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Abstract

In this paper, we present an efficient transmission scheme for multiple-input multiple-output (MIMO) systems, i.e.,
coded spatial modulation (SM) systems with soft-decision aided detector. To exploit the powerful error correction of
channel coding, the key challenge of coded SM systems is on designing a reliable but low-complexity soft-output
detector. Fighting against this problem, we first propose two soft-output detection algorithms by exploiting the
features ofM-phase-shift keying (PSK) andM-quadrature amplitude modulation (QAM) constellations, namely,
PSK-based soft-output detector (PBSD) and QAM-based soft-output detector (QBSD). Furthermore, to further enhance
the performance of the two algorithms, we propose another two soft-output detection algorithms taking into
account of counterpart maximum-likelihood (ML) estimate, namely, improved PSK-based soft-output detector (IPBSD)
and improved QAM-based soft-output detector (IQBSD). The findings of this paper demonstrate that: (1) The
computational complexity of PBSD and QBSD algorithms are much lower than that of Max-Log-LLR algorithm at the
expense of error performance. (2) Both the IPBSD and IQBSD algorithms achieve the same performance as
Max-Log-LLR algorithm with reduced computational complexity. In addition, a comprehensive performance and
computational complexity comparison between the proposed algorithms and the Max-Log-LLR algorithm is provided
to verify our proposed low-complexity soft-output detectors.

Keywords: Spatial modulation, Multiple-input multiple-output, Maximum a posteriori probability, Max-Log-LLR
detector

1 Introduction
Spatial modulation (SM) has been identified as a new effi-
cient multiple-input multiple-output (MIMO) technique,
which was first proposed in [1]. The main principle of
SM is that it jointly uses antenna indices and a conven-
tional signal set to convey information and activates only
one antenna to transmit the traditional modulated sym-
bol in each time slot. The advantages of SM, such as
the relaxation of antenna synchronization, the avoidance
of inter-channel interference, and the reduction in tran-
sreceiver complexity, make it become a topic of recent
research [2–4]. In order to achieve these potential ben-
efits, an adequate hard-decision detector for retrieving
the information bits transmitted in the spatial and signal
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constellation diagrams is needed. A matched filter (MF)
detection was first proposed in [1], which detects the
antenna index and modulated symbol separately. In [5],
the authors first investigated the optimum hard-output
maximum-likelihood (ML) detector, which jointly detects
the transmit antenna index and the modulated symbol.
To achieve a better trade-off between the performance
and computational complexity, various sub-optimal hard-
output detectors based on ML and MF have been broadly
investigated in [6–9], respectively.
Recently, to reduce the impact of channel fading and

noise on bit error ratio (BER) performance, SM-MIMO
systems with powerful channel coding, such as turbo
codes and low-density parity-check (LDPC) codes, have
gained rekindled interests [10–13]. A novel trellis coded
spatial modulation (TCSM) scheme was proposed in
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[10], where the concept of trellis coded modulation was
applied to the spatial constellation of SM systems. While
it achieves better performance than that of uncoded SM
system over correlated channels, it performs even worse
in uncorrelated channels. To circumvent the problem,
a novel MIMO transmission scheme was developed in
[11], where a trellis encoder and a SM mapper are jointly
designed to take advantage of the benefits of both. In [12],
the authors designed a spectral efficiency transmission
scheme, labeled as bit-interleaved coded spatial mod-
ulation (BICSM) with iterative demodulating/decoding,
which provides substantial performance gains in all chan-
nel conditions. In [13], LDPC codes were optimized to
match SM-MIMO systems based on the extrinsic infor-
mation transfer chart technique. Although these prior
works have significantly improved the understanding of
error performance of coded SM-MIMO systems, the key
limitation is that all of them employ the optimum maxi-
mum a posteriori probability (MAP) soft-output detector,
the complexity of which is intractable when the number of
transmit antennas is large or the modulation order is high.
Hence, it is urgent to design low-complexity soft-output
detectors for coded SM-MIMO systems.
Motivated by this observation, in a recent work [9],

a low-complexity soft-output distance-based ordered
detector (SODBD) was proposed; however, it signifi-
cantly suffers from performance degradation compared to
the optimal MAP soft-output detector. In addition, [14]
investigated the soft-decision detectors conceived for SM
and STSK systems, where the active antenna index and
the modulated symbol are separately detected, respec-
tively. Different from the prior works, in this paper, we
shed a light on a universal low-complexity soft-decision
aided detection algorithms for coded SM-MIMO systems.
The main contributions of this paper are summarized as
follows:

• For coded SM-MIMO systems with Gray-labeled
phase-shift keying (PSK), we first design a new
calculation of log-likelihood ratio (LLR) method
based on the hard-decision detector in [6], denoted as
PSK-based soft-output detector (PBSD) algorithm.
The analytical results demonstrate that the PBSD
algorithm significantly reduces the searched signal
candidates from NtM to Nt , and the computational
complexity of calculating the LLR of each bit is
independent of the constellation size.

