
Kang and Choo EURASIP Journal onWireless Communications and
Networking  (2016) 2016:25 
DOI 10.1186/s13638-016-0523-6

RESEARCH Open Access

A cluster-based decentralized job
dispatching for the large-scale cloud
Byungseok Kang* and Hyunseung Choo

Abstract

The remarkable development of cloud computing in the past few years, and its proven ability to handle web hosting
workloads, is prompting researchers to investigate whether clouds are suitable to run large-scale computations. Cloud
load balancing is one of the solution to provide reliable and scalable cloud services. Especially, load balancing for the
multimedia streaming requires dynamic and real-time load balancing strategies. With this context, this paper aims to
propose an Inter Cloud Manager (ICM) job dispatching algorithm for the large-scale cloud environment. ICM mainly
performs two tasks: clustering (neighboring) and decision-making. For clustering, ICM uses Hello packets that observe
and collect data from its neighbor nodes, and decision-making is based on both the measured execution time and
network delay in forwarding the jobs and receiving the result of the execution. We then run experiments on a
large-scale laboratory test-bed to evaluate the performance of ICM, and compare it with well-known decentralized
algorithms such as Ant Colony, Workload and Client Aware Policy (WCAP), and the Honey-Bee Foraging Algorithm
(HFA). Measurements focus in particular on the observed total average response time including network delay in
congested environments. The experimental results show that for most cases, ICM is better at avoiding system
saturation under the heavy load.

Keywords: Cluster-based, Cloud computing, Inter Cloud Manager, Job dispatching

1 Introduction
In the past two decades, cloud computing has emerged
as an enabling technology and it has been increasingly
adopted in many areas including business, science, and
engineering because of its inherent scalability, flexibility,
and cost-effectiveness [1]. Currently, cloud computing is
providing dynamic services like applications, data, hard-
ware resources, and various IT services over the internet.
The reliability and performance of cloud services depend
on various factors including load balancing [2, 3] and job
dispatching [4, 5]. Job dispatching is performed on the
basis of different parameters so that it increases the overall
cloud performance. A job may include entering data, pro-
cessing, accessing software, or storage functions. The data
center classifies jobs according to the service-level agree-
ment and requested services. Each job is then assigned to
one of the available servers. In turn, the servers perform
the requested job, and a response is transmitted back to

*Correspondence: byungseok@skku.edu
Department of Computer Science and Engineering, Sungkyunkwan University,
Suwon 440-746, South Korea

the user. With this requirement, current cloud data center
needs to support large-scale global coverage [6], low cost
[7, 8], low latency [9, 10], certain level of security [11, 12],
and application availability for the customers.
Scalability in cloud is one of the major advantages

brought by the cloud paradigm. However, there is an
important issue of job dispatching among heterogeneous
clouds. Efficient use of computing resources to minimize
the execution time requires a job dispatching algorithm
that can appropriately determine the assignment of jobs.
Due to this variety of jobs and servers, task scheduling
mechanisms for single system may not be effective in
a distributed environment [13–15]. Furthermore, mobile
devices [16] are becoming one of the major sources of
the workload for clouds in order to save energy at the
mobile device itself and avoid moving bulky data over
wireless networks between the mobile devices and data
repositories.
However, it should be noted that the job dispatching

itself is another kind of system overhead [17, 18]. These
overheads include the following: the time required by
computing hosts/nodes for updating their system load

© 2016 Kang and Choo. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-016-0523-6-x&domain=pdf
mailto: byungseok@skku.edu
http://creativecommons.org/licenses/by/4.0/


Kang and Choo EURASIP Journal onWireless Communications and Networking  (2016) 2016:25 Page 2 of 8

information in a real time manner, the communication
costs for sharing those load information to make a deci-
sion, and the costs of job transmission. Therefore, the
conditions of job dispatching is worth investigating and
how they work should be considered. In order to handle
different users’ job requests, a job dispatcher/controller
monitors the large-scale and heterogeneous cloud systems
with low cost (overhead).
Although the parallelization strategy enables scalability

