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Abstract

Cloud classification of ground-based images is a challenging task due to extreme variations under different
atmospheric conditions. With the development of wireless sensor networks (WSN), it provides the possibility to
understand and classify clouds more accurately. Recent research has focused on extracting discriminative cloud
image features in WSN, which plays a crucial role in achieving competitive classification performance. In this paper, a
novel feature extraction algorithm by learning group patterns in WSN is proposed for ground-based cloud
classification. The proposed descriptors take texture resolution variations into account by cascading the salient local
binary pattern (SLBP) information of hierarchical spatial pyramids. Through learning group patterns, we can obtain
more useful information for cloud representation in WSN. Experimental results using ground-based cloud databases
demonstrate that the proposed method can achieve better results than the current methods.
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1 Introduction
Clouds play an important role in the earth’s radiation bud-
get because of their absorption and scattering of solar and
infrared radiation, and their change is an important influ-
ence factor of climate change [1, 2]. Most of cloud-related
studies requires the technology of ground-based cloud
observation, such as ground-based cloud classification
[3, 4], cloud cover evaluation (or cloud fraction) [5], and
cloud height measure. Among, ground-based cloud clas-
sification has attracted much attention from the research
community. It is because successful cloud classification
can improve the precision of weather prediction and help
us to understand climatic development [6]. Clouds are
currently studied using both satellites and ground-based
weather stations. Some work focuses on classification
clouds based on satellite images [7]. However, the infor-
mation extracted from large-scale satellite images fails to
capture the details of cloud because these images generally
possess low resolution. On the contrary, ground-based
cloud observations are able to obtain richer, more accurate

*Correspondence: zhong.zhang8848@gmail.com
Tianjin Key Laboratory of Wireless Mobile Communications and Power
Transmission, Tianjin Normal University, Tianjin, China

retrievals of cloud information. Nowadays, ground-based
clouds are classified by the observers who are trained
professionally. However, different observers will obtain
discrepant classification results due to a different level of
professional skills. Furthermore, this work is complicated
and time-consuming. Hence, the technique of automatic
ground-based cloud classification is a challenging task and
is still under development.
The ground-based sky-imaging devices have been

widely used for obtaining information on sky condi-
tions. Typical devices, including WSI (whole sky imager)
[8, 9], TSI (total sky imager) [10] and ICI (infrared cloud
imager) [11], can provide continuous sky images from
which one can infer cloud macroscopic properties. Tradi-
tionally, the cloud classification techniques handle cloud
images captured from only one image sensor.
Recently, wireless sensor networks (WSN) have

attracted a lot of attention, particularly with the develop-
ment of smart sensors [12, 13]. WSN can be applied in
many fields including remote environmental monitoring
and object classification. When each image sensor serves
as a sensor node,WSN can be employed to classify clouds.
In this paper, we focus on cloud classification in WSN.
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Based on the above devices, a lot of methods have been
proposed for ground-based cloud classification [3, 9, 14].
Singh and Glennen used co-occurrence matrix and auto-
correlation to extract features from common digital
images for cloud classification [15]. Calbó and Sabburg
applied statistical texture features and pattern features
based on a Fourier spectrum to classify eight predefined
sky conditions [16]. Heinle et al. proposed an approach
to extract spectral features and some simple textural fea-
tures, such as energy and entropy for a fully automated
classification algorithm, in which seven different sky con-
ditions are distinguished [9]. Zhuo et al. [17] proposed the
color census transform to capture texture and color infor-
mation for cloud classification. Although these works are
suggestive, many important problems for ground-based
cloud classification have not yet been explored. For exam-
ple, the extracted features are not discriminative enough
to describe the ground-based cloud images, which might
lead to poor classification performance.
Clouds can be thought of one kind of a natural texture,

