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Abstract

(LTE) systems.

In this paper, a unified framework for adaptive inverse power control is developed. It is based on a modified filtered-x
least mean square (MFXLMS) algorithm that is proposed and analyzed. A practical version of the algorithm for closed
loop power control is also developed. The filtered-x least mean square (FXLMS) algorithm is widely used for inverse
control such as noise cancelation. This is the first paper to apply the algorithm for power control. We have modified
the conventional FXLMS algorithm by adding absolute value blocks since power control does not need phase
information. The modification makes the algorithm more robust and requires fewer bits to be transmitted in the
feedback link. The main contribution of the paper is that the proposed algorithm can be seen as generalized inverse
control to be used in power control research. It gives a unified framework for several existing algorithms, linking them
to the least mean square (LMS) literature. Numerical results are provided, comparing the performance of the proposed
algorithm to existing practical algorithms used, e.g., in Third Generation Partnership Project (3GPP) long-term evolution

Keywords: Power control, Feedback control systems, Adaptive signal processing

1 Introduction
Inverse control has been used for several applications
such as channel equalization [1, 2] automatic gain con-
trol (AGC) [3], noise and interference cancelation [4, 5],
and transmission power control [6, 7] which is the topic
of this paper. Due to stability problems, the least mean
square (LMS) algorithm is not directly suitable for active
control applications where the adaptive filter works as a
controller for a time-variant system. Instead, the filtered-
x least mean square (FxLMS) algorithm is a good choice
for that kind of applications [4]. It is essentially the LMS
algorithm with a few little changes so that algorithm can
remain stable. The FxXLMS algorithm is developed from
the LMS algorithm by inserting the model of the controlled
system between the input data signal and the adaptive algo-
rithm that updates the coefficients of adaptive filter. The
algorithm was introduced independently in [8, 9] and [10]
for adaptive control and noise cancelation.

Conventionally, power control research and LMS
algorithm research have been advanced in separate paths.
We propose and demonstrate a new use of the FxXLMS
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algorithm in this article, namely power control. This inte-
grates previously separated paths, providing unified frame-
work for adaptive inverse power control.

We described the FXLMS method initially for power
control in [11] and compared it by numerical simula-
tions to other practical algorithms in [11] and [12]. We
developed also a truncated version of the algorithm in
[13] to improve energy efficiency. Truncation means that
the transmission is interrupted and transmission power
is zero when the magnitude of the channel gain deterio-
rates under a certain cutoff value. Since transmission
power control is a new application for the algorithm,
new phenomena occur and modifications are needed.
Fading in the wireless channel has a wide dynamic
range, and changes are fast compared to conventional
control systems. In addition, wireless feedback channel
limits the number of bits used in control commands.
We have modified the conventional FXLMS algorithm by
adding absolute value blocks since power control does
not need phase information. The modification makes the
algorithm more robust and requires fewer bits to be
transmitted in the feedback link.

In this paper, we show with analysis that the proposed
algorithm converges exactly to the wanted solution in a
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noiseless channel. We restrict our investigation purely to
the closed loop part, focusing on the algorithm and thus
assuming ideal feedback. Simulations show that the algo-
rithm converges well also in a noisy channel. The main
contribution of this paper compared to our previous pa-
pers is that we create a unified framework for inverse
power control for cellular systems. The proposed algo-
rithm links the existing algorithms to LMS type of adap-
tive algorithms. The modified filtered-x least mean square
(MFxLMS) algorithm can be seen as a generalized adaptive
inverse control method and several practical algorithms as
special cases of it. In addition to theoretical analysis that is
made more thoroughly in this paper than in our previous
papers, we develop a practical quantized version of the al-
gorithm and compare its performance to state-of-the-art
algorithms. The proposed algorithm provides a fast adapt-
ing inverse power control solution that does not overshoot
the power level as much after a fade as the conventional
solution in [14]. Thus, it decreases interference to other
users in these cases. We also propose an efficient way to
implement the closed loop algorithm described in [15] as
an enhanced version of the algorithm presented in [14].

Furthermore, we present novel fast simulation models
for a fading channel and diversity. It was reported in
[16] that Jakes’ model [17] does not produce wide-sense
stationary signals. The authors of [16] proposed to im-
prove the model by randomizing the phase shifts of the
low-frequency oscillators. We have modified Jakes’ model
further by randomizing also the frequency shifts in the
model. Several simulation studies are performed with the
practical power control algorithms both in additive white
Gaussian noise (AWGN) and fading channels. The model
is applicable to a multiple-input multiple-output orthog-
onal frequency division multiplexing (MIMO-OFDM) sys-
tem with certain assumptions as discussed in Section 3.
MIMO ExLMS algorithm has been recently studied for vi-
bration control in [18].

The organization of the paper is as follows. Section 2
discusses related literature, and Section 3 presents the
system model. Performance metrics are introduced in
Section 4. The MFxLMS algorithm with the convergence
analysis is presented with several other adaptive inverse
power control schemes in Section 5. Achieved results
are provided in Section 6, and conclusions with recom-
mendations for further work are drawn in Section 7.