[19], a good load balancing scheme is necessary to achieve
good performance. In this paper, we introduced an Inter
Cloud Manager (ICM) job dispatching algorithm which
is operating in not only small scale (centralized) but also
large-scale (decentralized) environments. We compared
its performance with three state-of-the-art load balancing
algorithms. In the results, ICM showed superior perfor-
mance of average response time in the congested situa-
tion. It means that the proposed ICM provides scalability
based on clustering and decision-making. In addition, by
using this experimental results, we can design the appro-
priate number of cloud server resources while changing
the system loads. The rest of this paper is organized as fol-
lows. A literature review on decentralized load balancing
algorithms in clouds and related technologies are pre-
sented in Section 2. In Section 3, we detail our proposed
ICM. Experiments and measurement results are provided
in Section 4. Finally, we conclude the paper in Section 5.

2 Related works
Load balancing has become an attractive issue since the
emergence of distributed systems. Load balancing algo-
rithms can be classified into sub categories from various
perspectives. From one point of view, they can be clas-
sified into centralized and decentralized algorithms. The
case where the load balancer resides at the master node
is called centralized load balancing policy, while the other
case where the load balancer resides at all the nodes under
consideration is called the distributed (decentralized) load
balancing policy. In this section, we mainly discuss the
mostly known contributions in decentralized algorithms
for the large-scale cloud.
In [20], an Ant Colony Optimization technique that

improves upon the work in [21] was suggested. Both
algorithms are using the ants’ behavior to gather infor-
mation about the cloud hosts to assign the task to a
specific host. However, the algorithm in [21] has a prob-
lem with ant synchronization and the author in [20] tried
to solve this by adding the feature “suicide” to the ants.
The Ant Colony algorithm has many advantages com-
pared to other static algorithms. The advantages include
fast decision-making, no single point of failure (SPOF),
and low complexity.
In [22], a map-reduce-based entity resolution approach

was discussed. It has two main tasks: map and reduce

tasks. Since several map tasks can read entities in parallel
and process them, the reduce adds one more load balanc-
ing level between themap task and the reduce task for the
purpose of decreasing the overload on these tasks. The job
dispatching in the middle stage divides only the large tasks
into smaller tasks and then these smaller tasks are sent to
the reduce tasks based on their availability.
In [23], a dual direction downloading algorithm from

FTP servers (DDFTP) that is available over the Internet,
cloud, and grid environments was proposed. This tech-
nique utilizes the availability of replicated FTP servers to
enhance file download times through concurrent down-
loads of file blocks. The algorithm reduces the network
communication needed between the clients and hosts
and therefore reduces the network overhead. Most of the
distributed algorithms take quite a long time for their
decision-making process. However, DDFTP has low com-
plexity and dispatches a job very fast.
The algorithm proposed in [24] is a load balancing for

Internet distributed services (IDS) which are distributed
all over the world. A middleware is described to imple-
ment this protocol. IDS also uses a heuristic to help
web servers to endure overloads. It reduces the service
response times that limits the redirection of requests to
the closest remote servers without overloading them. IDS
is a complex algorithm and generates a large amount of
network overhead, but its decision-making process is fast.
In [25], a dynamic load balancing algorithm called

load balancing min-min (LBMM) technique is presented
which is based on three level frameworks. LBMM helps
in an efficient utilization of resources and enhances the
work efficiency. However, LBMM itself is highly com-
plex and generates a high amount of additional dummy
packets. Furthermore, the distributed LBMM algorithm
takes quite a long time for the decision-making process
(algorithm speed).
The paper [26] proposed a new content-aware load bal-

ancing policy named asWorkload and Client Aware Policy
(WCAP). It applies a technique to specify the Unique and
Special Property (USP) of the requests as well as comput-
ing nodes. Based on USP, the scheduler decides the node
that is best suitable for the processing of the requests.
This strategy is implemented in a decentralized manner
with high overhead. By using the content information
to narrow down the search, this technique improves the
searching performance and hence the overall performance
of the system. It also helps in reducing the idle time of the
computing nodes, hence improving their utilization.
In [27], a honey bee behavior-inspired load balanc-

ing algorithm for cloud environment was proposed. This
algorithm is derived from the behavior of honey bees in
finding their food. Among the classes of bees, the forager
bees forage for food sources. In case of load balancing,
the servers are grouped into a virtual server (VS). Each



