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Abstract

A wireless sensor network (WSN) is composed of a large number of tiny sensor nodes. Sensor nodes are very
resource-constrained, since nodes are often battery-operated and energy is a scarce resource. In this paper, a
resource-aware task scheduling (RATS) method is proposed with better performance/resource consumption trade-off
in a WSN. Particularly, RATS exploits an adversarial bandit solver method called exponential weight for exploration and
exploitation (Exp3) for target tracking application of WSN. The proposed RATS method is compared and evaluated
with the existing scheduling methods exploiting online learning: distributed independent reinforcement learning
(DIRL), reinforcement learning (RL), and cooperative reinforcement learning (CRL), in terms of the tracking
quality/energy consumption trade-off in a target tracking application. The communication overhead and
computational effort of these methods are also computed. Simulation results show that the proposed RATS
outperforms the existing methods DIRL and RL in terms of achieved tracking performance.

Keywords: Wireless sensor networks, Task scheduling, Resource-awareness, Independent reinforcement learning,
Cooperative reinforcement learning, Adversarial bandit solvers

1 Introduction
Wireless sensor networks (WSNs) [1] are an impor-
tant and attractive platform for various pervasive appli-
cations like target tracking, area monitoring, routing,
and in-network data aggregation. Resource awareness is
an important issue for WSNs. Basically, battery power,
memory, and processing functionality form the resource
infrastructure. A WSN has its own resource and design
constraints. Resource constraints include a limited energy,
low bandwidth, limited processing capability of the cen-
tral processing unit, limited storing capacity of the storage
device, and short communication range. Design con-
straints are application-dependent and also depend on the
environment being monitored. The environment acts as
a major determinant regarding the size of the network,
deployment strategy, and network topology. The num-
ber of sensor nodes or the size of the network changes
based on the monitored environment. For example, in
indoor environments, fewer nodes are needed to form
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a network in a limited space, whereas outdoor environ-
ments may require more sensor nodes to cover a huge
unattended area. The deployment scheme also depends
on the environment. Ad hoc deployment is preferred over
a pre-planned deployment when the environment is not
accessible and the network is composed of a vast number
of nodes.
Battery power is the main resource constraint of aWSN.

One of the major reasons of energy consumption for the
communication inWSN is idle mode consumption.When
there is no transmission/reception, sensor nodes consume
some energy for listening and waiting for the informa-
tion from the neighboring nodes. Over hearing is another
source of energy consumption. Over hearing means that a
node picks up packets that are destined for other nodes.
Packet collision is another issue of energy consumption.
Collided packets should be retransmitted which require
extra effort in energy consumption. Protocol overhead is
also a reason of energy consumption.
As a WSN is a resource-constrained network, there are

challenges associated with task scheduling. For perform-
ing the application, sensor nodes execute some tasks. Task
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scheduling methods help to schedule the tasks in a way
that the resource is optimized with the goal of maximiz-
ing the lifetime of the network. Sensor nodes consume
some resources from the resource budget for each exe-
cuted task. Scheduling can be performed online, offline,
or periodically.
Sensor nodes pose strong energy limitations due to fixed

battery operation [2–4]. Based on the application demand,
sensor nodes need to execute a particular task at each time
step. Every task execution consumes some energy from
the available energy budget of the sensor node. The main
goal is to improve the highest amount of performance
while keeping the energy consumption low by exploiting
online learning [5] for scheduling.
For example, in object tracking application, sensor

nodes need to perform some tasks like sensing, trans-
mitting, receiving, and sleeping over time steps. The per-
formed task at each time step provides an impact on
the overall tracking performance by a WSN. There is a
trade-off between tracking performance and energy con-
sumption for the tasks. If we perform tracking all the time,
then it is possible to get higher tracking quality, but this
is very energy consuming. It is necessary to schedule the
tasks in a way that the energy consumption is optimized,
and at the same time, a certain amount of tracking quality
is maintained.
Since it is not possible to schedule the tasks a priori,

online and energy-aware task scheduling is required. For
determining the next task to execute, sensor nodes need
to consider the available energy and the energy required
for executing that task. Sensor nodes also need to consider
the effect of executing the task on the application’s overall
performance.
In this paper, an online learning algorithm is proposed

for the task scheduling in order to explore the trade-off
between performance and energy consumption. A ban-
dit solver method Exp3 (Exp3 denotes exponential weight
for exploration and exploitation) is used [6]. Exp3 is an
adversarial bandit solver method used for online task
scheduling. This works by maintaining a list of weights for
each task to perform. Using these weights, it decides ran-
domly which task to take next and increases/decreases the
relevant weights when a payoff is good or bad. Exp3 has an
egalitarianism factor which tunes the desire to pick a task
uniformly at random.
The proposed resource-aware task scheduling (RATS)

method is based on a simulation study of the performance
and energy consumption of a prototypical target tracking
application. The balancing factor of the reward function
is varied, and the number of nodes in the network and
the randomness of moving targets to find out the track-
ing quality/energy consumption trade-off are also varied.
The average execution time and communication over-
head for distributed independent reinforcement learning

(DIRL) [7], reinforcement learning (RL) [8], cooperative
reinforcement learning (CRL) [9], and Exp3 are also
calculated.
The main contribution of this paper is to propose a

method for RATS and to perform the evaluation with
the existing methods. The proposed RATS approach also
considers the cooperation where each node shares local
observations of object trajectories with the neighboring
nodes. This cooperation helps to improve the tracking
performance of our considered tracking application.
The rest of this paper is organized as follows. Section 2

discusses related works, and Section 3 introduces the net-
work model. Section 4 describes the underlying system
model for task scheduling based on online learning. In
Section 6, we present the proposed method for resource-
aware task scheduling. Section 7 presents the experimen-
tal setup and discusses the simulation results for a target
tracking application. Section 8 concludes this paper with
a summary and brief discussion on future work.