2 Related literature

Power control methods can in general be divided into
water filling and channel inversion [6]. Basically, the
difference between these two approaches is that the
water filling allocates more power to the better channel
instants whereas channel inversion aims at inverting the
channel power gain while maintaining the desired signal
strength at the receiver.
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Several adaptive inverse control methods have been
developed and studied in the literature for power con-
trol, e.g., [14, 15, 19-24]. The conventional 1-bit adap-
tive power control (CAPC-1) method [14, 19] employs
delta modulation, i.e., adjusts the previous transmission
power up or down by a fixed step. In this paper, the
acronym CAPC-x refers to conventional power control
using x bits in the power control command. Conven-
tional inverse power control approaches have been pro-
posed and used, e.g., for code division multiple access
(CDMA), Third Generation Partnership Project (3GPP)
long-term evolution (LTE), and TV white space trans-
mission. A clear aim of these inverse methods is energy
and interference reduction, to use only sufficient power to
meet the transmission rate requirements. For example,
CDMA power control employs both closed and open loop
methods. In the open loop method, the mobile station mea-
sures the average received total power by an automatic gain
control (AGC) circuit and adjusts its transmission power so
that it is inversely proportional to the received power [25].
Nonlinear control is used to allow fast response to the re-
duced channel attenuation with a maximum of 10 dB/ms
but slow response to increased attenuation. This is to avoid
additional interference to other users.

Required dynamic range with a limited feedback can
be achieved by nonlinear quantization of feedback signal-
ing [26] and variable step (VS) algorithms [27-30]. Non-
linear AGC control can be exponential or approximately
exponential [3]. A simple way to compress power control
commands is to operate the algorithm in decibel domain
[20]. Logarithmic quantization such as y-law and A-law
companding is used in speech codecs [26]. Companding
amplifies weak input signals and compresses strong sig-
nals to save the needed number of bits to be transmitted.
Companding is applied also for reducing peak-to-average
power ratio (PAPR) in OFDM signals [31].

Many variable step size LMS algorithms have been pro-
posed in order to improve the performance of the LMS al-
gorithm by using large step sizes in the early stages of the
adaptive process and small step sizes when the system ap-
proaches convergence [27-30]. The step size can be
adapted, e.g., based on the received signal power [11] or
the squared error signal [19, 20]. Optimization of the step
size has been studied in [32], where lag error of an adap-
tive system is also considered. This error is caused by the
attempt of an adaptive system to track variations of the
non-stationary input signal.

3 System model

The system model for adaptive transmission is illustrated
in Fig. 1. The input data x; are binary phase-shift keying
(BPSK) modulated and transmitted from the transmitter
to the receiver over a fading channel. The algorithm can
be used for any linear modulation scheme such as M-ary
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Fig. 1 System model for adaptive transmission
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PSK and M-ary quadrature amplitude modulation
(QAM) without any modifications. On the other hand,
the analysis for each modulation scheme must be con-
sidered separately. The analysis for quadrature phase-
shift keying (QPSK) is essentially the same since QPSK
can be viewed as two independent BPSK signals in a
frequency-nonselective channel. The received signal y;
can be given as.

Vi = xicPrchic + ny. (1)

The complex gain of the channel is s = aze% and
ny is the additive white Gaussian noise at time k. The
amplitude of the fading gain is a; and 6y is the phase
shift. The data are transmitted through the channel and
the instantaneous transmit power P is allocated based
on the channel gain estimate /, sent by the receiver.
LMS estimation of the channel gain is done as.

Moy = My + ek (2)

where 9 is the step size of the algorithm and ey is the estima-
tion error [1]. A typical value for the step size J is 0-0.99. Lar-
ger values lead to faster convergence with the cost of reduced
accuracy since noise averaging does not work so well [33].

We consider a slowly varying channel that can be
modeled using the Doppler power spectrum [16, 17].
The rate of the channel variation, i.e., the effect of mo-
bility, can be characterized by the Doppler frequency fy.
We are using a flat Doppler power spectrum that corre-
sponds to an urban environment where the transmitter
is set above rooftop level [34].

3.1 Sum-of-sinusoids fading channel

To obtain a flat Doppler power spectrum, the time-
variant channel gain of a channel with index / is repre-
sented by the sum of complex exponentials as.

1 &
(k) = ﬁz &2 iik+di) (3)
i=1

where N is the number of subpaths with the same
delay, f;; is the Doppler shift of the ith subpath, ;; is the
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random phase shift of the ith subpath uniformly distrib-
uted in the range [0, 21t], and k is the time. The ampli-
tudes of the subpaths in Eq. (3) are identical due to the
flat spectrum. The average energy gain of the channel is
normalized to unity [35]. The model is straightforward
to generalize to multiple delays.

If the Doppler shifts of the complex exponentials are
equally spaced in the interval [-fy f3], the channel gain
(Eq. (3)) becomes periodic in time. Sampling in time do-
main corresponds to periodicity in frequency domain
and vice versa [36]. Periodicity can be removed if the
shifts are properly chosen. The Doppler spread is divided
into N equal size frequency bins. Within these bins, the
frequencies f;; differ a random uniformly distributed
amount from the equal space solution. Thus, we obtain
the whole Doppler spread to use in every simulation.
The power spectrum is made symmetric with respect to
zero frequency, which makes the autocorrelation func-
tion of the channel real. This selection also makes simu-
lations faster. The random phases ¢;; are not symmetric
with respect to the zero frequency.

3.2 Diversity channel
A time-variant frequency selective channel model can be
represented with a tapped delay line as.

BUK) =1 (K)o (r-m) ()
=1

where L is the number of tap weights and 7; is the
delay of /th tap generated using Eq. (3). Now, we have a
flat impulse response instead of usual exponentially de-
creasing model. However, from power control point of
view, this does not affect since the optimal demodulator
for this signal is a coherent demodulator that collects
the signal energy from all the received signal paths
within the delay span 0 to 7; [2]. In a diversity system,
the transmitter power control algorithm should control
the power of the diversity combiner output in the re-
ceiver. There is no loss in performance in dividing the
total transmitted signal energy differently among the L
channels, and thus, the model does not change the com-
parison between the selected power control algorithms.
Actually, the time-variant channel gain of the diversity
channel can be given as.

