is D;

2 Each square as a cluster selects a cluster head;
3 Organize all cluster heads as a spanning tree rooted
at sink;

4 for each sensor i in the network do
5 if i capture a critical point then
6 Transmit the critical point and its position to

the cluster head it belongs;
7 for each cluster head h do
8 if h receives more than two critical points then
9 Sh = {a|a is the critical point h received};

10 for each a in Sh do
11 la = the distance between a and any

other critical point b in Sh;
12 if la > L then
13 Sh = Sh − a;
14 h transmits Sh to its parent.
15 Sink combine all Sh as critical points set S.
16 Return S;

5 Experiment result
5.1 Experiment setting
We use a simulated network with 200 sensor nodes to
evaluate the performance of our sensory data acquisition
algorithms. The network is deployed into a rectangular
region with 200 × 200m size. The transmission range of
each sensor node is set to be 25m.
The sensory data of the network comes from a real sen-

sor system, where the TelosB mote (http://www.willow.co.
uk/TelosB_Datasheet.pdf) is used to acquire indoor tem-
perature, humidity, and light intensity continuously with
the frequency equaling to 1Hz, and the light intensity is
adopted in the experiments.

5.2 The performance of the algorithm
The first group of experiments is going to evaluate the
recall rate and precision of our algorithm for retrieving δ-
approximate extremum and inflection points. The recall
rate equals to the fraction of the exact δ-approximate crit-
ical points that are returned. The precision is the fraction
of the returned results that are the exact δ-approximate
critical points. They are important parameters to evaluate
the accuracy of the proposed algorithm. In the following
experiments, the recall rate and the precision of our algo-
rithm were computed, respectively, while δ increases from
0.005 to 0.025, α = 0.5, and t′ = 0.5. The experimental
results are presented in Figs. 1 and 2.
From Fig. 1a, b, we can see that the recall rate and pre-

cision of δ-approximate extremum points increase with
the growth of δ, and both of them are close to a hundred
percent even when δ is quite small. For example, when
δ = 0.024, the precision of δ-approximate extremumpoint
is 100% and the recall rate of δ-approximate extremum
point is close to 90%. The results in Fig. 2a, b show that
the recall rate and precision of δ-approximate inflection
points are also close to a hundred percent even when
δ is relatively small. The recall rate and precision of δ-
approximate critical points increase with the increase
of δ, since δ is the relative error. When the error is
loose, the algorithm can capture more approximate criti-
cal points which leads to higher recall rate and precision.
Furthermore, when the relative error is not too large, the
algorithm can capture almost all critical points.
In summary, our algorithms can achieve high accuracy

in practice.
The second group of experiments is to investigate the

impact of α on the performance of our algorithm. In the
following experiments, the recall rate, the precision, and
the errors of the first and second derivatives generated by
our algorithm are computed respectively while α increases
from 0 to 1, δ = 0.015, and t′ = 0.5. The experimental
results are presented in Figs. 3 and 4.
Figure 3a, b shows the the recall rate and precision of δ-

approximate extremum and inflection points. The recall
rate and precision of δ-approximate inflection points
decrease with the growth of α; the reason is that the larger
α will omit more inflection points. Besides, the recall rate
and precision of δ-approximate inflection points are still
every high even when α is not very small. For example, the
recall rate of δ-approximate inflection points reaches 96%
when α = 0.1. At the mean time, the recall and precision
rate of δ-approximate extremum points keep stable and
high enough in practice with the variation of α. Such recall
rate and precision are quite high and can be acceptable in
practice.
Figure 4a, b presents the errors of the first and second

derivatives generated by our algorithm. The maximum,
average and 0.9-quantile errors of the first and second

http://www.willow.co.uk/TelosB_Datasheet.pdf
http://www.willow.co.uk/TelosB_Datasheet.pdf
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Fig. 1 The relationship between the accuracies of δ-approximate extremum points and δ

derivatives are quite small for different α, which indi-
cate the high accuracy of our algorithm and also explain
why the recall rata and precision of our algorithm are
quite high. For example, the average error of the estimated
first derivative is less than 10−3 and the average and 0.9-
quantile errors of the estimated second derivative is about
10−4.
The third group of experiments is to investigate the

impact of t′ on the performance of our algorithm. In the
experiments, the recall rate, the precision, and the errors
of the first and second derivatives generated by our algo-
rithm are calculated, while t′ increases from 0.1 to 1, α =
0.5, and δ = 0.015. The experimental results are presented
in Figs. 5 and 6.
Figure 5a, b shows that the recall rate of δ-approximate