2 Related works
In a resource-constrained WSN, effective task schedul-
ing is very important for facilitating the effective use of
resources [10, 11]. Cooperative behavior among sensor
nodes can be very helpful to schedule the tasks in a way
that the energy consumption is optimized and also a con-
siderable performance is maintained. Most of the existing
methods of task scheduling do not provide online schedul-
ing of tasks. Most of them rather consider static task
allocation instead of focusing on distributed task schedul-
ing. The main difference between task allocation and
distributed task scheduling is that task allocation deals
with the problem of finding a set of task assignments on a
sensor network that minimizes an objective function such
as total execution time [12, 13]. On the other hand, in a
task scheduling problem, the objective is to determine the
“best” order of task execution for each sensor node. Each
sensor node has to execute a particular task at each time
step in order to perform the application, and each node
determines the next task to execute based on the observed
application behavior and available resources. The follow-
ing subsections describe some task scheduling methods in
WSN.

2.1 Self-adaptive task allocation
Guo et al. [14] propose a self-adaptive task allocation strat-
egy in a WSN. They assume that the WSN is composed of
a number of sensor nodes and a set of independent tasks
which compete for the sensors. They consider neither dis-
tributed task scheduling nor the trade-off among energy
consumption and performance.
Xu et al. [15] propose a novel hierarchical data aggrega-

tion method using compressive sensing which combines
a hierarchical network configuration. Their key idea is
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to set multiple compression thresholds adaptively based
on cluster sizes at different levels of the data aggre-
gation tree to optimize the amount of data transmit-
ted. The advantages of the proposed model in terms
of the total amount of data transmitted and data com-
pression ratio are analytically verified. Moreover, they
formulate a new energy model by factoring in both pro-
cessor and radio energy consumption into the cost, espe-
cially the computation cost incurred in relatively complex
algorithms.

2.2 Collaborative resource allocation
Giannecchini et al. [16] propose an online task schedul-
ing mechanism called collaborative resource allocation to
allocate the network resources between the tasks of peri-
odic applications inWSNs. This mechanism does also not
explicitly consider energy consumption.
Meng et al. [17] argue that by carefully considering spa-

tial reusability of the wireless communication media, they
can tremendously improve the end-to-end throughput in
multi-hop wireless networks. To support their argument,
they propose spatial reusability-aware single-path routing
(SASR) and any-path routing (SAAR) protocols and com-
pare them with existing single-path routing and any-path
routing protocols, respectively.

2.3 Rule-based method
Frank and Römer [10] propose an algorithm for generic
task allocation in WSNs. They define some rules for the
task execution and propose a role-rule model for sensor
networks where “role” is used as a synonym for task. It is
a programming abstraction of the role-rule model. This
distributed approach provides a specification that defines
possible roles and rules for how to assign roles to nodes.
This specification is distributed to the whole network via
a gateway, or alternatively, it can be pre-installed on the
nodes. A role assignment algorithm takes into account the
rules and node properties, which may trigger execution
and network data aggregation. This generic role assign-
ment approach does consider the energy consumption but
not the ordering of tasks to sensor nodes.

2.4 Constraint satisfaction-based method
Krishnamachari and Wicker [18] examine the channel
utilization as a resource management problem by a dis-
tributed constraint satisfaction method. They consider a
WSN of n nodes placed randomly in a square area with a
uniform, independent distribution. This work tests three
self-configuration tasks in WSNs: partition into coor-
dinating cliques, formation of Hamiltonian cycles, and
conflict-free channel scheduling. They explore the impact
of varying the transmission radius on the solvability and
complexity of these problems. In the case of partition into
cliques and Hamiltonian cycle formation, they observe

that the probability that these tasks can be performed
undergoes a transition from 0 to 1.
Busch et al. [19] propose a classic optimization problem

in network routing which is to minimize C + D, where
C is the maximum edge congestion and D is the maxi-
mum path length (also known as dilation). The problem of
computing the optimal is NP-complete. They study rout-
ing games in general networks where each player i selfishly
selects a path that minimizes the sum of congestion and
dilation of the player’s path.
These constraint satisfaction approaches neither

address mapping of tasks to sensor nodes nor discuss the
resource consumption/performance trade-off.

2.5 Utility-based method
Dhanani et al. [20] compare utility-based information
management policies in sensor networks. Here, the con-
sidered resource is information or data, and two models
are distinguished: the sensor-centric utility-based model
(SCUB) and the resource manager (RM) model. SCUB
follows a distributed approach that instructs individual
sensors to make their own decisions about what sensor
information should be reported based on a utility model
for data. RM is a consolidated approach that takes into
account knowledge from all sensors before making deci-
sions. They evaluate these policies through simulation in
the context of dynamically deployed sensor networks in
military scenarios. Both SCUB and RM can extend the
lifetime of a network as compared to a network with-
out maintaining any policy. Peng et al. [21] propose a
reliable multi-cast protocol, called CodePipe, with energy
efficiency, high throughput and fairness in lossy wire-
less networks. Building upon opportunistic routing and
random linear network coding, CodePipe can not only
eliminate coordination between nodes but also improve
the multi-cast throughput significantly by exploiting both
intra-batch and inter-batch coding opportunities.
These approaches do not address the task scheduling

to improve the resource consumption/performance trade-
off.

2.6 Reinforcement learning-based method
Reinforcement learning helps to enable applications with
inherent support for efficient resource/task management.
It is the process by which an agent improves task schedul-
ing according to previously learned behavior. It does
not need a model of its environment and can be used
online. It is simple and demands minimal computational
resources.
Shah and Kumar [7] consider Q learning as reinforce-

ment learning for the task management. They describe
a distributed independent reinforcement learning (DIRL)
approach for resource management, which forms an
important component of any application including initial
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sensor selection and task allocation as well as run-time
adaptation of allocated resources to tasks. Here, the
optimization parameters are energy, bandwidth, network
lifetime, etc. DIRL allows each individual sensor node to
self-schedule its tasks and allocate its resources by learn-
ing their usefulness in any given state while honoring
application-defined constraints and maximizing the total
amount of reward over time.
Khan and Rinner [8] apply reinforcement learning (RL)