• For coded SM-MIMO systems with Gray-labeled
quadrature amplitude modulation (QAM)
modulation, we propose a low-complexity
soft-output detector based on hard-limiter-based ML
method proposed in [7], labeled as QAM-based soft-
output detector (QBSD) algorithm. Compared to the
Max-Log-LLR algorithm, it has much lower

computational complexity at the expense of
performance loss.

• Another contribution of this paper is that we further
improve the above two soft-output detectors by
adding a counterpart ML estimate to calculate the
corresponding LLRs, namely, improved PSK-based
soft-output detector (IPBSD) and improved
QAM-based soft-output detector (IQBSD)
algorithms, respectively. The analytical results, along
with numerical analysis, reveal that both of them
achieve the same performance as Max-Log-LLR
algorithm with reduced computational complexity.

The rest of the paper is organized as follows. Section 2
introduces the coded SM-MIMO systemmodel. Section 3
presents a brief overview of the existing detectors con-
ceived for coded SM-MIMO systems. In Section 4, the
proposed low-complexity soft-output detectors are pre-
sented. In Section 5, a comprehensive analysis of com-
putational complexity for all the detectors is provided.
Simulation results are presented in Section 6, and we
make a conclusion in Section 7.

Notations. Upper/lower case bold symbols denote
matrices/vectors. (·)H , (·)T , (·)∗, and (·)† represent the
hermitian transpose, transpose, complex conjugate and
pseudo inverse of a vector, respectively. p (a| b) denotes
the probability density function (pdf) of random variable
a conditioned on b, Pr (·) represents the probability of a
variable. ⊕ denotes the bitwise XOR operation. � (·) and
� (·) denote the real and imaginary parts of a complex-
valued quantity, respectively. round (a) is the operator
that rounds the element a to its nearest integer. mod (a, n)

denotes that a is computed modulus n.

2 Coded SM systemmodel
Let us consider a coded SM-MIMO system with Nt trans-
mit antennas and Nr receive antennas, which is depicted
in Fig. 1. The transmitter side consists of three parts, that
is a channel encoder, a serial-parallel converter, and a SM
mapper. The input source bits u is first encoded by a chan-
nel encoder with code rate R. Then, the output sequences
of encoder c are converted from serial to parallel and then
are utilized to modulate the SM symbol. We consider the
conventional SM system, where the number of transmit
antennas is an integer power of 2, i.e., Nt = 2Q1 , and
M-ary digital modulation is employed with M = 2Q2 .
Hence, at each time slot, each block consisting of Q1 +Q2
bits are separated into two parts by SM mapper. The first
part Q1 bits, i.e., cA, are used to select the active antenna
index from the spatial diagram, i.e., S = {1, 2, · · · ,Nt},
while the second part Q2 bits, i.e., cS, are used to map
the modulated signal from the symbol constellation, i.e.,
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Fig. 1 Block diagram of coded SM-MIMO system

M = {s0, s1, · · · , sM−1}. Hence, the transmit signal vector
is given by

x = [
0, · · · , sq, · · · , 0

]T ∈ CNt×1

⇑
jth−position

(1)

which implies that the qth modulated symbol from the
constellation M is transmitted from the jth transmit
antenna. Taking into account of the code rate R, the total
spectral efficiency is η = R (Q1 + Q2) bits per channel
use.
Assuming a quasi-static frequency flat fading channel,

the received signal vector for coded SM-MIMO systems
can be expressed as

y = Hx + n = hjsq + n, (2)

whereH = [
h1,h2, . . . ,hNt

] ∈ CNr ×Nt denotes the chan-
nel matrix, and hj is the j-th column of H. Each entry in
H, i.e., hij, i ∈ {1, . . . ,Nr} , j ∈ {1, . . . ,Nt}, is zero mean
and unit variance complex Gaussian random variable. n
is a zero-mean additive white Gaussian noise vector with
E

[
nnH

] = σ 2INr×Nr .
At the receiver, to achieve the advantage of channel

coding, a soft-output detector is employed, where the
soft information for each coded bits is calculated based
on the received signal. In coded SM-MIMO systems,
the soft information consists of two parts, i.e., the soft
information of antenna index bits and the soft infor-
mation of modulated symbol bits. For the Log-MAP
demapper, the soft information bits can be expressed in
the form of the log-likelihood ratio (LLR). Without loss
of generality, we define �A

p and �S
p as the a posterior

LLRs of antenna index bits and modulated symbol bits,
respectively.

3 Conventional soft-decision aided SM detectors
Before introducing our proposed low-complexity soft-
decision detectors, we first briefly summarize the con-
ventional soft-output detectors for coded SM-MIMO
systems, which are studied in Section 5 and Section 6 as a
benchmark for assessing the performance versus compu-
tational complexity trade-off of the proposed soft-output
detectors.