Kang and Choo EURASIP Journal onWireless Communications and Networking  (2016) 2016:25 Page 3 of 8

Table 1 Description of Hello packet field

Field name Bytes Description

Source address 4 The IP address of the host is sending to

Sequence number 2 Unique sequence number of this message

Max. hop count 2 The number of maximum hop count this
message travel the networks

Hello interval 2 The number of seconds source node waits
between sending Hello messages

Dead interval 2 The number of seconds a router can be
‘silent’ before it is considered to have failed

VS calculates its profit which is similar to the bees’ waggle
dance.

3 Inter CloudManager
In this section, we introduce and describe an Inter Cloud
Manager (ICM) that is designed for the large-scale cloud.
ICM consists of two main parts: clustering and decision-
making.

3.1 Clustering
Data centers for cloud computing continue to grow in
terms of both hardware resources and traffic volume, thus
making cloud operation and management more and more
complex. In this scenario, accurate and fine-grained mon-
itoring [28, 29] activities are required to efficiently operate
these platforms and to manage their increasing complex-
ity. Furthermore, in order to be able to meet demands
and provide satisfactory QoS [30–33], individual moni-
toring mechanisms are needed and can lead to collection
and processing of a large amount of runtime data. To
monitor the clouds continuously, we use “Hello” packet
to collect system load and the end-to-end delay from
the client to the host. A Hello packet is sent periodically
on each network interface to discover and test connec-
tions among neighbors. Hello packets are broadcasting
to enable dynamic router and host server discovery. The
field structure of Hello packet is shown in Table 1 and
Fig. 1 in the body of the message. Especially, max. hop
count is a key parameter in our measurement because this
parameter determined the boundary of neighbors.
The ACK packet is sent by the receiving server (destina-

tion) and goes back to the sending server (source). Every
interconnected server information is periodically updated

by Hello packet through ACK packet that is being sent
by the destination server. When the source receives the
ACK packet from the destination, it computes and stores
network link (hop count, delay, loss) and system load (job
execution time, memory usage, number of waiting jobs)
information into its neighbor table. Each cloud host can
make its own “cluster” based on this table. The details of
the ACK packet is described in both Table 2 and Fig. 2.

3.2 Decision-making
Decision-making is a core function of ICM and maintains
best efficiency in dispatching job requests from a client
in the ideal cloud location. Algorithm 1 shows the details
of ICM’s decision-making process. This decision-making
process is triggered when the system’s number of waiting
jobs in the waiting queue is larger than 5. There are two
steps that decision-making follows.
The first step is selecting one request among the job list

that ICM holds. All job requests are saved in a “linked
list” containing its first time that it was originally entered
as job request and a basic description. One reason to use
the linked list is to provide primary benefit of limiting
memory waste as insertion, and removal of data con-
stantly takes place. ICM processes job requests in order,
from head to tail which means in our case that we used
a first-in-first-out (FIFO) job selection process. We will
explain details about experimental system settings in the
following section.
The second step is the job dispatching process that was

initially placed by the client and its task is to make sure
that the dispatching process is well undertaken to themost
ideal cloud host. ICM uses a “best-fit” approach that dis-
patches a job to the shortest average response time (ART)
among operating clouds. Firstly, ICM checks the ART
value. If all the hosts exceed the threshold of ART, ICM
does not send and holds a job until a host’s ART is under
the threshold. Secondly, ICM checks the status of hosts to
see whether they are idle or not. If a host does not have
any waiting jobs, ICM sends a job to that host. Finally,
ICM sends a job to the host with the minimum value
of ART.
As we discussed, ICM uses history base decision-

making. We can obtain the network link and system
load informations from the Hello-ACK packet. In this
case, ART is calculated by summing between expected

Fig. 1 Hello packet format



Kang and Choo EURASIP Journal onWireless Communications and Networking  (2016) 2016:25 Page 4 of 8