1< 5
zZ|hl(k)|
=1

where /,(k) is the channel gain of the I/th diversity
branch, generated using Eq. (3), and L is the number of
diversity branches. Equation (5) corresponds to the ideal
maximal-ratio combining. The channel can thus repre-
sent also a frequency selective channel. From the

(5)
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subcarrier point of view, frequency selective channel
looks frequency-nonselective in an OFDM system [2].
We assume that no intersymbol interference (ISI) or
interpulse interference (IPI) is present since we use com-
pressed pulses [2]. In general, a MIMO system with M,
transmitter antennas and N, receiver antennas can be
used as a diversity system having M, x N, independent
diversity branches [37]. With OFDM system, those
branches are made frequency-nonselective, and finally,
by the use of orthogonal codes, the branches can be sep-
arated from each other. The channel must be slowly fad-
ing compared to the OFDM symbol rate so that
intercarrier interference is avoided. The fading of the ad-
jacent subcarriers is not uncorrelated, but this is typical
in all OFDM systems, and it is in practice handled with
frequency domain interleaving. Thus, with these as-
sumptions, our system model represents also a MIMO-
OFDM system.

4 Performance metrics

Suitable performance metrics are needed to fairly
compare the performance of the adaptive algorithms.
One of the most important ones to consider is the
signal-to-noise ratio (SNR) concept. The average
transmitted and the average received energies are
usually normalized by the receiver noise spectral
density Ny leading to the average transmitted SNR
per symbol [35].

Vo = Eex/No (6)
and the average received SNR per symbol [35]
Vix = Exx/No. (7)

The parameter E is the average transmitted energy
per symbol, and E,, is the average received energy per
symbol. Transmitted energy is a basic system resource.
In a mobile terminal, it is taken from the battery of the
transmitter and is therefore limited. Transmitted energy
or equivalently transmitted SNR should be used as a
performance metric in order to obtain fair comparisons
between different adaptive transmission systems. In
adaptive transmission, the transmitted signal is a func-
tion of the energy gain of the channel. The use of the re-
ceived SNR as a performance criterion in adaptive
transmission system studies can lead to misleading re-
sults as was shown in [35].

Learning curve, i.e., plotting the mean square error
(MSE) against the number of iterations, can be used to
measure the statistical performance of adaptive algo-
rithms [1, 2]. The MSE J(k) can be approximated as.
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13,
J(k) = ggm (8)

where ¢ is the error signal measured as a difference
between the output of the adaptive algorithm and the
desired signal. Parameter # defines the number of sam-
ples used for averaging. Usually, MSE is compared to
signal power, in this case transmission power.

5 Adaptive power control methods

5.1 Theoretical inverse control methods

If the truncated channel inversion (TCI) is used, the
transmitted energy is [38].

Ex(k) = Ex(00/yn(k)) ©)

for yn(k) = yo and zero otherwise where oy is a con-
stant selected so that the average transmitted energy is
E. The quality of the channel is defined as yy(k) =
Etx|H(k)|2/N0, Yo» Yo is a cutoff value, which is found by
numerically maximizing (4.22) in [38], and |H(k)|* is the
instantaneous energy gain of the channel. The cutoff
value is yp =0 for full channel inversion. Channel inver-
sion aims at maintaining the desired signal strength at
the receiver by inverting the channel power gain based
on the channel estimates.

5.2 Adaptive FxLMS algorithm

The power control structure based on the MFxLMS al-
gorithm is introduced in Fig. 2. It approximates the
channel inversion. In the following, we will present both
original and modified versions of the algorithm. The
ExLMS algorithm updates the coefficient c; of a one-tap
filter as.

Ck = Ck-1 + Wk (10)

where wy = ,ux’kek is the correction term, p is the
adaptation step size of the algorithm that regulates the
speed and stability of adaptation, and & is the error sig-
nal to be minimized. The ¢ is the instantaneous trans-
mission power at a time slot k. The filtered input signal
for the FxXLMS algorithm is x/k = (95,(1/1}()*, where x* is
the complex conjugate version of x, x, is the estimated
input signal, and /, is the estimated instantaneous chan-
nel gain. The filtered input signal is x, = |x. /1| for
the MFxLMS algorithm, and the parameter n; is the
additive white Gaussian noise. The channel can be
modeled using Egs. (3)—(5).

We have modified the conventional FXLMS structure
by adding the absolute value blocks to the algorithm and
having a wireless channel as a system to be controlled
and inverted. In addition, a large difference in our system
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Fig. 2 FxLMS algorithm-based power control, modified version

to conventional control systems comes with a separate re-
ceiver and transmitter. The main reason for the addition of
absolute value blocks is that we are adjusting power levels
and thus interested only in amplitude values, similar to
AGC circuits [3]. Phases are not important from the power
control point of view, and in this way, we can reduce control
information to be carried. This also makes the system more
robust since phases can change fast during deep fades and
thus cause problems to the adaptive algorithm [39, 40].