Different from the hard-decision detectors which only
estimate the active antenna index and themodulated sym-
bol, the soft-output detectors also compute the reliability
of the estimation. Unless otherwise specified, we define
S0
i and S1

i as the antenna index subsets, in which the ith
bit of each element is 0 and 1, respectively. Similarly, M0

i
and M1

i denote the modulated symbol subsets where the
ith bit of each element is 0 and 1, respectively. Hence,
for the soft-decision aided detection, the classic Log-MAP
algorithm is given by [12]

�A
p

(
cA,i

) = ln
p

(
cA,i = 0

∣∣y )
p

(
cA,i = 1

∣∣y )
= ln

∑
j∈S0

i

∑
sq∈M

p
(
hj

∣∣y, sq )
∑
j∈S1

i

∑
sq∈M

p
(
hj

∣∣y, sq )

= ln

∑
j∈S0

i

∑
sq∈M

p
(
y
∣∣hj, sq )

Pr
(
hj

)
∑
j∈S1

i

∑
sq∈M

p
(
y
∣∣hj, sq )

Pr
(
hj

)

= ln

∑
j∈S0

i

∑
sq∈M

p
(
y
∣∣hj, sq ) ∏Q1

n=1 Pr
(
cA,n

)
∑
j∈S1

i

∑
sq∈M

p
(
y
∣∣hj, sq ) ∏Q1

n=1 Pr
(
cA,n

)
(3)

and

�S
p
(
cS,i

) = ln
p

(
cS,i = 0

∣∣y )
p

(
cS,i = 1

∣∣y )
= ln

∑
sq∈M0

i

∑
j∈S

p
(
sq

∣∣y,hj )∑
sq∈M1

i

∑
j∈S

p
(
sq

∣∣y,hj )

= ln

∑
sq∈M0

i

∑
j∈S

p
(
y
∣∣hj, sq )

Pr
(
sq

)
∑

sq∈M1
i

∑
j∈S

p
(
y
∣∣hj, sq )

Pr
(
sq

)

= ln

∑
sq∈M0

i

∑
j∈S

p
(
y
∣∣hj, sq ) ∏Q2

n=1 Pr
(
cS,n

)
∑

sq∈M1
i

∑
j∈S

p
(
y
∣∣hj, sq ) ∏Q2

n=1 Pr
(
cS,n

) ,
(4)
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where �A
p

(
cA,i

)
and �S

p
(
cS,i

)
represent the a posteriori

LLRs for the ith antenna index bit cA,i and ith modulated
symbol bit cS,i, respectively, Pr

(
hj

) = ∏Q1
n=1 Pr

(
cA,n

)
and

Pr
(
sq

) = ∏Q2
n=1 Pr

(
cS,n

)
are the a prior probability of

the antenna index and the modulated signal, respectively,
Pr

(
cA,n

)
and Pr

(
cS,n

)
denote the a prior probability of

the n-th bits of the antenna index and modulated symbol,
respectively, and

p
(
y
∣∣hj, sq ) = 1(

2πσ 2)Nr/2
exp

(
−

∥∥y − hjsq
∥∥2

2σ 2

)
. (5)

By substituting Eq. (5) into Eq. (3) and Eq. (4), we have

�A
p

(
cA,i

) = ln

∑
j∈S0

i

∑
sq∈M

exp
(
−∥∥y − hjsq

∥∥2/2σ 2
)

∑
j∈S1

i

∑
sq∈M

exp
(
−∥∥y − hjsq

∥∥2/2σ 2
) (6)

and

�S
p
(
cS,i

) = ln

∑
sq∈M0

i

∑
j∈S

exp
(
−∥∥y − hjsq

∥∥2/2σ 2
)

∑
sq∈M1

i

∑
j∈S

exp
(
−∥∥y − hjsq

∥∥2/2σ 2
) . (7)

To avoid the complex exponential and logarithmic oper-
ations in the Log-MAP algorithm, we can resort to the
simplified Max-Log-LLR algorithm as [15]

�A
p

(
cA,i

) = 1
2σ 2

[
min

j∈S1
i ,sq∈M

(∥∥y − hjsq
∥∥2)

− min
j∈S0

i ,sq∈M

(∥∥y − hjsq
∥∥2)] (8)

and

�S
p
(
cS,i

) = 1
2σ 2

[
min

sq∈M1
i ,j∈S

(∥∥y − hjsq
∥∥2)

− min
sq∈M0

i ,j∈S

(∥∥y − hjsq
∥∥2)]

.
(9)

Note that the computational complexity of Max-Log-
LLR algorithm has been significantly reduced; however,
the number of multiplications and comparisons remains
high, which is the order of O (MNt).

4 The proposed low-complexity soft-decision
aided SM detectors

In this section, we present our new low-complexity soft-
output detectors in detail. Four different low-complexity
soft-decision aided detectors are proposed, which are
based on the following zero-forcing (ZF) output, that is,

rj = h†j y, (10)

where h†j = hHj
hHj hj

and j ∈ {1, 2, · · · ,Nt}.