Table 2 Description of ACK packet field

Field name Bytes Description

ACK source address 4 The address of the node originating the
acknowledgement

ACK destination address 4 The address of the node to which the
acknowledgement is to be delivered

Execution time 2 The execution time of recently executed
(finished) two jobs

Memory usage 2 The memory usage information of
recently executed two jobs

Num. of waiting jobs 2 The number of jobs in the waiting
queue

Options 2 Variable-length field

network delay (ENT) and expected job transfer time
(EJTT) from the cloud host. ENT is calculated by using
the formula (avg. network delay × num. of packets for
current job) over (1 – loss rate). From a network’s point
of view, a job (application) consists of several numbers
of data packets. In our case, avg. network delay included
processing, queuing, transmission, and propagation
delays. EJTT is calculated by avg. job execution time
× (num. of waiting jobs +1). Average job execution
time can be calculated as shown in expression (1) where
Wnew stands for current average job execution time and
Wold is previous value, Wlast is last job execution time.
a is the value (0 < a < 1) that is worthwhile to notice
as it is the usage of system memory from the last job
within the cloud host. For instance, suppose the latest
job used 30% of system memory. Therefore,
the value of a becomes 0.3 in the simplest
term.

Wnew ← Wold(1 − a) + Wlast × a (1)

Algorithm 1 Decision-making of ICM
Ensure: Number of waiting jobs in system > 5

Select job(j)
Compute each neighbor’s observed Average Response
Time (ART)
/*no appropriate neighbor at current time*/
ifMinimum ART ≥ threshold(ART) then

Do not Dispatch Job(j)
/*prevent starvation of the Cloud*/

else if neighbor[N_ID] has no waiting jobs then
Allocate job(j) to the neighbor[N_ID]

else
Allocate job(j) to the appropriate neighbor

end if

4 Experimental results
We have implemented experiment environments on a
cloud test-bed with different types of server machines.
We use a total of 15 servers for the experiment; 5 host
servers have Intel Xeon 2.4 GHz dual core CPUs, and
size of RAM is 0.5 GB where 5 have Xeon 3.0 GHz dual
core CPUs with RAM size of 2.0 GB. Finally, the n five
hosts have Xeon 2.8 GHz dual core CPUs with a RAM
size of 1.0 GB. Each server physically distributes and runs
Linux (Ubuntu) with CPU throttling enabled with the on
demand governor, which dynamically adjusts the cores
frequencies depending on load. In all experiments, we
conducted both averaged measurements for long periods
and observed the job response time while changing the job
arrival rate.

4.1 System settings and job processing
As shown in Fig. 3, the system setting is largely divided
into four client mobile devices and 15 cloud host
servers. We use a Google reference mobile phone for the
client machine. The client sends 32×32 matrix inversion
jobs through the WiFi protocol. This 32×32 matrix is
randomly generated by the client job generator. The client
just sends a fraction of job requests withmatrix data to the
destination. The ICMmodule (controller) is located inside
every server and follows the rule. The controller plays an
important role not only in interconnecting the client with
cloud hosts but in dispatching jobs to the ideal cloud host.
The controller uses four different algorithms for dispatch-
ing a job, such as proposed ICM, Ant Colony, HFA, and
WCAP.
A job is executed when the request arrives from the

controller. After receiving this request, the system runs
binary code and sends the result back to the client over
the network. Each host server has different hardware
resources (e.g., CPU, memory, storage) and network prop-
agation delay values (10–5000 ms). In addition, each
server processes jobs based on first-come-first-served
(FCFS) scheduling policy. That is the commonly used and
simplest way to develop a single waiting queue. Below are
several steps of establishing a network connection among
the client, controller, and the host. That is the basics of our
cluster-based job dispatching.

1. The client attempts to connect with the job on the
controller (SYN).

2. The controller accepts the connection, and after
deciding which host should receive the connection,
changes the destination IP (and possibly port) to
match the job of the selected host (note that the
source IP of the client is not touched).

3. The host accepts the connection and responds back
to the original source, the client, via its default route,
the controller (SYN/ACK).