inflection points is around 90% and the precision of δ-
approximate inflection points decreases with the growth
of t′, since more δ-approximate inflection points will be
omitted when t′ is larger. Although the recall rate and
the precision of δ-approximate extremum points are lower
than δ-approximate inflection points, we still capture a
large portion of extremum points.
Figure 6a, b shows the maximum, average, and 0.9-

quantile errors of the first and second derivatives

generated by our algorithm while t′ increases. The figures
show that all these errors are extremely small, which also
verify that our algorithm can achieve high precision on
identifying the critical points. For example, the maximum
error of the estimated first derivative is only about less
than 2 × 10−3. For the estimated second derivative, most
of the errors is less than 0.5 × 10−4.

6 Related works
Currently, there exists few published works considering
the adaptive sampling in sensor networks.Moreover, none
of them could support the requirement of retrieving the
critical points from the monitored physical world.
Some adaptive sampling algorithms are proposed for

particular applications. For example, the algorithm in [30]
is designed for target tracking. Each sensor uses sensory
values sensed by its neighbours and itself to predict the
target position and adjusts the sampling frequency adap-
tively. And [31] introduced an energy efficient algorithm
to adjust the sampling frequency in the abnormal event
detecting applications. It applies Fourier transform to pre-
dict the events and to adjust sampling frequency automat-
ically. Since they are designed for particular applications,
they have limitation in applying.
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Fig. 2 The relationship between the accuracies of δ-approximate inflection points and δ
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Fig. 3 The relationship between the accuracies of δ-approximate critical points and α

Most of works on adaptive sampling apply prediction
models to estimate sensory values instead of sampling
them. Jain and Chang [32] uses Kalman filter-based pre-
diction model to predict sensory values, if the estimations
beyond the acceptable range, they will adjust sampling
frequency. However, the prediction ability of Kalman fil-
ter is limited, and the estimation error may be large. The
prediction method in [33] is Box-Jenkins approach. The
main idea of the work is to skip samplings from equal-
sampling-frequency and use the forecast ones, which

can adjust the sampling frequency adaptively. However,
since the method is based on equal-sampling-frequency,
its accuracy is even worse than the EFS method. The
work in [34] proposed a heuristic adaptive sampling algo-
rithm for a glacial sensor network. Each sensor locally
adjusts its sensing frequency based on the linear regres-
sion forecasting model. Such method reduces the energy
cost of acquiring sensory data since the forecasting
model is sufficiently utilized. However, the forecasting
ability of the linear regression model is limited, and it
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do not consider the problem of retrieving the critical
points, either.
As for retrieving critical points in wireless sensor net-

works, some published works focus on it. However, few
works focus on retrieving extremum and inflection points.
The most common critical points they considering is
top-k values.
The work in [20] proposed a novel approach for top-k

query. The basic idea of it is to use filters for each
node, which can filter the unnecessary sensor updates.

Silberstein et al. [19] studied the optimizing top-k queries
in wireless sensor networks. The authors proposed to
use samples of past sensor readings, which can reduce
energy significantly. The work in [18] focuses on the
location aware peak value query in sensor networks. It
consider the top-k values’ location which is not considered
the traditional top-k query. The authors defined LAP-
(D, k) query which can find top-k values and the distance
between any two values is larger than D. However, these
papers only consider peak values. In face, besides peak
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values, the extremum and inflection points are also critical
points.

7 Conclusions
This paper studies the critical point aware data acqui-
sition algorithm to obtain δ-approximate extremum and
inflection points from the physical world. We firstly pro-
vide the formal definition of δ-approximate extremum
and inflection points. Then, a data acquisition algorithm
is proposed based on numerical analysis and Lagrange
interpolation. Such algorithm can adjust the sampling fre-
quency of each sensor node adaptively according to the
variation of physical world. The correctness of the algo-
rithm is proved and the its complexity is analyzed in detail.
Finally, the extensive simulations are carried out, which
show that our algorithm can achieve high accuracy of
retrieving δ-approximate extremum and inflection points
from physical world.

Appendix
The construction of the Lagrange interpolation polynomi-
als are as follows.
The construction for L1(t): first, let l1k(t) be a k-

polynomial of t for 0 ≤ k ≤ 3, where {l1k(t)|0 ≤ k ≤ 3}
satisfies that
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Similarly, L2(t) is a fourth-order interpolation
Lagrange polynomial and can be calculated by
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