4.1 Low-complexity soft-output SM detectors with
Gray-labeledM-PSK

In this subsection, we propose two low-complexity soft-
output detectors for coded SM-MIMO systems with
Gray-labeled M-PSK. For easy illustration, we take the 8-
PSK as an example; however, the proposed two algorithms
are also adapted for arbitrary M-PSK modulation. The 8-
PSK constellation is illustrated in Fig. 2, where the initial
phase of the constellation is ϕ, then the kth constellation
point ofM-PSK can be expressed as

sk = exp
(
J
(
2π
M

k + ϕ

))
, (11)

where J = √−1 and k ∈ {0, 1, · · · ,M − 1}.
4.1.1 PBSD algorithm
As indicated in [6], the optimal ML detection for SM-
MIMO systems is given by

[̂
j, ŝk

] = argmin
j∈S

(
min
sk∈M

(∥∥y − hjsk
∥∥2))

. (12)

By substituting Eq. (10) into Eq. (12) and performing
some simple manipulations, the inner minimization in
Eq. (12) can be further expressed as

ŝk = arg min
sk∈M

(∥∥rj − sk
∥∥2) . (13)

Fig. 2 Gray-labeled 8-PSK constellation and illustration of the
proposed algorithm
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Now, by substituting the polar coordinate form of rj =∣∣rj∣∣ exp (
Jθj

)
and Eq. (11) into Eq. (13), we have

k̂j = argmin
k

(∣∣rj∣∣2 + 1 − 2
∣∣rj∣∣ cos(

θj −
(
k
2π
M

+ ϕ

)))
= argmax

k

(
cos

(
θj −

(
k
2π
M

+ ϕ

)))
, (14)

where k̂j represents the index of the constellation sig-
nal nearest to the received signal rj for the jth antenna
(shown in Fig. 2). Hence, by exploiting the symmetric fea-
tures of M-PSK constellation, the estimated index of the
modulated signal on the jth antenna can be expressed
as [8]

k̂j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, ϕ − π
M ≤ θj < ϕ + π

M
1, ϕ + π

M ≤ θj < ϕ + 3 π
M

...
M − 1, ϕ + (M − 1.5) 2π

M ≤ θj
< ϕ + (M − 0.5) 2π

M
(15)

Thus, the relationship between the phase of the received
signal and the index of the modulated symbol can be
concluded as

k̂j = mod
(
round

(
θj − ϕ

2π/M

)
,M

)
. (16)

As a result, the estimated signal is given by

ŝkj = exp
(
J
(̂
kj ∗ 2π

M
+ ϕ

))
. (17)

Before introducing our proposed PBSD algorithm,
we first define X as the collect of ŝkj , i.e., X ={
ŝk1 , ŝk2 , · · · , ŝkNt

}
. Different from the Max-Log LLR

algorithm, the element of the signal candidate list is
diminished in the PBSD algorithm. In doing so, we first
utilize (16) and (17) to estimate the modulated signal for
each transmit antenna. Hence, the length of the signal
candidate list is reduced from NtM to Nt . In addition, the
following equation∥∥y − hjŝkj

∥∥2 = ∥∥y∥∥2 + ∥∥hj∥∥2 [
1 − 2�

(
rjs∗̂kj

)]
(18)

holds. Thus, by substituting Eq. (18) into Eq. (8) and
Eq. (9), and limiting the searched signal space to X , the
corresponding LLRs for the ith antenna index bit and the
modulated symbol bit under the proposed PBSD algo-
rithm are given by.

�A
p

(
cA,i

) = 1
2σ 2

[
min
j∈S1

i

(∥∥hj∥∥2 (
1 − 2�

(
rjs∗̂kj

)))
−min

j∈S0
i

(∥∥hj∥∥2 (
1 − 2�

(
rjs∗̂kj

)))]
(19)

and

�S
p
(
cS,i

) = 1
2σ 2

[
min
ŝkj∈X 1

i

(∥∥hj∥∥2 (
1 − 2�

(
rjs∗̂kj

)))

− min
ŝkj∈X 0

i

(∥∥hj∥∥2 (
1 − 2�

(
rjs∗̂kj

)))]
.

(20)

4.1.2 IPBSD algorithm
As discussed in the above, when computing the LLRs of
the modulated symbol bits, the proposed PBSD algorithm
only finds the ML estimate of the symbol and ignores
the counterpart ML candidate whose ith bit is contrary
to the ML estimate. Therefore, this results in the perfor-
mance gap between the proposed PBSD algorithm and the
Max-Log-LLR algorithm. In this subsection, we propose
a new improved algorithm based on the PBSD algorithm,
namely, IPBSD algorithm, by taking the counterpart ML
estimate into account when computing the LLRs of the
modulated symbol bits.
By careful inspection of Eq. (9), we find that the item
min

sq∈M,j∈S
∥∥y − hjsq

∥∥2, i.e., the squared Euclidean distance

from the received signal vector y to the nearest con-
stellation point ŝkj for the jth antenna, always appears
in Eq. (9). It is equal to either min

sq∈M0
i ,j∈S

∥∥y − hjsq
∥∥2 or

min
sq∈M1

i ,j∈S
∥∥y − hjsq

∥∥2, which depends on the ith bit of ŝkj

being 0 or 1. Hence, our aim is to find another signal point
skji

resulting in the other minimum term in Eq. (9), which
means that the ith bit of skji

is opposite to the ith bit of ŝkj .
Moreover, as shown in Fig. 2, if the antenna index is j, the
nearest signal point to the ZF output rj is s0, the index of
which is k̂j = 0. Hence, the first bit of s0 is 0, and the near-
est signal point to rj with the first bit being 1 is s7, that is,
kj0 = 7. Similarly, for the second and third bits, we have
kj1 = 2 and kj2 = 1, respectively.
Before introducing the detailed procedure of the pro-

posed IPBSD algorithm, we first present the following
lemmas for binary-reflected Gray-labeled constella-
tions [16].