Kang and Choo EURASIP Journal onWireless Communications and Networking  (2016) 2016:25 Page 5 of 8

Fig. 2 ACK packet format

4. The controller intercepts the return packet from the
host and now changes the source IP (and possible
port) to match the controller IP and port and
forwards the packet back to the client.

5. The client receives the return packet, believing that it
came from the controller, and establishes a network
session (ACK)

6. The controller receives a job request packet from the
client and forwards the packet to the appropriate
host (decision-making)

4.2 Measurement results
We evaluate the performance of the proposed algorithm
on a cloud test-bed and compare it with three decentral-
ized algorithms (Ant Colony [20], WCAP [26], HFA [27]).
We fixed the threshold value of ART for 3min at every
measurement. If every system has reached that value, ICM
does not dispatch a job to the cloud hosts anymore. We
also fixed the dispatching trigger point of each host as
5. It means that if the number of waiting jobs in a sys-
tem is over 5, ICM starts forwarding remaining jobs to its
neighbor.
The results for each algorithm are shown in Figs. 4, 5,

and 6. The reported values were obtained by averaging the
measurements. We changed the job arrival rate λ from 0.1
to 0.9 andmeasured 30 times at each λ point. For instance,
if the λ is 0.5, all four clients send job requests with
0.5 requests per second in a probabilistic way. Figure 4

highlights the relative performance of the four algorithms
while changing the max. hop count parameter from 2 to 4.
In that measurement, we fixed the parameter of hello time
interval for 10 s. In each case, ICM shows outstanding per-
formance compared to other load balancing algorithms.
ICM has smooth curves while others are rapidly increased
for high traffic rates. One interesting thing is that max.
hop count = 3 shows the best performance. If the max.
hop count of Hello packet is larger than 3, it causes
degradation of system performance.
In the case of Fig. 5, we changed hello interval param-

eter from 10 to 30 s. and fixed max. hop count = 3.
While increasing the hello time interval, ICM’s perfor-
mance slowly decreased. Four algorithms show stable per-
formance when the traffic rate λ is lower than 0.5. But,
three algorithms reached system saturation when the traf-
fic rate is higher than 0.6 while ICM still works well until
λ reaches 0.7.
The four algorithms impose vastly different amounts of

overhead, as shown in Fig. 6. We changed only the hello
time interval parameter (10–30 s). As the results, WCAP
generate least control message overhead. The proposed
ICM mostly generate additional message at hello time
interval= 10, but when hello interval is larger than 20, the
amount of overhead is less than the Ant Colony algorithm.
Ant Colony uses the ants’ behavior to collect information
of cloud node. However, it could easily cause a network
overhead due to the large number of dispatched ants.

Fig. 3 System settings



Kang and Choo EURASIP Journal onWireless Communications and Networking  (2016) 2016:25 Page 6 of 8

Fig. 4Measured response time while changing max. hop count

5 Conclusions
In this paper, we have proposed a decentralized job
dispatching algorithm, designed to be suitable for the
large-scale cloud environment. The proposed ICM uses
additional Hello packets that observe and collect data.
Comparative experimental measurement is carried out to

Fig. 5Measured response time while changing Hello interval

compare the performance of ICM, Ant Colony, WCAP,
and HFA while increasing the job sending rate. After eval-
uation, average response time from ICM demonstrated



Kang and Choo EURASIP Journal onWireless Communications and Networking  (2016) 2016:25 Page 7 of 8

Fig. 6 Control message overhead while changing Hello interval

a higher performance than the other three algorithms.
To use these experimental results, we can estimate the
expected saturation point in cloud systems. However, in
our system experiment, the client just sent a fraction of the

computation job request to the destination. But in the real
environment [34–36], congestion can occur in any inter-
mediate node, often due to limitation in resources, when
data packets are being transmitted from the client to the
destination. Congestion will lead to high packet loss, long
delay, and a waste of resource utilization time. Therefore,
in our next work, we will use communication jobs such as
video streaming and VoIP rather than computation jobs.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was supported by Priority Research Centers Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology(2010-0020210) and the MSIP, Korea, under
the G-ITRC support program (IITP-2015-R6812-15- 0001) supervised by the IITP.