for online task scheduling. They use cooperative rein-
forcement learning for task scheduling. They introduce
cooperation among neighboring nodes with the local
information of each node. This cooperation helps to pro-
vide better performance. CooperativeQ learning is a rein-
forcement learning approach to learn the usefulness of
some tasks over time in a particular environment. They
consider the WSN as a multi-agent system. The nodes
correspond to agents in the multi-agent reinforcement
learning. The world surrounding the sensor nodes forms
the environment. Tasks are considered as activities for the
sensor nodes at each time step such as transmit, receive,
sleep, and sense. States are formed by a set of system
variables such as object in the field of view (FOV) of
sensor nodes, required energy for a specific action, and
data to transmit. A reward value provides some positive
or negative feedback for performing a task at each time
step. Value functions define what is good for an agent
over the long run described by reward function and some
parameters.
Khan and Rinner [9] apply cooperative reinforcement

learning (CRL) for online task scheduling. They use State-
Action-Reward-State-Action (SARSA(λ)) [22] learning
and introduced cooperation among neighboring sensor
nodes to further improve the task scheduling.
The proposed RATS method applies Exp3 which does

not need any statistical assumptions like stochastic ban-
dit solvers. Exp3 is an online bandit solver in which an
adversary, rather than a well-behaved stochastic process,
has complete control over the payoffs/rewards [6].
DIRL, RL, CRL, and Exp3 are compared for the task

scheduling in a target tracking application and analyzed
for the performance in terms of tracking quality/energy
consumption trade-off.

3 Networkmodel
Before describing the problem formally, terms like
resource consumption and tracking quality need to
be defined. In WSNs, resource consumption happens
because of performing the various tasks needed for the
application. Each task consumes an amount of energy
from the fixed energy budget of the sensor nodes. Typ-
ically, tracking quality in a target tracking application
of a WSN is defined as the accuracy of target location
estimation provided by the network.

In the proposed approach, a WSN is composed of N
nodes represented by the set N̂ = {n1, . . . , nN }. Each node
has a known position (ui, vi) and a given sensing cover-
age range which is simply modeled by circle with radius ri.
All nodes within the communication range Ri can directly
communicate with ni and are referred to as neighbors. The
number of neighbors of ni is given as ngh(ni). The avail-
able resources of node ni are modeled by a scalar Ei. The
battery power of sensor nodes is considered as resource.
A set of tasks is considered to perform over time steps.
Each task consumes some battery power from the energy
budget of the sensor nodes. A set of static values for the
energy consumption of tasks is considered. These values
are assigned based on the energy demands of the task. A
higher value is set for the tasks which need higher energy
consumption.
The WSN application is composed of A tasks (or

actions) represented by the set Â = {a1, . . . , aA}. Once
a task is started at a specific node, it executes for a spe-
cific (short) period of time and terminates afterwards.
Each task execution on a specific node ni requires some
resources Ẽj and contributes to the overall application
performance P. Thus, the execution of task aj on node
ni is only feasible if Ei ≥ Ẽj. The overall performance
P is represented by an application-specific metric. On
each node, an online task scheduling takes place which
selects the next task to execute among the A-independent
tasks. The task execution time is abstracted as a fixed
period. Thus, scheduling is required at the end of each
period which is represented as time instant ti. Non-
preemptive scheduling is considered based on our pro-
posed model. Figure 1 shows our considered WSN model
components.
Table 1 shows the notations and meanings used to rep-

resent the network model. The task scheduling approach
is demonstrated using a target tracking application. A sen-
sor network may consist of a variable number of nodes.
The sensing region of each node is called the field of view
(FOV). Every node aims to detect and track all targets
in the FOV. If the sensor nodes would perform tracking
all the time, then this would result in the best tracking
performance. But executing target tracking all the time is
energy demanding. Thus, a task should only be executed
when necessary and sufficient for tracking performance.
Sensor nodes can cooperate with each other by informing
neighboring nodes about “approaching” targets. Neigh-
boring nodes can therefore become aware of approaching
targets.
The objective function is defined in a way that it is

possible to trade the application performance and the
required energy consumption by a balancing factor. The
ultimate objective of the problem is to determine the
order of tasks on each node such that the overall per-
formance is maximized while the resource consumption
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Fig. 1WSN model components. There are four nodes ni , nj . . . nk , and nl . Ri is the communication range, ri is the sensing range, and (ui , vi) is the
position of the node ni . Number of neighbors of the node ni , ngh(ni) = 2

is minimized. Naturally, these are conflicting optimization
criteria, so there is no single best solution. The set
of non-dominating solutions for such a multi-criteria
problem can be typically represented by a Pareto
front.

Table 1 Notations used to represent the network model

Notation Meaning

N̂ Set of nodes WSN consists of

(ui , vi) Known position of a node

ri Sensing range of node i

Ri Communication range of node i

Â Set of available actions

Ei Available resources of node i

Ẽj Required resources for task execution

P Overall performance

4 Systemmodel
The task scheduler operates in a highly dynamic environ-
ment, and the effect of the task ordering on the overall
application performance is difficult to model. We con-
sider the set of tasks, set of states, and the reward function
as considered in [23]. Figure 2 depicts the scheduling
framework where its key components can be described as
follows:

• Agent: Each sensor node embeds an agent which is
responsible for executing the online learning
algorithm.

• Environment: The WSN application represents the
environment in our approach. Interaction between
the agent and the environment is achieved by
executing actions and receiving a reward function.

• Action: An agent’s action is the currently executed
application task on the sensor node. At the end of
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Fig. 2 General framework for task scheduling using online learning

each time period ti, each node triggers the scheduler
to determine the next action to execute.

• State: A state describes an internal abstraction of the
application which is typically specified by some
system parameters. In our target tracking application,
the states are represented by the number of currently
detected targets in the node’s FOV and expected
arrival times of targets detected by neighboring
nodes. The state transitions depend on the current
state and action.

• Policy: An agent’s policy determines what action will
be selected in a particular state. In our case, this
policy determines which task to execute at the
perceived state. The policy can focus more on
exploration or exploitation depending on the selected
setting of the learning algorithm.