Lemma 1. For binary-reflect Gray Labeling gk → sk, by
denoting bk =

(
bk0, b

k
1, · · · , bkQ2−1

)
as the binary represen-

tation of the symbol index k with the most significant bit
(MSB) as the leftmost bit, then, gk is given by

gk =
(
gk0 , g

k
1 , · · · , gkQ2−1

)
=

(
bk0, b

k
1, · · · , bkQ2−1

)
⊕

(
0, bk0, · · · , bkQ2−2

)
. (21)
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Lemma 2. For the binary-reflected Gray PSK ĝkj → ŝkj ,
where ŝkj is the nearest signal point to the filtered signal rj,
b̂kj =

(
b̂kj0 , b̂

kj
1 , · · · , b̂k

j
Q2−1

)
is the binary representation of

k̂j with the MSB as the leftmost bit. Let Mgk̂ji
i denote the

constellation point subset where the ith bit of each point is
contrary to the bit gk̂ji , i.e., g

k̂j
i = 1 − gk̂ji , then the index of

the nearest constellation point to rj in subset Mgk̂ji
i can be

determined as

kji =

⎧⎪⎨⎪⎩
b̂k

j

0 2Q2−1 + b̂k
j

1
(
2Q2−1 − 1

)
i = 0

2Q2−i−1 − b̂kji +
i−1∑
n=0

b̂kjn 2Q2−n−1 i > 0
(22)

where b̂k
j

i = 1 − b̂kji .

Proof: The proof can be found in [16].
It is noted from Lemma 1 that for the ith bit

of the modulated symbol, the candidate list Wi ={
ŝk1 , · · · , ŝkNt , sk1i , · · · , skNti

}
can be obtained without any

comparison. To this end, the detailed procedure of the
proposed IPBSD algorithm can be described as follows.

Step 1: The first step is to compute the ZF filtered
signal rj for each transmit antenna based on Eq. (10).
Step 2: According to Eq. (16) and Eq. (17), the
second step is to find the index of the modulated
signal k̂j and the estimated modulated symbol ŝkj .
Afterwards, the binary representation b̂kj of k̂j can be
achieved, and thus, we can get the Gray labeling
representation ĝkj from Eq. (21).
Step 3: After performing Step 2, we have obtained
the estimated signal symbol, which results in both
minimum terms in Eq. (8), while only one of the
minimum term in Eq. (9). Hence, in this step, we
need to find the signal points that result in another
minimum term of Eq. (9) based on Lemma 2.
Step 4: Finally, the a posteriori LLR of the modulated
symbol bits can be derived as

�S
p
(
cS,i

) = 1
2σ 2

[
min
s∈W1

i

(∥∥hj∥∥2 (
1 − 2� (

rjs∗
)))

− min
s∈W0

i

(∥∥hj∥∥2 (
1 − 2� (

rjs∗
)))]
(23)

while the a posteriori LLR of the antenna index bits is the
same as the proposed PBSD algorithm in Eq. (19).

4.2 Low-complexity soft-output SM detector with
Gray-labeledM-QAM

In this subsection, we design two low-complexity soft-
output detectors for coded SM-MIMO systems with
square or a rectangular QAM modulation, called QBSD
and IQBSD algorithms. As pointed out in [17], a lat-
tice constellation, e.g., square or rectangular QAM, can
be regraded as a Cartesian product of two independent
PAM signal sets, say N1-PAM and N2-PAM, where N1
andN2 represent the number of in-phase and quadrature-
phase points, respectively. Hence, the proposed QBSD
and IQBSD algorithms are based on the two PAM con-
stellations instead of the QAM.Without loss of generality,
we take the 16-QAM for example, the first two bits “10”
of the signal point “1001” determine the real part of the
signal symbol, while the last two bits “01” decide the imag-
inary part. The in-phase PAM constellation of 16-QAM
and the illustration of the proposed algorithm are shown
in Fig. 3, where � (

rj
)
denotes the real part of the filtered

signal rj.

4.2.1 QBSD algorithm
In the QBSD algorithm, we first estimated the modu-
lated symbol based on the hard-decision detector in [7],
from which the optimal ML detection can be equivalently
expressed as

[
ĵ, ŝq

] = argmin
j∈S

(
min
s∈M

(∣∣rj − s
∣∣2))

= argmin
j∈S

(
min

sI∈N1−PAM, sQ∈N2−PAM

((� (
rj
) − sI

)2 + (� (
rj
) − sQ

)2)).
(24)

Since sI and sQ are from orthogonal dimensions, the
inner minimizations in Eq. (24) can be decomposed into
two optimization problems, that is,

� (
ŝ j) = min

sI∈N1−PAM

(� (
rj
) − sI

)2 (25)

and

� (
ŝ j) = min

sQ∈N2−PAM

(� (
rj
) − sQ

)2. (26)

Fig. 3 Gray-labeled 4-PAM constellation and illustration of the
proposed algorithm
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As the symbols of N1-PAM are given by {2t + 1}
N1
2 −1
t= −N1

2
,

�( ŝj) can be derived as follows:

� (
rj
)

< −N1 + 2 ⇒ � (
ŝ j) = −N1 + 1

−N1 + 2 ≤ � (
rj
)

< −N1 + 4 ⇒ � (
ŝ j) = −N1 + 3

...
...