The model is discretized using a matched filter [2], as-
suming slow changes compared to the symbol rate. Thus,
we can use one sample of a symbol in the system model.
We can reduce the complexity of the transmitter by doing
the main part of the calculations at the receiver. This re-
duces also information in the feedback channel since only
the correction term wy is sent to the transmitter. The fil-
tered input signal x;( affects the operation of the algorithm.
Thus, the control structure is decision directed (DD) [2].
Error propagation is known in DD approaches and remedy
strategies have been developed [41, 42]. It was proposed in
[42] that pilot on request training (PRQT) is used to miti-
gate the error propagation. The pilot is requested when
error propagation is detected in the system. We assume
our system to operate with the PRQT principle. When the
error probability is very small, we can assume x, to be x;.

5.2.1 Convergence analysis for the MFxLMS power control
algorithm

The choice of initial conditions for the FXLMS algorithm
is not critical [4]. The algorithm is stable if y is small

enough, and transients die out just as with the conven-
tional LMS algorithm. A primary concern with the
MEFXLMS algorithm is its convergence to the optimal so-
lution where E[s,%] is minimized. Since absolute value
blocks make the analysis of the algorithm very compli-
cated in a noisy channel, we will first analyze the con-
ventional FxXLMS algorithm that can also be used in
power control. A general analysis for the FXLMS algo-
rithm can be found in [43].

(a) Coherent case

Let us assume a time-invariant channel with perfect
channel estimation, i.e., h}< = h. The error signal is now

e = x—(her_1xx + ny). (11)
The control command (Eq. (10)) can be given as

¢k = ceo1 + (wch) " per, (12)
and placing error signal (Egs. (11) to (12)) yields

cx = it (L-p|h? |xil?) + ph” || —ph” . (13)
Taking expected value of both sides leads to

Elee] = (1-ulh*R)Elcicr] + ' R (14)

where R = E[|x;|*]. The white noise n; is assumed to
be uncorrelated with the input x;. In addition, we as-
sume that the input x; is independent of the weight ¢, as
in the analysis of the LMS algorithm in [4]. The first part
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of the function in the right-hand side will clearly form a
geometric series that will converge only if the geometric
ratio has a magnitude of less than unity,

|1-p|h*R| < 1. (15)
Therefore, we can define
. k URKH"
Elc..] = lim (1-u|h|*R) ¢g + —F————
[ ] k;;oo( lul | ) 0 1—(1—ﬂ|h|2R)
h* h* 1

Since the first part of the sum in Eq. (16) will ap-
proach zero, the algorithm converges exactly to the in-
verse of the channel gain. We can see from Eq. (15) that
in order to keep the algorithm stable, the step size for
updating the algorithm coefficients should be

2
0<yu<—s;

T (17)

The optimal step size for the FXLMS algorithm lies in
the middle of stability interval [43, 44]. The convergence
will be fastest with this selection. Thus, the optimal step
size is now

1

T (18)

luopt =
With this selection, the fixed step FXLMS algorithm is
changed to the normalized version of it.

(b)Non-coherent case

From the power control point of view, we would only
need the inverse of the absolute value of the channel gain
instead of the result of Eq. (16) since we are interested in
inverting the power level to maintain the received signal
power at a constant level. Thus, let us now consider the
MEXLMS algorithm with absolute value blocks in a time-
invariant, noiseless channel, assuming perfect channel es-
timation, i.e., /1, = h. The error signal is given as

&k — |xk|—|hck_1xk|. (19)
Thus, Eq. (10) becomes
ck = 1 + plh =l e ] (20)

In general, we should consider two separate cases: ¢; >
0 and ¢, < 0. However, there is no need to use negative
values in power control since the solution we want to
achieve is to maintain certain SNR at the receiver. The
case ¢, < 0 leads to the converged solution that is a nega-
tive version of the solution for the case of ¢;>0. When
¢, >0, |cx| = cx- Now,
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cx = (L=ploci*B[*) ex-r + ploce . (21)

Convergence conditions for the MFxLMS algorithm
can be found from this version quite straightforwardly,
leading to the same solution as is shown in Eq. (15).
Therefore, we can write
cx > 0.

Coo = (22)

1
||’

The algorithm converges exactly to the inverse of the
absolute value of the channel gain. We can see from the
results above that in order to keep the algorithm stable,
the step size for updating the algorithm coefficients
should be exactly in the same interval as the one shown
in Eq. (17). Thus, the optimal step size for the MFXLMS
algorithm in a noiseless channel is given in Eq. (18).

Convergence of the MFXLMS algorithm when noise is
present in the system becomes mathematically intract-
able due to the absolute value blocks. Now, Eq. (10) can
be rewritten as

Ck = Ck1 + /,t|h||xk\2—/,t|hxk||hxkck_1 + ngl. (23)

The algorithm cannot be analyzed straightforwardly
due to absolute value of the term that includes noise.
Simulations are also used instead of analysis in reference
state-of-the art algorithm developments due to mathem-
atical intractability [14, 15, 19-21]. Based on the simula-
tions, the MFxLMS algorithm behaves and converges
almost identically with the algorithm without absolute
blocks in a fading channel when the transmitted SNR is
high enough. Actually, the MFXLMS algorithm is more
robust since fast phase changes do not affect its per-
formance. Nonlinearity causes threshold phenomenon
for the modified algorithm in low SNR regime that is al-
ways a problem in noncoherent systems using some
combining or averaging.