• Value function: This function defines what is good
for an agent over the long run. It is built upon the
reward function values over time, and hence, its
quality totally depends on the reward function [7].

• Reward function: This function provides a mapping
of the agent’s state and the corresponding action to a
reward value that contributes to the performance.
We apply a weighted reward function which is
capable of expressing the trade-off between energy
consumption and tracking performance.

• Cooperation: Information exchange is considered
among neighboring nodes as cooperation. The
received information may influence the application’s
state of sensor nodes.

5 Existingmethods for task scheduling
Existingmethods DIRL, RL, and CRL are described below.
Each method is described briefly with the learning mech-
anism and considered set of states and tasks.

5.1 DIRL
Shah and Kumar [7] use distributed independent Q learn-
ing (DIRL) as reinforcement learning. The advantage of
using independent learning is that no communication is
required for coordination between sensor nodes and each
node selfishly tries to maximize its own rewards. In Q
learning, every agent needs to maintain aQmatrix for the
value functions. Initially, all entries of the Q matrix are 0
and the agent of the nodes may be in any state. Based on
the application-defined variables, the system goes to a par-
ticular state. Then it performs an action which depends
on the status of the nodes.
It calculates the Q value for this (state, action) pair as

Qt+1(st , at) = (1−α)Qt(st , at)+α(rt+1(st+1)+γVt(st+1)),
(1)

Vt+1(st) = max
a∈A

Qt+1(st , a) (2)

whereQt+1(st , at)means the update of theQ value at time
t + 1 after executing the action a at time step t. rt+1 rep-
resents the immediate reward after executing the action a
at time t, Vt represents the value function for node at time
t, and Vt+1 represents the value function at time t + 1.
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max
a∈A

Qt+1(st , a) means the maximum Q value after per-
forming an action from the action set A for the agent i. γ
is the discount factor which can be set to a value in [0, 1].
For higher γ values, the agent relies more on the future
than the immediate reward. α is the learning rate param-
eter which can be set to a value in [0, 1]. It controls the
rate at which an agent tries to learn by giving more or less
weight to the previously learned utility value. When α is
close to 1, the agent gives more priority to the previously
learned utility value.
Algorithm 1 depicts the RL algorithm.

Algorithm 1 Q learning for task scheduling.
1: Initialize Q(s, a) = 0. Where s is the set of states and

a is the set of actions
2: while Residual energy is larger than zero do
3: Determine current state s by application variables
4: Select an action a which has the highest Q value
5: Execute the selected action
6: Calculate Q value for the executed action (Eq. 1)
7: Calculate the value function for the executed

action (Eq. 2)
8: Shift to next state based on the executed action
9: end while

5.2 RL
Khan and Rinner [8] propose cooperative Q learning (RL)
where every agent needs to maintain a Q matrix for the
value functions like independent Q learning. Initially, all
entries of the Qmatrix are 0 and the nodes or agents may
be in any state. Based on the application-defined variable
or system variables, the system goes to a particular state.
Then it performs an action which depends on the status of
the nodes (example: For transmit action, a nodemust have
residual energy which is greater than transmission cost).
It calculates the Q value for this (state, task) pair with the
immediate reward.

Qt+1(st , at) = (1 − α)Qt(st , at) + α(rt+1(st+1)

+ γ
∑

fVt(st+1))
(3)

Vt+1(st) = max
a∈A

Qt+1(st , a) (4)

where Qt+1(st , at) means the update of Q value at time
t+1, after executing the action a at time step t. rt+1 means
the immediate reward after executing the action a at time
t. Vt is the value function at time t. Vt+1 is the value func-
tion at time t + 1. max

a∈A
Qt+1(st , a) means the maximum Q

value after performing an action from the action set A. γ
is the discount factor which can be set to a value in [ 0, 1].
The higher the value, the greater the agent relies on future
reward than the immediate reward. α is the learning rate

parameter which can be set to a value in [0, 1]. It controls
the rate at which an agent tries to learn by giving more or
less weight to the previously learned utility value. When
α is set close to 1, the agent gives more priority to the
previously learned utility value.
f is the weight factor [24] for the neighbors of agent i

and can be defined as follows:

f = 1
ngh(ni)

if ngh(ni) �= 0 (5)

f = 1 otherwise. (6)

The algorithm can be stated as follows:

Algorithm 2 Q learning for task scheduling.
1: Initialize Q(s, a) = 0. Where s is the set of states and

a is the set of actions
2: while Residual energy is not equal to zero do
3: Determine current state s by application variables
4: Select an action a which has the highest Q value
5: Execute the selected action
6: Calculate Q value for the executed action (Eq. 3)
7: Calculate the value function for the executed

action (Eq. 4)
8: Send the value function to the neighbors
9: Shift to next state based on the executed action

10: end while

5.3 CRL
Khan and Rinner [9] apply SARSA(λ) (CRL), also referred
to as State-Action-Reward-State-Action, which is an iter-
ative algorithm that approximates the optimal solution.
SARSA(λ) [22] is an iterative algorithm that approximates
the optimal solution without knowledge of the transition
probabilities which is very important for a dynamic system
like WSN. At each state st+1 of iteration t + 1, it updates
Qt+1(s, a), which is an estimate of the Q function by com-
puting the estimation error δt after receiving the reward
in the previous iteration. The SARSA(λ) algorithm has the
following updating rule for the Q values:

Qt+1(st , at) ← Qt(s, a) + αδtet(st , at) (7)

for all s, a.
In Eq. 7, α ∈ [0, 1] is the learning rate which decreases

with time. δt is the temporal difference error which is
calculated by following rule

δt = rt+1 + γ1fQt(st+1, at+1) − Qt(st , at) (8)

In Eq. 8, γ1 is a discount factor which varies from 0 to 1.
The higher the value, the more the agent relies on future
rewards than on the immediate reward. rt+1 represents
the reward received for performing action. f is the weight
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factor [24] for the neighbors of agent i and can be defined
as follows:

f = 1
ngh(ni)

if ngh(ni) �= 0 (9)

f = 1 otherwise. (10)