Received: 22 November 2015 Accepted: 12 January 2016

References
1. MR Rahimi, J Ren, CH Liu, AV Vasilakos, N Venkatasubramanian, Mobile

cloud computing: a survey, state of art and future directions. Mobile
Netw. Appl. 19(2), 133–143 (2014)

2. M Arshad, S Malik, An efficient algorithm for load balancing in cloud
computing. Futur. Gener. Comput. Syst (2014)

3. M Katyal, A Mishra, A comparative study of load balancing algorithms in
cloud computing environment, (2014). arXiv preprint arXiv:14036918

4. W Zhang, Y Wen, J Cai, DO Wu, Toward transcoding as a service in a
multimedia cloud: energy-efficient job-dispatching algorithm. IEEE Trans.
Veh. Technol. 63(5), 2002–2012 (2014)

5. K Dutta, RB Guin, S Chakrabarti, S Banerjee, U Biswas. A smart job
scheduling system for cloud computing service providers and users:
modeling and simulation, in Recent Advances in Information Technology
(RAIT), 2012 1st International Conference on, (IEEE, 2012), pp. 346–351

6. M Polverini, A Cianfrani, S Ren, AV Vasilakos, Thermal-aware scheduling of
batch jobs in geographically distributed data centers. IEEE Trans. Cloud
Comput. 2(1), 71–84 (2014)

7. L Wang, F Zhang, K Zheng, AV Vasilakos, S Ren, Z Liu. Energy-Efficient
Flow Scheduling and Routing with Hard Deadlines in Data Center
Networks, in Distributed Computing Systems (ICDCS), 2014 IEEE 34th
International Conference on, (IEEE, 2014), pp. 248–257

8. L Wang, F Zhang, J Arjona Aroca, AV Vasilakos, K Zheng, C Hou, D Li, Z Liu,
Greendcn: A general framework for achieving energy efficiency in data
center networks. IEEE J. Sel. Areas Commun. 32(1), 4–15 (2014)

9. K Chen, C Hu, X Zhang, K Zheng, Y Chen, AV Vasilakos, Survey on routing in
data centers: insights and future directions. IEEE Netw. 25(4), 6–10 (2011)

10. B Wang, Z Qi, R Ma, H Guan, AV Vasilakos, A survey on data center
networking for cloud computing. Comput. Netw. 91, 528–547 (2015)

11. L Wei, H Zhu, Z Cao, W Jia, AV Vasilakos. Seccloud: Bridging secure storage
and computation in cloud, in Distributed Computing SystemsWorkshops
(ICDCSW), 2010 IEEE 30th International Conference on, (IEEE, 2010), pp. 52–61

12. L Wei, H Zhu, Z Cao, X Dong, W Jia, Y Chen, AV Vasilakos, Security and
privacy for storage and computation in cloud computing. Inf. Sci. 258,
371–386 (2014)

13. E Gelenbe, R Lent, Energy–QOS trade-offs in mobile service selection.
Futur. Internet. 5(2), 128–139 (2013)

14. E Gelenbe, R Lent, M Douratsos. Choosing a local or remote cloud, in
Network Cloud Computing and Applications (NCCA), 2012 Second
Symposium on, (IEEE, 2012), pp. 25–30

15. Sustainable Internet and ICT for Sustainability, SustainIT 2012, 4-5
October, 2012, Pisa, Italy, Sponsored by the IFIP TC6 WG 6.3 Performance
of Communication Systems, IEEE (2012). http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=6375585. Access date: January 18, 2016

16. N Fernando, SW Loke, W Rahayu, Mobile cloud computing: a survey.
Futur. Gener. Comput. Syst. 29(1), 84–106 (2013)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6 375585
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6 375585


Kang and Choo EURASIP Journal onWireless Communications and Networking  (2016) 2016:25 Page 8 of 8

17. L Mashayekhy, MM Nejad, D Grosu, A Vasilakos, An onlinemechanism for
resource allocation and pricing in clouds, (2015)

18. F Xu, F Liu, H Jin, AV Vasilakos, Managing performance overhead of virtual
machines in cloud computing: a survey, state of the art, and future
directions. Proc. IEEE. 102(1), 11–31 (2014)