5.2.2 Time-variant channel
Usually, the adaptation step size of the FXLMS algorithm
is not time variant. The algorithm with a fixed adapta-
tion step size corresponds to a first-order system. It can-
not track the fastest changes in the time-variant channel
without a lag error [32] that can be quite large. A better
performance is achieved by optimizing the adaptation
step size with the instantaneous power of the input sig-
nal. It means that the FxXLMS algorithm with a fixed step
size is changed to the normalized version of it. The nor-
malized version of the FXLMS algorithm corresponds to
the filtered-x recursive least squares (FxRLS) algorithm
when g = 1-1 where 1 is the forgetting factor which
gives exponentially less weight to older samples.

In a slowly fading channel, /7 can be assumed to be con-
stant over the memory [4] of the MFxLMS algorithm.
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Thus, the stability condition to the structure when noise is
ignored and the channel state is known is the same as pre-
sented in Eq. (17) when / is replaced by /;. The optimal
step size can be found for each different /; in Eq. (18) by
replacing % by hy. Therefore, the optimal adaptation step
size should be time variant. When the channel gain is esti-
mated in Eq. (18), the system becomes unstable if this step
size is used due to errors in the estimate [45]. To stabilize
the control, the step size is given by.

a

2 2%
RIE | +b (24)

Hs

where b is a small real number that prevents the adap-
tation step size to grow uncontrollably when the esti-
mated received power is close to zero. Parameters a and
b are dependent, e.g., on SNR and L, but the values need
to be found experimentally to optimize the trade-off be-
tween lag error and noise averaging for different channel
dynamics. Default values for these parameters can be
given as @ = 1/v/L and b = 0.2/y,, where 7, is the re-
ceived SNR defined in Eq. (7). Smaller a means slower
convergence, better noise averaging, and a larger lag
error while the parameter b has an opposite effect.

5.2.3 Quantized MFxLMS power control
In the following sections, only the MFXLMS algorithm is
considered. In practice, the power control command has
to be quantized while obtaining a decent performance.
In the case of the MFXLMS algorithm, the signal w; has
to be fed back to the transmitter as shown in Fig. 2. It is
good to quantize frequently occurring small values of
the signal in more detail and then use coarser steps for
the less frequent large signal levels to preserve needed
information [26]. The signal wy is first compressed, then
quantized uniformly, and sent to the channel. The re-
ceived signal is expanded to get close to the original ver-
sion of the power control command.

The p-law compression is defined for real input
signal wy as
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Vln<1+ptq|wk|/V)
ln(l +ﬂq)

where V is the peak magnitude of the input signal.
This is also a peak value of the output. A typical value
for the compression parameter yq is between 50 and
300. In our case, we have quantized the signal in the
range [-1, 1] to be able to effectively combat the deep
fades even though the average power of the signal vy is
roughly 0.1. The maximum value is close to unity during
the deepest fades. We have not scaled the signal before
quantization. If the signal is scaled up, the clipping is in-
creased while the quantization noise is reduced. Scaling
down reduces clipping but increases noise. Received
quantized signal g is expanded using

vk = F(wy) = sgn(wy) (25)

V';k = Fﬁl(qk)

= sgn(qy) (;:)

x (e‘qk|‘"(1+ﬂq)/v-1), 0<q,|<1. (26)

The proposed practical version of our MFXLMS algo-
rithm allows fair comparison with other practical algo-
rithms presented in the literature.

5.3 Conventional adaptive power control

Typically, the time interval between power control com-
mands in CDMA systems is around 1 ms [14]. The
method is shown in Fig. 3. The base station measures
the average received power over m symbols and com-
pares it to a reference signal to interference plus noise
(SINR) level y,.r. As a result of a comparison, the base
station tells the mobile station to adjust its transmission
power upwards when the error signal J; is positive or
downwards with negative error by a control step size AP.
Practical CAPC-1 method [14, 19] uses 1 dB steps. The
power control algorithm can be written as.

=~~~ 7=777
| Channel

Transmitter

Feedback
channel

0=
—
-

T
+
—>

€

Fig. 3 Conventional power control structure




Hoyhtya and Ma@mmela EURASIP Journal on Wireless Communications and Networking (2016) 2016:41

Py = Py_1 + CxAP  [dB] (27)

where the power control command is

41, &>0
Ck{ -1, <0 "

The weakness of this fixed-step power control method is
that it is too slow to track changes in a fading channel.

(28)

5.4 Variable step adjustment power control

Variable step power control methods have been pro-
posed to overcome the weakness of the fixed-step solu-
tion. The basic idea is that when the power of received
signal is far from the desired, the control step is in-
creased to reach the desired level faster. A recently pro-
posed 2-bit version of the CAPC (CAPC-2) method is
described in [15] where power control command Ci
values are Cy={-4, -1, 1, 4} (dB). In the mentioned
document [15], only step sizes are given. No rules how
to use them in practice are included. Based on the simu-
lation studies, we have conducted the following rule that
was found to achieve a good performance:

4, when §; < -5«
_ la —5k< 5]( <0
Cr = -1, 0< &) < 5K (29)
-4, O > 5k
where x = 0.54P. An asymmetric 3-bit version of

the conventional adaptive power control (CAPC-3) pro-
posed in [20] is

, when §; < -5«
, -5x< & < -3k
, -3k & < -k

, -k £ & <K
-1, K £ 0p <3k
-2 Ox < 3K

O = N W

o (30)

Variable step algorithms can be implemented with the
structure depicted in Fig. 3. The only difference to the
1-bit CAPC method is in the quantization, i.e., more bits
are used for power control commands in CAPC-2 and
CAPC-3.