An important aspect of an RL framework is the trade-
off between exploration and exploitation [25]. Exploration
deals with randomly selecting actions which may not have
higher utility in search of better rewarding actions, while
exploitation aims at the learned utility to maximize the
agent’s reward.
A simple heuristic is used where exploration probability

at any point of time is given by

ε = min(εmax, εmin + k ∗ (Smax − S)/Smax) (11)

where εmax and εmin denote upper and lower boundaries
for the exploration factor, respectively. Smax represents
maximum number of states which is three in our work,
and S represents current number of states already known.
At each time step, the system calculates ε and generates
a random number in the interval of [0, 1]. If the selected
random number is less than or equal to ε, the system
chooses a uniformly random task (exploration); otherwise,
it chooses the best task using Q values (exploitation).
SARSA(λ) improves learning through eligibility traces.

et(s, a) is the eligibility traces in Eq. 7. Here, λ is another
learning parameter similar to α for guaranteed conver-
gence. γ2 is the discount factor. In general, eligibility traces
give a higher update factor for recently revisited states.
This means that the eligibility trace for a state-action pair
(s, a) will be reinforced if st ∈ s and at ∈ a. Otherwise, if
the previous action at is not greedy, the eligibility trace is
cleared.
The algorithm can be stated as follows:

Algorithm 3 SARSA(λ) learning algorithm for target
tracking application.
1: Initialize Q(s, a) = 0 and e(s, a) = 0
2: while Residual energy is not equal to zero do
3: Determine current state s by application variables
4: Select an action a, using policy
5: Execute the selected action
6: Calculate reward for the executed action (Eq. 38)
7: Update the learning rate (Eq. 14)
8: Calculate the temporal difference error (Eq. 8)
9: Update the eligibility traces (Eq. 13)

10: Update the Q-value (Eq. 7)
11: Shift to next state based on the executed action
12: end while

The eligibility trace is updated by the following rule:

et(st , at) = γ2λet−1(st , at) + 1 if st ∈ s and at ∈ a (12)
et(st , at) = γ2λet−1(st , at) otherwise. (13)

The learning rate α is decreased slowly in such a way
that it reflects the degree to which a state-action pair has
been chosen in the recent past. It is calculated as

α = ζ

visited(s, a)
(14)

where ζ is a positive constant and visited(s, a) represents
the visited state-action pairs so far [26].

6 Proposedmethod for task scheduling
Following set of actions, set of states and reward function
are considered for the proposed RATS.

6.1 Set of actions
The following actions are considered in our target track-
ing application:

1. Detect_Targets: This function scans the field of view
(FOV) and returns the number of detected targets in
the FOV.

2. Track_Targets: This function keeps track of the
targets inside the FOV and returns the current 2D
positions of all targets. Every target within the FOV is
assigned with a unique ID number.

3. Send_Message: This function sends information
about the target’s trajectory to neighboring nodes.
The trajectory information includes (i) the current
position and time of the target and (ii) the estimated
speed and direction. This function is executed when
the target is about to leave the FOV.

4. Predict_Trajectory: This function predicts the
velocity of the trajectory. A simple approach is to use
the two most recent target positions, i.e., (xt , yt) at
time tt and (xt−1, yt−1) at tt−1. Then the constant
target’s speed can be estimated as

v =
√

(xt − xt−1)2 + (yt − yt−1)2/(tt−tt−1) (15)

5. Intersect_Trajectory: This function checks whether
the trajectory intersects with the FOV and predicts
the expected time of the intersection. This function
is executed by all nodes which receive the “target
trajectory” information from a neighboring node.
Trajectory intersection with the FOV of a sensor
node is computed by basic algebra. The expected
time to intersect the node is estimated by

t̃i = DPiPj/v (16)

where DPiPj is the distance between points Pj and Pi.
Pj represents the point where the trajectory is
predicted at node j, and Pi corresponds to the
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trajectory’s intersection points with the FOV of node
i (cp. Fig. 3). v is the estimated velocity as calculated
by Eq. 15.

6. Goto_Sleep: This function shuts down the sensor
node for a single time period. It consumes the least
amount of energy of all available actions.

The advanced trajectory prediction and intersection
are considered for these methods. Inputs for this pre-
diction task are the last few tracked positions of
the target. Here, the last six tracked positions of
the target are considered based on simulation stud-
ies. The trajectory is linearized given by the last six
tracked positions of the target considering the con-
stant speed and direction. The speed is calculated by
Eq. 15.

Suppose (x1, y1), (x2, y2) . . . (xn, yn) are tracked positions
of the moving object inside the FOV of the sensor node at
time steps t1, t2 . . . tn.
The trajectory can be predicted by the regression line

[27] in Eq. 17:

y = bx + a + ε (17)

where b is the slope, a is the intercept, and ε is the residual
or error for the calculation.
So residual, ε, can be calculated by following

εi = yi − bxi − a (18)

where i = 1, 2, 3, . . . , n.
If the squares of the residuals of all the points from the

line are summed up, what we get is ameasure of the fitness
of the line. The aim is to minimize this value.

Fig. 3 Target prediction and intersection. Node j estimates the target trajectory and sends the trajectory information to its neighbors. Node i checks
whether the predicted trajectory intersects its FOV and computes the expected arrival time
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So, the square of the residual is as follows:

ε2i = (yi − bxi − a)2 (19)

To calculate the sum of square residuals, all the indi-
vidual square residuals are added together as follows:

J =
n∑

i=1
(yi − bxi − a)2 (20)

where J is the sum of square residuals and n is the number
of considered points.
J in Eq. 20 needs to be minimized. The minimum value

for J has to occur when the first derivative is 0. The partial
derivatives for J are with respect to the two parameters of
the regression line b and a. To get the minimum, it needs
to assign 0 [28].