−2 ≤ � (
rj
)

< 0 ⇒ � (
ŝ j) = −1

0 ≤ � (
rj
)

< 2 ⇒ � (
ŝ j) = 1

...
...

N1 − 4 ≤ � (
rj
)

< N1 − 2 ⇒ � (
ŝ j) = N1 − 3

N1 − 2 ≤ � (
rj
) ⇒ � (

ŝ j) = N1 − 1

However, according to [7], � (
ŝ j) can be obtained

directly as (27) without employing the above set of
comparisons.

�
(
ŝ j

)
= min

(
max

(
2 ∗ round

(� (
rj
) + 1
2

)
− 1,−N1 + 1

)
,N1 − 1

)
(27)

Similarly, � (
ŝ j) can also be obtained directly as

�
(
ŝ j

)
= min

(
max

(
2 ∗ round

(� (
rj

) + 1
2

)
− 1,−N2 + 1

)
,N2 − 1

)
.

(28)

Thus, the estimated signal is expressed as

ŝ j = � (
ŝ j) + J� (

ŝ j) . (29)

Let us define U = {
ŝ 1, ŝ 2, · · · , ŝ Nt

}
, then, the corre-

sponding LLRs of the i-th antenna index bit and mod-
ulated signal bit under the proposed QBSD detector are
given by

�A
p

(
cA,i

) = 1
2σ 2 min

j∈S1
i

(∥∥y − hj ŝ j∥∥2)
− 1

2σ 2 min
j∈S0

i

(∥∥y − hj ŝ j∥∥2)
= 1

2σ 2 min
j∈S1

i

(∥∥hj∥∥2 (∣∣rj − ŝ j∣∣2 − ∣∣rj∣∣2))
− 1

2σ 2 min
j∈S0

i

(∥∥hj∥∥2 (∣∣rj − ŝj
∣∣2 − ∣∣rj∣∣2))

(30)

and

�S
p
(
cS,i

) = 1
2σ 2 min

ŝj∈U1
i

(∥∥y − hj ŝ j∥∥2)
− 1

2σ 2 min
ŝ j∈U0

i

(∥∥y − hj ŝ j
∥∥2)

= 1
2σ 2 min

ŝ j∈U1
i

(∥∥hj∥∥2 (∣∣rj − ŝ j∣∣2 − ∣∣rj∣∣2))
− 1

2σ 2 min
ŝ j∈U0

i

(∥∥hj∥∥2 (∣∣rj − ŝ j∣∣2 − ∣∣rj∣∣2))
.

(31)

Noting from Eqs. (30) and (31), we find that the length
of the candidate list of the proposed QBSD detector is
reduced from NtM to Nt .

4.2.2 IQBSD algorithm
As the above discussion, the QBSD algorithm only cal-
culates the ML estimated symbol, which results in one
of the minimum of Max-Log-LLR algorithm in Eq. (9).
Hence, the error performance of the QBSD algorithm is
inferior to that of Max-Log-LLR algorithm. Against this
observation, the aim of IQBSD algorithm is to eliminate
the performance gap by searching the counterpart ML
estimate.
As illustrated in Fig. 3, the ML estimate of the modu-

lated signal is the point z2 in the 4-PAM constellation, in
which the first and second bits are both “1.” Therefore, the
constellation point with the first bit being 0 and nearest
to the real part of rj is the signal point z1 in the 4-PAM
constellation. Moreover, the constellation point with the
second bit being 0 and nearest to the real part of rj is
the signal point z3. Before describing the procedure of the
IQBSD algorithm in detail, we first present the following
lemma.

Lemma 3. LetN denote the set of N1-PAM constellation
points, k̂j is the index of the estimated symbol � (

ŝ j) in

the N1-PAM constellation. N gk̂ji
i denotes the subset of the

constellation points whose ith bit is contrary to the bit gk̂ji ,
i.e., gk̂ji = 1 − gk̂ji . Then, the index of the point in subset

N gk̂ji
i nearest to �(rj) can be derived as

kji = 2m1−i−1 − b̂k
j

i +
i−1∑
n=0

b̂k
j

n 2m1−n−1, (32)

where m1 = log2 (N1) and i ∈ {0, 1, · · · ,m1 − 1}.

Note that, if the bit belong to the imaginary part of the
modulated symbol, we can only substitute m1 with m2 in
Eq. (32), wherem2 = log2 (N2).
According to Lemma 3 and the ML estimated signal

as QBSD algorithm, if the bit belong to the real part of
the modulated symbol, then the candidate list for the ith
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bit of modulated symbol can be represented as (33). On
the other hand, if the bit belong to the imaginary part of
the modulated symbol, the candidate list for the ith bit of
modulated symbol can be represented as (34).