19. D Niyato, AV Vasilakos, Z Kun. Resource and revenue sharing with
coalition formation of cloud providers: game theoretic approach, in
Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, (IEEE Computer Society, 2011), pp. 215–224

20. K Nishant, P Sharma, V Krishna, C Gupta, KP Singh, N Nitin, R Rastogi. Load
balancing of nodes in cloud using ant colony optimization, in Computer
Modelling and Simulation (UKSim), 2012 UKSim 14th International
Conference on, (IEEE, 2012), pp. 3–8

21. Z Zhang, X Zhang. A load balancing mechanism based on ant colony and
complex network theory in open cloud computing federation, in
Industrial Mechatronics and Automation (ICIMA), 2010 2nd International
Conference on, vol. 2 (IEEE, 2010), pp. 240–243

22. L Kolb, A Thor, E Rahm. Load balancing for mapreduce-based entity
resolution, in Data Engineering (ICDE), 2012 IEEE 28th International
Conference on, (IEEE, 2012), pp. 618–629

23. J Al-Jaroodi, N Mohamed. DDFTP: dual-direction ftp, in Proceedings of the
2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, (IEEE Computer Society, 2011), pp. 504–513

24. AM Nakai, E Madeira, LE Buzato. Load balancing for internet distributed
services using limited redirection rates, in Dependable Computing (LADC),
2011 5th Latin-American Symposium on, (IEEE, 2011), pp. 156–165

25. SC Wang, KQ Yan, WP Liao, SS Wang. Towards a load balancing in a
three-level cloud computing network, in Computer Science and Information
Technology (ICCSIT), 2010 3rd IEEE International Conference on, vol. 1 (IEEE,
2010), pp. 108–113

26. H Mehta, P Kanungo, M Chandwani. Decentralized content aware load
balancing algorithm for distributed computing environments, in
Proceedings of the International Conference &Workshop on Emerging Trends
in Technology, (ACM, 2011), pp. 370–375

27. P Venkata Krishna, Honey bee behavior inspired load balancing of tasks in
cloud computing environments. Appl. Soft Comput. 13(5), 2292–2303
(2013)

28. RW Clay, NR Wild, DJ Bird, BR Dawson, M Johnston, R Patrick, A Sewell, A
cloud monitoring system for remote sites. Publ. Astron. Soc. Aust. 15(03),
332–335 (1998)

29. J Shao, H Wei, Q Wang, H Mei. A runtime model based monitoring
approach for cloud, in Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, (IEEE, 2010), pp. 313–320

30. E Gelenbe, R Lent. Trade-offs between energy and quality of service, in
Sustainable Internet and ICT for Sustainability (SustainIT), (IEEE, 2012),
pp. 1–5

31. E Gelenbe. Energy packet networks: smart electricity storage to meet
surges in demand, in Proceedings of the 5th International ICST Conference
on Simulation Tools and Techniques, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), (2012), pp. 1–7

32. E Gelenbe, C Morfopoulou, A framework for energy-aware routing in
packet networks. Comput. J. 54(6), 850–859 (2011)

33. A Berl, E Gelenbe, M Di Girolamo, G Giuliani, H De Meer, MQ Dang,
Pentikousis K, Energy-efficient cloud computing. Comput. J. 53(7),
1045–1051 (2010)

34. D Apostolopoulou, G Gross, Guler T, Optimized ftr portfolio construction
based on the identification of congested network elements. Power systems,
IEEE transactions on 28.4, (2013), pp. 4968–4978

35. X Lu, S Gao, E Ben-Elia, R Pothering, Travelers’ day-to-day route choice
behavior with real-time information in a congested risky network. Math.
Popul. Stud. 21(4), 205–219 (2014)

36. JY Joo, M Ilic. Distributed scheduling of demand resources in a congested
network, in PES General Meeting| Conference & Exposition, 2014 IEEE, (IEEE,
2014), pp. 1–5

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Related works
	Inter Cloud Manager
	Clustering
	Decision-making

	Experimental results
	System settings and job processing
	Measurement results

	Conclusions
	Competing interests
	Acknowledgements
	References