∂J
∂b

=
n∑

i=1
2(yi − bxi − a)(−xi) = 0 (21)

∂J
∂a

=
n∑

i=1
2(yi − bxi − a)(−1) = 0 (22)

Equations 21 and 22 can be shuffled and divided as
n∑

i=1
bxi +

n∑
i=1

a =
n∑

i=1
yi (23)

n∑
i=1

bx2i +
n∑

i=1
axi =

n∑
i=1

xiyi (24)

Some constants can be pulled out in front of the summa-
tions. The

∑n
i=1 a can be written as na in Eq. 23. We take

the values of unknown parameters a and b using Eqs. 23
and 24. These give two equations as follows:

b
n∑

i=1
xi + na =

n∑
i=1

yi (25)

b
n∑

i=1
x2i + a

n∑
i=1

xi =
n∑

i=1
xiyi (26)

Now, from Eqs. 25 and 26, some simple substitutions
between the two equations are obtained as follows:

a =
∑

y
n

− b
∑

x
n

(27)

b = n
∑

xy − ∑
x
∑

y
n

∑
x2 − (

∑
x)2

(28)

These formulas in Eqs. 27 and 28 do not tell us how pre-
cise the estimates are. That is, how much the estimators a
and b can deviate from the “true” values of a and b. It can
be solved by confidence intervals.
Using Student’s t-distribution with (n − 2) degrees of

freedom [29], a confidence interval can be constructed for
a and b as follows:

b̂ ∈ [
b − sbt∗n−2, b + sbt∗n−2

]
(29)

â ∈ [
a − sat∗n−2, a + sat∗n−2

]
(30)

where â and b̂ are the new estimated values of a and b. t∗n−2
is the (1 − τ/2)-th quantile of the tn−2 distribution. For
example, if τ = 0.05, the confidence level becomes 95%.
sa and sb are the standard deviations as follows:

sb =
√

1
n−2

∑n
i=1 ε 2

i∑n
i=1(xi − x̄)2

(31)

sa = sb

√
1
n

∑n
i=1 x2i

=
√

1
n(n − 2)

(∑n
i=1 ε 2

i
) ∑n

i=1 x2i∑n
i=1(xi − x̄)2

(32)

where x̄ is the average of the x values.
In Fig. 4, some tracked positions of the target are

observed which is denoted by the “black” dots. At first,
the regression line is predicted and the middle line is
obtained. Then the confidence band is calculated which
gives two other lines.
For the intersection with the circles, the line as follows

is considered:

y = bx + a (33)

where b is the slope and a is the intercept.
The line given by Eq. 33 intersects a circle (sensing range

is considered as a circle) given by Eq. 34:

(x − u1)2 + (y − v1)2 = r21 (34)

where (u1, v1) is the center and r1 is the radius of the circle.
Substituting the value of Eq. 33 in Eq. 34 gives the

following:

(x − u1)2 + ((bx + a) − v1)2 = r21 (35)

Simply expanding Eq. 35 by algebraic formula gives
a quadratic equation of x and can be solved using the
quadratic formula.
After solving the quadratic equation, we get the values

of x and y.

x = −B ± √
B2 − 4AC
2A

(36)

if B2 − 4AC < 0, then the line misses the circle. If B2 −
4AC = 0, then the line is tangent to the circle. If B2 −
4AC > 0, then the line meets the circle in two distinct
points.
x can be substituted in Eq. 33 from Eq. 36 to get the y

values:

y = b
(

−B ± √
B2 − 4AC
2A

)
+ a (37)
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Fig. 4 Trajectory prediction and intersection. Black dots denote the tracked positions of a target. Themiddle line is drawn based on linear regression.
The other two lines are drawn by confidence interval

6.2 Set of states
The application is abstracted by three states at every node.

• Idle: This state indicates that there is currently no
target detected within the node’s FOV and the local
clock is too far from the expected arrival time of any
target already detected by some neighbor. If the time
gap between the local clock Lc and the expected
arrival time NET is greater than or equal to a
threshold Th1 (cp. Fig. 5), then the node remains in
the idle state. The threshold Th1 is set to 5 based on
our simulation studies. In this state, the sensor node
performs Detect_Targets less frequently to save
energy.

• Awareness: There is currently also no detected target
in the node’s FOV in this state. However, the node
has received some relevant trajectory information,
and the expected arrival time of at least one target is
in less than Th1 clock ticks. In this state, the sensor
node performs Detect_Targets more frequently,
since at least one target is expected to enter the FOV.

• Tracking: This state indicates that there is currently
at least one detected target within the node’s FOV.
Thus, the sensor node performs tracking frequently
to achieve high tracking performance.

Obviously, the frequency of executing Detect_Targets
and Track_Targets depends on the overall objective, i.e.,
whether to focus more on tracking performance or energy
consumption. The states can be identified by two appli-
cation variables, i.e., the number of detected targets at
the current time Nt and the list of arrival times of targets
expected to intersect with node NET. Nt is determined
by the task Detect_Targets which is executed at time t.
If the sensor node executes the task Detect_Targets at
time t, then Nt returns the number of detected targets in
the FOV. Each node maintains a list of appearing targets
and the corresponding arrival time. Targets are inserted
in this list if the sensor node receives a message and
the estimated trajectory intersects with the FOV. Targets
are removed if a target is detected by the node or the
expected arrival time with an additional threshold Th1 has
expired.
Initially, each node has no idea about which task to per-

form at which state. They learn this scheduling online over
time. For example, Track_Targets is a necessary task for
keep tracking when the target is in FOV. The application
learns online about the next task to execute based on our
proposed methods. If the sensor node does not perform
the Track_Targets task when the target is in FOV, there
is a chance to miss the target which implies less tracking
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Fig. 5 State transition diagram. States change according to the value of two application variables Nt and NET. Lc represents the local clock value, and
Th1 is a time threshold

quality. But this situation could provide better energy effi-
ciency, since the Track_Targets task consumes the highest
amount of energy among all the tasks. So, selection of a
particular task at each time step or scheduling of tasks
provides an impact on overall tracking quality/energy
consumption trade-off.
Figure 5 depicts the state transition diagram where

Lc is the local clock value of the sensor node and Th1
represents the time threshold between Lc and NET.