Vi =
{̂
s 1, · · · , ŝ Nt , zk1i

+ J ∗ I
(
ŝ 1

)
, · · · , zkNti + J ∗ I

(
ŝ Nt

)}
.

(33)

Vi =
{̂
s1, · · · , ŝ Nt ,� (

ŝ 1
) + J ∗ zk1i

, · · · ,� (
ŝ Nt

) + J ∗ zkNti

}
.

(34)

Now, the detail process of the IQBSD algorithm will be
discussed in the following. Please note that the following
description is restricted to the real part of the signal; how-
ever, the process of estimating the imaginary part of the
signal is similar.

Step 1: The first step of IQBSD algorithm is the same
as the IPBSD algorithm, i.e., calculating the filter
output rj for each antenna based on Eq. (10).
Step 2 After obtaining rj, the symbol � (

ŝ j) in theN1-
PAM constellation nearest to �(rj) can be calculated
by Eq. (27). k̂j is the index of the symbol � (̂

s j) in
N1-PAM constellation, and the binary representation
of the index k̂j is b̂kj =

(
b̂kj0 , b̂

kj
1 , · · · , b̂k

j
m1−1

)
. Then,

the binary-reflected Gray labeling ĝkj can be achieved
by Lemma 1.
Step 3: The objective of this step is to find the
counterpart ML estimate zkji

for the i th bit, where the

corresponding index is denoted as kji. Considering
the symmetric structure of Gray-labeled PAM, we
can resort to Lemma 3 to find the signal zkji

, which

only requires the binary representation of index k̂j
and addition operation, instead of computing the
Euclidean distance between all the signals with the
i th bit being opposite to that of ẑkj and �(rj).
Step 4: Finally, the a posteriori LLR of the antenna
index bits can be derived as Eq. (30), and the a
posteriori LLR of the symbol bits is obtained as

�S
p
(
cS,i

) = 1
2σ 2

[
min
s′∈V1

i

(
s
∥∥hj∥∥2 (∣∣rj − s′

∣∣2 − ∣∣rj∣∣2))
− 1
2σ 2 min

s′∈V0
i

(∥∥hj∥∥2 (∣∣rj − s′
∣∣2 − ∣∣rj∣∣2))]

,

(35)

where j is the antenna index corresponding to the
modulated symbol s′ selected from the set Vi in
Eq. (33).

5 Complexity analysis
In this section, the computational complexity of the pro-
posed soft-decision aided detectors and theMax-Log-LLR
detector will be discussed in detail. Without loss of gener-
ality, the computational complexity is evaluated in terms
of the number of real multiplications, real additions, and
comparisons, respectively.

5.1 Max-Log-LLR algorithm
The number of real multiplications and real additions
for computing the term

∥∥y − hjsq
∥∥2 is 6Nr and 6Nr − 1,

respectively. While for the Max-Log-LLR algorithm, the
term

∥∥y − hjsq
∥∥2 needs to be calculated NtM times. In

addition, the calculation of LLR for each bit needs one real
multiplication and one real addition, respectively. Consid-
ering that the number of bits in each spatial modulation
symbol is log2 (NtM), hence, the total number of real
multiplications and real additions are given by

CMax
M = 6NrNtM + log2 (NtM) (36)

CMax
A = 6NrNtM + log2 (NtM) − NtM. (37)

On the other hand, since the length of the candidate
list is NtM, we need to find the minimum among all
NtM candidates for each bit. Hence, the total number of
comparison operation is

CMax
C = NtMlog2 (NtM) . (38)

5.2 PBSD algorithm
The computation of Eq. (10) needs 6Nr + 2 real multi-
plications and 6Nr − 2 real additions, respectively. While
the acquisition of the modulated symbol for each trans-
mit antenna needs 2 real multiplications and 2 real
additions, respectively. Calculating the minimum term,
which appears in the equations of calculating the LLRs
in Eq. (18), needs only 4 real multiplications and 2 real
additions. All the above terms need to be computed by
Nt times; thus, the total computational complexity of real
multiplications and real additions of PBSD algorithm is
given by

CPBSD
M = 6NrNt + 8Nt + log2 (NtM) (39)

CPBSD
A = 6NrNt + log2 (NtM) + 2Nt . (40)

On the other hand, as the length of the candidate list is
Nt and the comparison number of each bit isNt , therefore,
the total comparison number of PBSD algorithm is

CPBSD
C = Nt log2 (NtM) . (41)

5.3 IPBSD algorithm
Compared to the PBSD algorithm, IPBSD algorithm also
provides the counterpart ML estimate for each modulated
bit. Hence, the length of the candidate list for computing
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the antenna bits is Nt as PBSD algorithm, while the length
of the candidate list for computing the modulated bits is
2Nt under the worst case. In addition, the computational
complexity of calculating the index of the counterpart ML
estimate from Eq. (22) can be neglected due to it needs
only a few additions. Hence, the computational complex-
ity of real multiplications, real additions, and comparisons
for the IPBSD algorithm is given by