and it is reasonable for ground-based cloud images to be
handled with texture classification methods. As one kind
of classical texture descriptors, local binary pattern (LBP)
[18] is particularly popular due to its simplicity and effi-
ciency, and various extensions are made for the conven-
tional LBP descriptors [14, 19–21]. Due to their excellent
performances, LBP and its extensions have been success-
fully utilized in image classification and face recognition
[22–24]. The uniform patterns of LBP code (the uniform
LBP for short) have been proposed as a means of improv-
ing the performance of LBP-based methods. However, the
uniform LBP patterns do not account for a high propor-
tion of the patterns in cloud images; therefore, they cannot
capture the fundamental properties of these images. Liao
et al. [21] proposed dominant LBP (DLBP) as an improved
strategy to solve this problem, and the method based on
DLBP only considered the pattern occurrences of salient
patterns, while the type of pattern information is lost. Liu
et al. [14] proposed a salient LBP (SLBP) descriptor which
takes advantage of the most frequently occurring pat-
terns to capture descriptive information. Although SLBP
is effective for handling the disadvantage for conventional
LBP, its basic assumption is that texture resolution of an
image is fixed as shown in Fig. 1a. Actually, texture patches
in a cloud image can be with various resolutions as shown
in Fig. 1b. Each of the two examples shown in Fig. 1a
is with same resolution. While the texture resolutions of
each images shown in Fig. 1b are varying significantly.
Usually, compared with various resolutions, texture infor-
mation in a fixed resolution does not have a significant
discriminative power.
In order to obtain the resolution information of cloud

image in WSN, we learn the SLBP for each resolution,
and then put all the patterns together to form the final

representation. Specifically, we propose a novel feature
extraction algorithm by learning group patterns (LGP) for
ground-based cloud classification in WSN. The proposed
descriptors take texture resolution variations into account
by cascading the SLBP information of hierarchical spa-
tial pyramids. Through learning group patterns, we can
obtain more useful information for cloud representation
in WSN.
The rest of this paper is organized as follows. In

Section 2, the SLBP is briefly overviewed. and then the
group patterns with pyramid representation is introduced
in detail in Section 3. In Section 4, experimental results
and discussions are given. Finally, conclusions are drawn
in Section 5.

2 Brief review of SLBP
Conventional LBP proposed by Ojala et al. [18] is consid-
ered as an effective descriptor for texture classification.
The LBP operator labels each pixel in the image by com-
puting the sign of the differences between the central
pixel and its neighboring pixels. The result is a decimal
number computed by the corresponding binary string.
Then, the image is represented by the histogram of these
decimal numbers. The LBP value for the central pixel is
computed as

LBPriP,R = min
0≤l<P

⎧⎨
⎩

P−1∑
p=0

s(gp − gc) × 2[(p+l)mod P]

⎫⎬
⎭ (1)

where pc represents the gray value of the central pixel, pn
(n = 0, · · · ,N−1) denotes the gray value of the neighbor-
ing pixel on a circle of radius R, and N is the total number
of neighbors. Suppose the coordinate of pc is (0, 0), then
the coordinates of pn are (R cos(2πn/N),R sin(2πn/N)).
The gray values of neighbors that are not in the image
grids can be calculated by interpolation. The step function
s(x) is described with s(x) = 1 if x ≥ 0 and s(x) = 0 oth-
erwise. The minimum value in Eq. (1) denotes the label of
the rotation invariant LBP at the central pixel.
Let N denote the total number of rotation invariant

LBP patterns. According to the definition in Eq. (1), the
value of N is determined by neighboring samples P. In
order to reduce the interference of noise, Ojala et al. [18]
defined the U value at each pixel as the number of bitwise
transitions between 0 and 1 in the LBP:

U(LBPP,R) = |s(gP−1 − gc) − s(g0 − gc)|

+
P−1∑
p=1

|s(gP − gc) − s(gp−1 − gc)| (2)

Although its effective to noise, the uniform LBP pat-
terns do not account for a high proportion of the pat-
terns in cloud images; therefore, they can not capture the
fundamental properties of these images. To ensure the



Liu and Zhang EURASIP Journal onWireless Communications and Networking  (2016) 2016:69 Page 3 of 6

Fig. 1 Ground-based cloud image patches with various resolutions. a Each image is with same resolution, and the images are with same content
but with various resolutions. b The texture resolution are varying in each cloud image patch

robustness of feature representation, the most salient LBP
descriptor [14] is proposed as the following steps. First,
Liu et al. [14] build a rotation-invariant LBP histogram for
every cloud image, and then accumulate all of these his-
tograms into a single histogram. Finally, Liu et al. sort the
histogram in descending order. The first several patterns
in this sorted histogram are the most frequently occur-
ring patterns in the cloud images, which are defined as the
salient patterns. The minimum value k of determining the
salient patterns are calculated by:

k = argmin
S

(∑k−1
j=0 H[ j]∑
j H[ j]

)
≥ T (3)

Here, H[ 1, 2, . . . ] denotes the sorted histogram of all
rotation invariant patterns, and T is a threshold determin-
ing the proportion of salient patterns. We empirically set
T = 80%. The salient patterns of class i by solving Eq. (3)
are denoted as S[ i].