6.3 Reward function
The reward function is a key system component for
expressing the effect of the task execution on the sys-
tem performance and resource consumption. Thus, both
aspects should be covered by the reward function. Among
the various options, it is simplified by merging energy

consumption and system performance using a balancing
parameter. In detail, the reward function in our algorithm
is defined as

r = β(Ei/Emax) + (1 − β)(Pt/P) (38)

where the parameter β balances the conflicting objectives
between Ei and Pt . Ei represents the residual energy of
the node. Pt represents the number of tracked positions of
the target inside the FOV of the node. Emax is the maxi-
mum energy level of the sensor node, and P is the number
of all possible detected target’s positions in the FOV.
These two parameters are used for normalizing the energy
and performance parameters. By modifying the balancing
parameter β , we can control whether more focus is put on
energy efficiency or system performance.
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6.4 Proposedmethod
The classical adversarial algorithm Exp3 (exponential-
weight algorithm for exploration and exploitation) is used
for task scheduling [6].
The algorithm can be stated as follows:

Algorithm 4 Task Scheduling by Bandit Solver Exp3.
1: Parameters: Number of tasks A, Factor κ ≤ 1
2: Initialization: wi,0 = 1 and Pi,1 = 1/A for i =

1, 2, . . . ,A
3: while Residual energy is not equal to zero do
4: Determine current s based on application

variables
5: Select an action a ∈ {1, 2, . . . ,A} based on the Pt
6: Execute the selected action
7: Calculate the reward (Eq. 41)
8: Update the weights (Eq. 40)
9: Calculate the updated probability distribution

(Eq. 39)
10: Shift to next state based on the executed action
11: end while

Exp3 has a parameter κ which controls the probability
with which arms are explored in each round. At each time
step t, Exp3 draws an action a according to the distribu-
tion P1,t ,P2,t , . . . ,PA,t . The distribution can be calculated
by the following equation:

Pj,t+1 = (1 − κ)
wa,t∑A
j=1 wj,t

+ κ

A
, j = 1, 2, . . . ,A (39)

where wa,t is the weight associated with the action a at
time t.
This distribution is a mixture of the uniform distribu-

tion and a distribution which assigns to each action a
probability mass exponential in the estimated reward for
that action. Intuitively, mixing in the uniform distribution
is done tomake sure that the algorithm tries out all actions
A and gets good estimates of the rewards for each action.
Weight for each action can be calculated by following

equation

wa,t = wa,t−1eκrt+1 (40)

where rt+1 is the reward after executing the action a.
Reward can be calculated by following equation

rt+1 = rt
Pa,t

(41)

where Pa,t is the calculated probability distribution for the
action a by Eq. 39.
Exp3 works by maintaining a list of weights wi by Eq. 40

for each of the actions, using these weights to decide
which action to take next based on a probability distri-
bution Pt , and increasing the relevant weights when the

reward is positive. The egalitarianism factor κ ∈[0, 1]
tunes the desire to pick an action uniformly at random. If
κ = 1, the weights have no effect on the choices at any
step.

7 Experimental results and evaluation
7.1 Simulation environment
The proposed method is implemented and evaluated with
other task scheduling methods using a WSN multi-target
tracking scenario implemented in a C# simulation envi-
ronment.
The simulator consists of two stages: the deployment

of the nodes and the execution of the tracking appli-
cation. In the evaluation scenario, the sensor nodes are
uniformly distributed in a 2D rectangular area. A given
number of sensor nodes are placed randomly in this area
which can result in partially overlapping FOVs of the
nodes. However, placement of nodes on the same posi-
tion is avoided. Before deploying the network, the network
parameters should be configured using the configuration
sliders.
The following network parameters can be configured by

our simulator.

• Network size: Network size means the number of
nodes in the network. In the current settings of the
simulator, the number of sensor nodes can be varied
between [3, 40].

• Sensor radius: Sensor radius is the sensing range of
the sensors in the network. Sensor radius can be
varied between [1, 50].

• Transmission radius: Transmission radius is the
maximum distance within two sensor nodes
communicating with each other. If it is set to a high
value, nodes on the opposite side of the rectangular
area may be able to reach each other. If it is set to a
low value, nodes must be very close to communicate
with each other. Transmission radius can be varied
between [1, 50].

The network is displayed on the simulation environ-
ment as a set of red circles surrounded by gray circles.
The red circles denote the sensor nodes, and the gray cir-
cles denote the sensing range of the nodes. Each node is
connected to nearby nodes by black lines which repre-
sent the communication links. When a message is being
exchanged, it appears as red. The color in the center of
the red circle represents the battery status of the node,
which gradually shifts from white to black. White color
denotes the nodes with full power, and black color denotes
the nodes with no power. When a node loses all power,
the node becomes completely black. The gray area of the
node shrinks and disappears. All of the communication
links associated with the node disappear as well.
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Targets move around in the area based on a Gauss-
Markov mobility model [30]. The Gauss-Markov mobility
model was designed to adapt to different levels of random-
ness via tuning parameters. Initially, each mobile target
is assigned with a current speed and direction. At each
time step t, the movement parameters of each target are
updated based on the following rule:

St = ηSt−1 + (1 − η)S +
√
1 − η2SGt−1 (42)

Dt = ηDt−1 + (1 − η)D +
√
1 − η2DG

t−1 (43)

where St and Dt are the current speed and direction
of the target at time t, respectively. S and D are con-
stants representing the mean value of speed and direction,
respectively. SGt−1 and DG

t−1 are random variables from a
Gaussian distribution. η is a parameter in the range [ 0, 1]
and is used to vary the randomness of the motion. Ran-
dom (Brownian) motion is obtained if η = 0, and linear
motion is obtained if η = 1. At each time t, the target’s
position is given by the following equations:

xt = xt−1 + St−1 cos(Dt−1) (44)

yt = yt−1 + St−1 sin(Dt−1) (45)

7.2 Settings of parameters
In the simulation, we limit the number of concurrently
available targets to seven. The total energy budget for each
sensor node is considered as 1000 units. Table 2 shows
the energy consumption for the execution of each action.
Sending messages over two hops consumes energy on
both the sender and relay nodes. To simplify the energy
consumption at the network level, only the energy con-
sumption to ten units on the sending node only is aggre-
gated. The egalitarianism factor κ = 0.5 is set for Exp3.
The sensing radius is considered as ri = 5, and the com-
munication radius is set as Ri = 8. These fixed values
are set for the parameters based on simulation studies.
For each simulation run, the achieved tracking quality and
energy consumption are aggregated and normalized to
[0, 1].