CIPBSD
M = 6NrNt + 8Nt + log2 (NtM) + 5Nt log2 (M)

(42)

CIPBSD
A = 6NrNt + log2 (NtM) + 2Nt + 3Nt log2 (M)

(43)

CIPBSD
C = Nt log2 (Nt) + 2Nt log2 (M) . (44)

5.4 QBSD algorithm
By following similar analysis of the PBSD algorithm, the
total number of real multiplications, real additions, and
comparisons for the QBSD algorithm is given by

CQBSD
M = 6NrNt + 11Nt + log2 (NtM) (45)

CQBSD
A = 6NrNt + log2 (NtM) + 7Nt (46)

CQBSD
C = Nt log2 (NtM) . (47)

5.5 IQBSD
By following similar analysis of the IPBSD algorithm, the
total computational complexity of the IQBSD algorithm
can be expressed as

CIQBSD
M = 6NrNt + 11Nt + log2 (NtM) + 5Nt log2 (M)

(48)

CIQBSD
A = 6NrNt + log2 (NtM) + 7Nt + 5Nt log2 (M)

(49)

CIQBSD
C = Nt log2 (Nt) + 2Nt log2 (M) . (50)

In order to make the complexity more intuitional, in
Table 1, we have provided the computational complexity
of all the proposed algorithms with Nt = 16, M = 16,
and Nr = 8. Furthermore, by summarizing the above
complexity analysis and Table 1, we have the following two
important remarks.

Remark 1. Different from other existing detectors, the
length of the candidate list for PBSD and QBSD algo-
rithms does not grow linearly with the modulation order
M. Thus, it is suitable for coded SM systems with high
spectral efficiency, i.e., high modulation order.

Remark 2. Compared with Max-Log-LLR algorithm,
the proposed IPBSD and IQBSD algorithms further

Table 1 Computational complexity comparison

Detectors Multiplications Additions Comparisons

Max-Log-LLR 12,296 12,040 2048

PBSD 904 808 128

IPBSD 1224 1000 192

QBSD 952 888 128

IQBSD 1272 1208 192

reduce the number ofmultiplications, additions, and com-
parisons without loss of any performance. In addition,
both achieve better performance than the PBSD and
QBSD algorithms, respectively, with a neglected complex-
ity overhead.

6 Simulation results
In this section, representative numerical simulations are
provided to verify the proposed detectors under Rayleigh
fading channels to verify the proposed detectors described
in the previous sections. Unless otherwise stated, the fol-
lowing set of parameters are used: Nt = 4 and Nr = 2.
The code length of LDPC is 360, and the code rate is
R = 1

2 . In addition, the signal to noise ratio is defined as
SNR = 10 lg

(
Eb
N0

)
= 10 lg

(
Es

ηN0

)
= 10 lg

(
Es

N0Rlog2(NtM)

)
,

where Es is the average energy of the transmit signal.
Figure 4 illustrates the performance difference between

the proposed detectors and the Max-Log-LLR detector
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Fig. 4 BER performance comparison between different detectors
with PSK modulation
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Fig. 5 BER performance comparison between different detectors with QAMmodulation

with quadrature phase-shift keying (QPSK) and 8-PSK
modulations, respectively. As shown in the figure, com-
pared to Max-Log-LLR algorithm, we find that the
proposed PBSD algorithm suffers from about 1.5 dB per-
formance loss at 10−3 BER when 8-PSK is employed.
While when QPSK is employed, the performance gap is
reduced to about 0.4 dB. In addition, we can see that
the proposed IPBSD algorithm achieves the same perfor-
mance as the Max-Log-LLR algorithm with lower compu-
tational complexity regardless of the modulation order.
Figure 5 investigates the BER performance of coded SM-

MIMO systems with 16-QAM and 64-QAM for different
detection algorithms. Similar to Fig. 4, it is noted from
Fig. 5 that the proposed QBSD algorithm attains much
lower computational complexity thanMax-Log-LLR algo-
rithm at the expense of performance. For example, at
10−3 BER, the proposed QBSD algorithm suffers from
1 dB SNR loss when 16-QAM is employed, and the per-
formance gap becomes large as the modulation order
increases. On the other hand, no performance gap is
observed between the proposed IQBSD and Max-Log-
LLR detectors with any modulation order, which validates
the effectiveness of our proposed soft-output detection
algorithms.

7 Conclusions
In this paper, by exploiting the features of M-PSK
and M-QAM constellations, we first have designed two
novel low-complexity soft-output algorithms based on the

existing hard-decision detection algorithms. The com-
putational complexity of the proposed two detections is
much lower than that of Max-Log-LLR algorithm with a
acceptable performance degradation. Motivated by this,
to further enhance the performance of the two soft-
decision aided detectors, another two improved algo-
rithms were proposed, i.e., IPBSD and IQBSD detectors.
The key idea of the two detectors is finding the coun-
terpart ML estimate for each bit of the modulated sym-
bol. The theoretical analysis and simulation results have
shown that the proposed IPBSD and IQBSD detectors
achieve exactly the same performance as that of Max-Log-
LLR detector with reduced computational complexity.
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