5.5 Comparison between the FXLMS and conventional
algorithms

The idea to use the FXLMS algorithm started from the
observation that analogy can be seen between the con-
trol structure in Fig. 3 and the LMS algorithm. Actually,
the conventional algorithms can be seen as a special case
of the FXLMS algorithm. The following modifications
are needed from the MFXLMS structure in Fig. 2 to the
CAPC structure in Fig. 3: (1) First, the CAPC structure
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uses square-law detection instead of envelope detection
used in the MFXLMS structure. These have shown to
provide comparable performance but the former is usu-
ally easier to analyze [46] while the latter allows a larger
dynamic range [47]. (2) The CAPC method uses aver-
aging to remove noise. The LMS algorithms are in
principle based on exponential averaging [1]. An add-
itional averaging block could be used as well, but it does
not provide additional performance gain for the algo-
rithm [48]. It is better to use instantaneous gradient esti-
mates as is used in our power control structure. (3)
Companding, i.e., going first to decibel domain (com-
pressing) and then back to linear domain (expanding), is
used in the CAPC algorithm. Compressing is used to
cover the large dynamic range in a fading channel. In
the practical MFXLMS structure, companding focuses
on the task of nonlinear quantization, i.e., to reduce the
number of bits in the power control command. (4) One-
bit quantization is used in the CAPC-1 method to sim-
plify feedback signaling. The MFXLMS method is using
quantization as in Egs. (25)—(26). Power control com-
mand needs to be more than 1 bit for variable step
power control. That is true also for the variable step al-
gorithms that are based on the structure shown in Fig. 3.
(5) The CAPC-1 method uses a fixed scaling factor AP
whereas in the MFxLMS method, the step size scales
based on the channel state. The similarities between the
CAPC methods and the LMS method are so clear that
the MFxLMS method can be seen as a generalization of
inverse power control approaches.

6 Results

6.1 Power control over an AWGN channel

We performed simulations for FXLMS variants with a
fixed channel gain /2 =1. The error signal & used in the
MSE calculations is given in Eq. (11) with ¢y =0, leading
to g9 =1 that is set as the first value to Eq. (8). The par-
ameter # used in the simulations was 7= 6, increasing
from 7 =1 in the beginning until enough samples for 7
= 6 were achieved. Ensemble averaging over 100 inde-
pendent trials was performed to obtain the results for the
FxLMS and the MFXLMS algorithms. We used BPSK sig-
nal in transmission and thus the choice of = 1 corre-
sponds to the normalized algorithm using the optimum
step size defined in Eq. (18). As expected, the larger the
step size is the higher the converged mean squared error
is. The performance of the algorithms is almost identical
in the AWGN channel.

Learning curves for the practical algorithms are shown
in Fig. 4 together with the normalized MFxLMS algo-
rithm and the normalized FxLMS algorithm, using
20 dB received SNR. Numbers of iterations to the con-
vergence are 28, 10, 5, and 4 for the CAPC-1, CAPC-3,
CAPC-2, and MFxLMS algorithms, respectively. Used
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Number of iterations

Fig. 4 Learning curves for studied algorithms in an AWGN channel

error signal in simulations for CAPC-x algorithms was
ex=xx— (Pr_1hi+ ny) to obtain a fair comparison with
the MFXLMS results. The step sizes for CAPC-x algo-
rithms are defined in Eqgs. (28)—(30) and the parameter
Yret= 20 dB. For the criterion for the convergence, we
used 10 % misadjustment [4].

The CAPC-1 is the slowest one due to fixed step size
and the variable step size algorithms clearly outperform
it. The CAPC-2 is faster than CAPC-3 since it uses a lar-
ger maximum step size for fast adaptation. CAPC-1 and
CAPC-2 algorithms adapt the power up and down all
the time. Other variable step algorithms can set the
power to the wanted level and keep it there.

6.2 Power control over a fading channel with the non-
quantized MFxLMS algorithm

Both conventional and modified versions of the FxXLMS al-
gorithm operate well in the AWGN channel as expected.
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However, robustness of the FXLMS is not as good as the
robustness of the MFxLMS algorithm when we look at
the performance in the fading channel modeled with Eq.
(3). Two different channel realizations are considered in
Fig. 5. It shows the received SNR levels for the simulations
over a fading channel modeled using Eq. (3) with value of
N =12 and f3 =10 Hz. The LMS channel estimation with
parameter value of 9=0.1 is used in the FXLMS simula-
tions. In addition, the values of 2 =1 and b =0.2/y,,,
where y,, is the received SNR, were chosen for Eq. (24).
The larger SNR is used, the more stable the control is and
the smaller correction term is needed. In all the shown
simulations, the power control update rate was 1000 Hz.

In the first row in Fig. 5, the channel variations both in
phases and amplitudes are not too fast for the algorithms
to make inversion accurately. The performance of the
conventional and modified FXLMS algorithms is almost
identical. However, in the second row, the faster phase
variations during deep fades [39] clearly cause problems
to the conventional FXLMS algorithm.