Table 2 Energy consumption of the individual actions

Action Energy consumption (unit)

Goto_Sleep 1

Detect_Targets 2

Intersect_Trajectory 3

Predict_Trajectory 4

Send_Message 5

Track_Targets 7

7.3 Performed experiments
For the evaluation, the following four experiments are
performed with the following assumptions of parameters.

1. To find out the trade-off between tracking quality
and energy consumption, the balancing factor β of
the reward function is set between [0.1, 0.9] in 0.1
steps, keeping the randomness of moving target as
η = 0.5, setting the egalitarianism factor of Exp3 as
κ = 0.5, and fixing the topology to five nodes.

2. The network size is varied to check the trade-off
between tracking quality and energy consumption.
Three different topologies consisting of 5, 10, and 20
sensor nodes are considered where the coverage ratio
is 0.0029, 0.0057, and 0.0113, respectively. The
coverage ratio is defined as the ratio of the aggregated
FOV of all deployed sensor nodes over the area of the
entire surveillance area. The balancing factor is set
β = 0.5 and the randomness of the mobility model
η = 0.5 which is a constant for this experiment.

3. Randomness of moving targets η is set to one of the
following values
{0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7, 0.9} and setting
the balancing factor β = 0.5 and fixing the topology
to five nodes.

4. DIRL, RL, CRL, and Exp3 are evaluated in terms of
average execution time and average communication
effort. These values are measured from 20 iterations
and represent the mean execution times and the
mean of Send_Message task executions.

7.4 Discussion
Figure 6 shows the results of our first experiment. Each
data point in these figures represents the average of
normalized tracking quality and energy consumption of
ten complete simulation runs. The results show the track-
ing quality/energy consumption trade-off for DIRL, RL,
CRL, and Exp3 by varying the balancing factor β between
[0.1, 0.9] in 0.1 steps. It is observed that CRL and Exp3
provide similar results, i.e., the corresponding data points
are closely co-located. RL is energy-aware but is not
able to achieve high tracking quality. DIRL achieves the
most energy awareness but provides the least tracking
quality.
Figure 7 shows the results of the second experiment. In

this experiment, each data point represents the average
of normalized tracking quality and energy consumption
of ten complete simulation runs by varying the network
size to one of the values {5, 10, 20} for each method.
Here, the same trend can be identified, i.e., the CRL
and Exp3 achieve almost similar results in terms of
tracking quality/energy consumption trade-off and DIRL
shows less tracking performance with the higher energy
efficiency.



Khan EURASIP Journal onWireless Communications and Networking  (2016) 2016:10 Page 15 of 17

Fig. 6 Tracking quality/energy consumption trade-off for DIRL, RL, CRL, and Exp3 by varying the balancing factor of the reward function β

Figures 8, 9 and 10 show the results of our third exper-
iment. In this experiment, each data point represents the
average of normalized tracking quality and the energy
consumption of ten complete simulation runs by vary-
ing the randomness of moving objects η to one of these
values {0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.70, 0.90} for
each method. From these figures, it can be seen that
CRL and Exp3 outperform RL and DIRL in terms of
achieved tracking performance. It can be seen that for
lower randomness, η = 0.5, 0.7, and 0.9, RL and
Exp3 show very close results for tracking performance.
But for higher randomness, η = 0.1, 0.15, and 0.2,
DIRL gives poor performance with regard to tracking
performance.
Table 3 shows the comparison of DIRL, RL, CRL, and

Exp3 in terms of average execution time and average
communication effort. These values are derived from 20
iterations and represent the mean execution times and

the mean of Send_message task executions. It can be seen
that DIRL and RL are resource-aware in terms of execu-
tion time and communication effort. Exp3 requires 25%
more and CRL requires 86% more execution time. The
communication overhead is similar for both Exp3 and
CRL.

8 Conclusions
In this paper, an adversarial bandit solver is applied
based on online learning algorithm for resource-aware
task scheduling in WSN. The performance of our pro-
posed online task scheduling method is evaluated with
other existing task scheduling methods based on the
three learning algorithms: DIRL, RL, and CRL. Evaluation
results show that our proposed RATS method provides
better performance in terms of tracking quality. DIRL
shows the best energy efficiency but provides poor results
in terms of tracking quality. The proposed RATS and CRL

Fig. 7 Tracking quality/energy consumption trade-off for DIRL, RL, CRL, and Exp3 by varying the network size
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Fig. 8 Tracking quality/energy consumption trade-off for DIRL, RL, CRL, and Exp3 with different randomness of target movements, η = 0.10, 0.15,
and 0.20

Fig. 9 Tracking quality/energy consumption trade-off for DIRL, RL, CRL, and Exp3 with different randomness of target movements, η = 0.25, 0.30,
and 0.40

Fig. 10 Tracking quality/energy consumption trade-off for DIRL, RL, CRL, and Exp3 with different randomness of target movements, η = 0.50, 0.70,
and 0.90
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Table 3 Comparison of average execution time and average
number of transferred messages (based on 20 iterations)

Avg. execution time (s) Avg. comm. effort

DIRL 0.030 0

RL 0.036 0

CRL 0.067 29

Exp3 0.045 27

show almost similar results in terms of tracking quality-
energy consumption trade-off. Evaluation results show
that these methods provide different properties concern-
ing achieved performance and resource awareness. The
selection of a particular algorithm depends on the appli-
cation requirements and the available resources of sensor
nodes.
Future work includes the application of our resource-

aware scheduling approach to differentWSN applications,
the implementation on our visual sensor network plat-
forms [31], and the comparison of our approach with
other variants of reinforcement learning methods.
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