3 The proposed learning group patterns
In order to capture the hierarchical spatial pyramids infor-
mation of cloud images in WSN, the proposed learn-
ing group patterns descriptors take texture resolution
variations into account by cascading the SLBP informa-
tion. Specifically, we learn the SLBP for each resolution,
and then put all the patterns together to form the final
representation. Pyramid transform is an effective multi-
resolution analysis approach. In this paper, we repre-
sent a salient local binary pattern in a spatial pyramid
domain.
During pyramid transform, each pixel in the low spatial

pyramid is obtained by down sampling from its adjacent
high-resolution image as shown in Fig. 2. Thus, in the
low-resolution images, a pixel corresponds to a region
in its high resolutions. Sequential pyramid images are
constructed as shown in Fig. 2. Each neighboring two
images are with resolution variation rate 4. That is to
say, the down sampling ratios in x and y directions are
both 2.

Fig. 2 The diagram of pyramid sampling in neighboring 3 resolutions
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Fig. 3 Cloud samples from the Kiel database: 1. cumulus; 2. cirrus and cirrostratus; 3. cirrocumulus and altocumulus; 4. clear sky; 5. stratocumulus; 6.
stratus and altostratus; and 7. cumulonimbus and nimbostratus

Let f (x, y) denote the original image. The pyramids of
adjacent two resolutions are determined as follows:

Q1(x, y) = f (x, y) for level l = 1 (4)

The pyramids of adjacent two resolutions are deter-
mined as follows:

Ql(x, y) =
∑
i

∑
j
Ql−1(Rx + i,Ry + j) (5)

where Rx and Ry are the down sampling ratios in x and y
directions, respectively. RxRy > 1 means down sampling
is utilized during pyramid image generation, while Rx =
Ry = 1 means no sampling is utilized.
Let Sk represents the texture information of the kth

pyramid (k = 1, . . . ,N) and gk denote the correspond-
ing center pixel of the kth pyramid. The pyramid texture
descriptor T is the combination of the texture of all
resolution levels which is expressed as follows:

S = (S1, S2, · · · , SN ) = t
(
g1c , g01 , g

1
1 , · · · , gp−1

1 ; · · · ; gNc ,

g0N , g1N , · · · , gp−1
N

)
(6)

Sk = t
(
gkc , g0k , g

1
k , · · · , gp−1

k

)
(7)

According to Liu et al. [14], Sk can be obtained by
Section 2. Finally, the learning group patterns is the
combination of the SLBP histograms of the N spatial
pyramid images as follows:

LGPP,R =
⋃
k
SLBPP,R,k

= (SLBPP,R,1; SLBPP,R,2; · · · ; SLBPP,R,N )

(8)

Through learning group patterns, we can obtain more
useful information for cloud representation in WSN.

4 Experimental results and analysis
In this section, the proposed LGP is compared with
the representative LBP [18], local ternary patterns (LTP)
[19], DLBP [21] and SLBP [14] algorithms. To evaluate
the effectiveness of our algorithm in WSN, a series of
experiments are carried out. First, we will introduce two
ground-based cloud databases captured in WSN: the Kiel
database and the IapCAS-E database. Second, the experi-
mental setup is described. Third, the experimental results
in WSN on two databases are provided.