The MFxLMS algorithm performs robustly, and the
received SNR variation remains at an acceptable level
since it follows the amplitude variations rather well also
during the deep fades. Fig. 6 presents performance of
the FXLMS and the MFxLMS algorithms in a fading
channel in low and medium SNR regimes when the
channel realization of row 1 of the Fig. 5 is used. When
the transmitted SNR is above 8 dB, the performance of
the algorithms measured with standard deviation of re-
ceived SNR is almost identical. The more robust
MEXLMS obtains better performance than the conven-
tional FXLMS below 8 dB due to problems caused by
rapid phase variations to the latter. However, the per-
formance of the MFXLMS collapses when the transmit-
ted SNR drops below 5 dB while the FXLMS operates
also below this limit. The reason for the collapse is the

R Channel gain — FXLMS = Modified FXLMS
@ S 25 S 25
c 0 % 20 z ZOW
S Z @ 15
< 20 o 15 B
[ 9] 9]
c =10 =10
S -40 3 3
<
5] o 5 o 5
0 020406081 X 0 020406081 & 0 020406081
Time [s] _ Time [s] . Time [s]
5y $.25 S.25
=z 0 o x
= % 20 Z 20 mirpmmane
< 20 o 15 5 15
< [} [}
£ 210 210
8 40 8 8
S o 5 Q 5
0 020406081 x 0 020406081 @ 0 020406081
Time [s] Time [s] Time [s]
Fig. 5 Performance of the FXLMS algorithm in two different fading channels
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inclusion of noise term in Eq. (23) inside the last abso-
lute value term. When the noise term is strong enough
compared to the signal power, the algorithm cannot con-
verge anymore. Above this performance limit, the
MEXLMS is more robust and provides either equal or
better performance compared to the conventional
FxLMS. Thus, in all the remaining results, only the
MEFXLMS algorithm is considered in comparison with
the CAPC-x algorithms.

Results with the channel model shown in the row two
of the Fig. 5 are presented in Fig. 7. With the CAPC-1
method, the received SNR is too low during a deep fade.
Then, the transmission power is adjusted upwards, and
because of lag error, the power is too high for a while.
The variable step methods perform better. The CAPC-3
and MFXxLMS methods can keep the received signal
close to the desired value. The CAPC-2 and CAPC-1
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methods are changing the power by 1 dB up and down
even when they are close to the target level.

Variable step size methods have larger step sizes which
make adaptation faster. This can be seen in the rise times
in Table 1. The rise time is the time required for the re-
ceived signal to change from the initial value, when trans-
mitted signal is 0 dB, to the required 20 dB value in a
time-variant channel (Eq. (3)) using the same parameters
as for generating the Fig. 5. The results are average values
over several simulations. The MFxLMS algorithm sets the
transmission power to the required level fast. In addition,
the system is able to compensate deep fades without suf-
fering lag error. That is the reason for the better perform-
ance for adaptive step size algorithms.

It is impossible to obtain identical received and trans-
mitted SNRs since different algorithms use different
amount of transmitted energy for communication due to
their different adjustment methods. However, the differ-
ence is very small between CAPC-2, CAPC-3, and
MFXLMS methods as shown in Table 1. Thus, the per-
formance comparison between these methods is fair. The
performance of the CAPC-1 method is decreased since it
is spending more time during deep fades with a lower
power and consequently the outage time is also higher.
Standard deviation of the received SNR, averaged in the
decibel domain, shows clearly the gain of using adaptive
step sizes in control with the studied control command
rate. Standard deviation is measured after the rise time to
exclude large differences between the required SNR and
the actual signal level at that time. The MFxLMS algo-
rithm achieves the best performance among the compared
algorithms.

The bit error rate (BER) performance of the studied
algorithms in the channel (Eq. (5)) when L =1 is consid-
ered in Fig. 8. The same metric was applied in [49] to
compare fixed step and adaptive step power control.
Simulations are carried out to establish the effect of
power control step size (variable versus fixed) on the
average BER performance. BPSK modulation is used in
the simulations and its BER performance in AWGN
channel plotted as a reference. The performance of the
full channel inversion (FCI), referring to Eq. (9) with y, =
0, and the optimal TCI in a known channel are plotted as
references to show the effect of adaptation in the BER per-
formance. The difference of roughly 5 dB between the FCI

Table 1 Performance of the practical algorithms

Rise Standard Average transmitted
time (ms) deviation (dB) SNR (dB)
CAPC-1 19 1.186 2546
CAPC-2 7 0.798 26.25
CAPC-3 9 0613 26.31
MFXLMS 4 0.573 26.18
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and AWGN curves is caused by fading. The difference
can be reduced with diversity. In the low SNR regime, the
noise error is the dominating source of errors and the
variable step algorithms are not performing better than
the CAPC-1 method that was studied with two different
step sizes, AP =0.5 dB and AP =1 dB. The crossing in the
BER curves between the MFxLMS and CAPC-1 methods
around 12 dB SNR is due to effect of noise. When the
SNR is higher, the standard deviation of the MFXLMS and
the corresponding BER values are smaller. Variable step
methods are using larger step sizes to correct the errors
caused by the noise and that makes their performance
worse in the low SNR regime. Smaller step sizes are better
for noise averaging.

Also, the theoretical FCI method is worse than the
CAPC-1 method in the low SNR regime since it allo-
cates more power to the deep fades whereas the CAPC-
1 method cannot invert the channel totally, making it
actually a truncated algorithm. When the SNR is in-
creasing, the variable step methods can follow better the
channel fading. The CAPC-1 method is too slow to in-
vert the channel during fast changes especially with the
smaller step size and the lag error makes the perform-
ance of it worse when SNR is increasing. The FxLMS
method outperforms the other algorithms in the high
SNR regime when the fastest converging step size de-
fined in Eq. (24) is used, i.e., with a = 1. However, during
low SNR values, the smaller step size is better due to
better noise averaging properties. The FCI performance
approaches the TCI curve when SNR increases since the
probability of outage of the TCI method is reducing.