4.1 Database
The Kiel database is provided by Kiel University in
Germany. The key equipment for capturing the ground-
based images is a camera equipped with a fisheye lens
which can provide a field of view larger than 180◦. The
camera is set to capture one cloud image per 15 s. More
information about the camera can be found in litera-
ture [25]. In our algorithm, phenomenological classes
are used to separate the sky conditions according to
the international cloud classification system published in
the World Meteorological Organization (WMO), and the
database is divided into seven classes. The sample num-
ber of each class is different and the total number is
1500. This database has large illumination variations and
intra-class variation. Samples for each class are shown in
Fig. 3.
The other database is the IapCAS-E which is pro-

vided by the Institute of Atmospheric Physics, Chinese
Academy of Sciences. The cloud images in the IapCAS-
E database are more challenging due to the influence
factors of aerosol and noise. The division rules of the
IapCAS-E database is consistent with the Kiel database.
The sample number of each class is also different, and the
total number is 2000. Figure 4 shows the samples from
each class.

Fig. 4 Cloud samples from the IapCAS-E database: 1. cumulus; 2. cirrus and cirrostratus; 3. cirrocumulus and altocumulus; 4. clear sky; 5.
stratocumulus; 6. stratus and altostratus; and 7. cumulonimbus and nimbostratus
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Table 1 Average classification accuracy for the five algorithms
on the Kiel database

LBP[18] LTP[19] DLBP[21] SLBP[14] LGP

70.53 74.63 75.16 77.42 83.21

4.2 The experimental setup
For fair comparison, we use the same experimental setup
for all the experiments. Each ground-based cloud image is
converted to gray scale, and then normalized to an average
intensity of 128 with a standard deviation of 20. The chi-
square distance and nearest neighbor classifier are used.
The chi-square distance is described as follows:

D(T , S) =
M∑
i=1

(Ti − Ts)2

Ti + Ts
(9)

where T and S are the histogram features of two cloud
images,M is the number of bins (orM is the dimension of
feature), and Ti and Si are the values of the histograms T
and S at the ith bin, respectively. Quantitative evaluations
of all the above algorithms are performed as:

Acc = NC
N

× 100% (10)

where NC is the number of correctly classified cloud
images in all seven classes. N is the total number of
ground-based cloud images. Note that all the experimen-
tal results are computed based on Eq. 10. In each experi-
ment, one fifth of the samples are randomly chosen from
each class as training data while the remaining images are
used for testing, and the process is repeated 100 times.
The average accuracy over these 100 randomly splits is
reported as the final results for reliability.

4.3 Results analysis
We first evaluate the effectiveness of the proposedmethod
on the Kiel database. Table 1 lists the average accuracy

Fig. 5 Confusion table of our method on the Kiel database

Table 2 Average classification accuracy for the five algorithms
on the IapCAS-E database

LBP[18] LTP[19] DLBP[21] SLBP[14] LGP

65.41 69.26 72.55 74.22 78.94

values of our method with the other comparing methods.
The following four points can be drawn through analyz-
ing the experimental results. First, the proposed method
achieves the highest classification accuracy. Second, the
performance of our method is over 12 % higher than that
of LBP and 8% higher than that of DLBP because the
proposed method takes advantage of the most frequently
occurring patterns to capture descriptive information of
cloud image. Third, comparing the proposed method with
the SLBP approach, we can see that the former is over
5% higher than the latter ones on the accuracy. It indi-
cates that adding texture resolution variation information
is helping to improve the classification performance. In
addition, the confusion matrix shown in Fig. 5 provides
a detailed summary of the performance of the proposed
LGP algorithm.
The second experiment is conducted on the IapCAS-

E database. This database is more challenging because
it shows large intra-class variation, and the experimental
setup is the same as the Kiel database. Figure 4 shows sam-
ples from different classes. The experimental results as
shown in Table 2 and Fig. 6 demonstrate that our method
achieves the best results on this challenging database.
We draw the similar conclusions with that on the Kiel
database, which again proves the effectiveness of the pro-
posed method.

5 Conclusions
In this paper, a novel feature extraction algorithm by
learning group patterns in WSN is proposed for ground-
based cloud classification. The proposed descriptors take

Fig. 6 Confusion table of our method on the IapCAS-E database
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texture resolution variations into account by cascading
the SLBP information of hierarchical spatial pyramids.
Through learning group patterns in WSN, we can obtain
more useful information for cloud representation. Com-
pared to the conventional LBP descriptors and SLBP
descriptors, the pyramid representation for local binary
patterns shows its effectiveness. The experimental results
show that our method achieves better results than previ-
ous ones on ground-based cloud classification in WSN.
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