6.3 Power control over a diversity channel with the
quantized MFxLMS algorithm

The previous results are provided for the non-quantized
MEFxLMS algorithm to see its capabilities. Quantized
version is needed to verify the practicality of the algo-
rithm. The experiments were made over the diversity
channel since that would be an obvious feature to be
used in practical systems. The diversity channel with L =
2 branches for simulation studies was generated using Eq.
(5) and parameter values N =12 and f3 =10 Hz. In order
to see the effect of companding in the results, we made
several simulation runs where we used either companding
or pure quantization the feedback channel. The standard
deviation of the received SNR of the algorithm with
quantization was significantly lower with companding.
Thus, we use companding in the following simulations. In
addition to the proposed use of sending the correction
term (Eq. (10)) in the feedback channel, we made experi-
ments by sending the signal ¢;_; in the feedback channel
to minimize calculations at the transmitter. However, the
signal level variation using the correction term w; is smaller
in the diversity channel, providing better performance with
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the quantization. Simulation results using the quantized
correction term are shown in Figs. 9 and 10.

The bit error rate performances of the studied algo-
rithms are shown in Fig. 9 as a function of transmitted
SNR. The performance of the full channel inversion in a
known channel is plotted as a reference. It is actually a
better reference in a diversity channel than in a channel
without diversity where truncation gives a clear advan-
tage. Full channel inversion without cutoff is the optimal
inversion method in a diversity channel [12]. Control
rate of the adaptive algorithms is 1000 Hz. Control step
size of the MFXLMS algorithm in a diversity channel
was experimentally found to provide good tradeoff be-
tween lag error and noise averaging when the parame-
ters in Eq. (24) were a = 1/v/L and b= 0.2/y,, . With
higher SNRs, the inversion is more accurate due to re-
ducing effect of the noise error. All the tested algorithms
work rather well in a diversity channel. The MFXLMS al-
gorithm needs less SNR than other adaptive algorithms
to achieve BER <10™* due to accuracy of the adaptation.
Very close to the performance of the non-quantized
MEXLMS algorithm is achieved with a 4-bit power con-
trol command. The performance of the MFxLMS algo-
rithm approaches the ideal inversion when the channel
is changing more slowly. The performance differences
between the algorithms in the high SNR regime can be well
understood when we look at the accuracy of the algorithms
measured with the standard deviation of received SNRs.

It can be seen from the results shown in Fig. 10 that the
MEXLMS control achieves comparable performance to
the best earlier algorithm studied, i.e., the CAPC-3
method. Accuracy of the CAPC-1 and CAPC-2 algorithms
is restricted due to the minimum step size of 1 dB. The
same crossing as detected in the BER curves between the
MEXLMS and CAPC-1 methods around 12 dB SNR is

—e—CAPC-1,1dB
—e—CAPC-2
——CAPC-3

------- MFXLMS, 3-bit
--------- MFXLMS, 4-bit
——MFxLMS, no quant

Standard deviation of received SNR (dB)
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Fig. 10 Performance comparison in a diversity channel (L =2)
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seen also in Fig. 10. When the SNR is higher, the standard
deviation of the MFxLMS and the corresponding BER
values are smaller. In a diversity channel, the additional
larger step size of the CAPC-2 decreases the accuracy of
the control compared to the simple CAPC-1 control since
the fading can be controlled with smaller steps. Variable
step size algorithms are still outperforming fixed step al-
gorithms in a diversity channel in the high SNR regime.
However, the gain is achieved by using a higher feedback
channel rate.

In order to see the effect of control rate to the accur-
acy of the control, simulations were performed with two
different control rates, 1000 and 500 Hz. Results are
shown in Fig. 11. Main comparison is made between the
most accurate variable step algorithms, the MFxLMS
and the CAPC-3 algorithm. CAPC-1 results with
1000 Hz control rate using 1 dB step size are provided
as a reference curve. The results show that reduction in
the control rate still keeps the accuracy of variable step
algorithms better than with a 1-bit algorithm with
1000 Hz rate. The number of control bits needed to
send over the feedback channel is 1500 and 2000 bits/s
for variable step CAPC and MFxLMS algorithms, respect-
ively. CAPC-1 with a higher control rate requires only
1000 bits/s, i.e., with a proper step size selection it gives ra-
ther good performance with a low feedback control rate.
The rate depends on the fading rate of the channel and can
be decreased, e.g., when higher order diversity is applied.

7 Conclusions

We have developed the MFXLMS algorithm for inverse
power control. We analyzed the algorithm in a noiseless
channel, and simulations show that it converges well also
in a noisy channel. The proposed algorithm provides a
unified framework for many existing practical algorithms

1.4 T T T T
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1.3F
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Standard deviation of received SNR (dB)

12 14 16 18 20 22
Average transmitted SNR (dB)

Fig. 11 Performance comparison in a diversity channel (L = 2) with
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and can be seen as a generalization of inverse power
control algorithms. We compared the proposed method
to the well-known CAPC-1 method and its variable step
variants. Simulations in fading channels with diversity
show that the best conventional algorithms give com-
parable performance to the theory-based MFxLMS so-
lution. However, the most important contribution is the
linking of the LMS-based theory and conventional
power control algorithms that have traditionally been
developed in separate paths.

An interesting future topic would be to study the
optimization of the step size (Eq. (24)) of the MFXLMS
algorithm in a time-variant channel. Some related work
has been done for direct estimation and decision feed-
back equalization in [32], but more investigation is
needed to find solutions for inverse control. Another in-
teresting problem to study would be the development of
the algorithm to handle vector type signals. The algo-
rithm could be able to take into account the correlation
between subcarriers in the OFDM system.
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