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Abstract

In cognitive radio networks, wideband spectrum sensing (WSS) has been advocated as an effective approach to
increase the spectrum access opportunity of the secondary users. On the other hand, because of the increase of
sampling rate and sensing time duration cost by the analog-to-digital converter (ADC), energy saving has been a
significant problem for WSS. In this paper, taking advantage of the frequency-domain sparsity of the wideband
spectrum, a WSS scheme combining compressed sensing and multi-band joint detection technique is proposed
to reduce the energy consumption. Based on extensive analysis and simulation, we identify the sparsity order of
the wideband spectrum, the received signal-to-noise ratio (SNR) of the primary signal, and the compression rate
employed in sampling as three key factors that affect the sensing performance. In particular, we derive a closed-
form analytical model of the scheme. Based on these observations, the energy efficiency, defined as the ratio of the
spectrum access opportunity to the energy consumption, is maximized through the optimization process of the
compression rate under the sensing performance constraints. We also indicate the uniqueness of the optimal
compression rate for maximizing the energy efficiency. Numerical and simulation results show that our proposed
scheme is more energy efficient if the wideband spectrum is sparser in the frequency domain.

Keywords: Cognitive radio network, Distributed cooperation, Spectrum allocation, Random broadcast

1 Introduction
In cognitive radio networks (CRNs), the secondary users
(SUs) can opportunistically access the spectrum bands
unoccupied by the primary users (PUs). As a key tech-
nology in CRNs, spectrum sensing is widely used by SUs
to periodically detect the spectrum bands. It is well
known that the greater the bandwidth of the spectrum
being detected, the more opportunity for SUs to access.
Therefore, wideband spectrum sensing (WSS) [1, 2] is
attracting attention as an effective approach for detect-
ing continuous multiple bands simultaneously. Since
WSS can be easily performed in local sensing, i.e., it can
be implemented by any SU independently, the commu-
nication overhead for network coordination can be
greatly reduced. Hence, WSS is suitable for large-scale
CRNs with quite a lot of SUs.

On the other hand, the increasing energy consumption
has been a significant problem for WSS [1, 3]. The en-
ergy consumption in the spectrum sensing is mainly
caused by the analog-to-digital converter (ADC), which
is proportional to the sensing time duration and the
sampling rate [1]. However, because of the wide range of
the spectrum bandwidth for WSS, long sensing time
duration and high sampling rate are always needed by
the ADC. There are two kinds of the traditional WSS
schemes, the sequential sensing scheme [1, 3] and the
parallel multi-band detection scheme [4]. Originally,
constrained by the low sampling rate of ADCs, SU di-
vides the wideband spectrum into multiple sub-bands
and then detects them successively, namely the sequen-
tial sensing scheme. As the high-speed sampling tech-
nique develops, SU can directly sample the wideband
spectrum using a high-speed ADC and then detect all
the sub-bands simultaneously, namely the parallel multi-
band detection scheme. Compared with the sequential
sensing scheme, the structure of the parallel multi-band
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detection scheme is more convenient for WSS. Further-
more, the parallel multi-band detection scheme is more
energy efficient by improving the sampling rate to
shorten the sensing time duration.
In practice, the wideband spectrum is divided into sev-

eral non-overlapping narrowband channels assigned to
different PUs, and the emergence of different PUs’ signal
is entirely independent. Therefore, only a minority of
channels are occupied by PUs at the same time, namely
that the wideband spectrum is sparser in the frequency
range. Taking advantage of such sparsity of wideband
spectrum, compressed sensing (CS) has recently been
proposed to reduce the sampling rate below the Nyquist
rate [5–11]. For this reason, the CS-based spectrum
sensing methods have been proposed as an efficient ap-
proach for energy saving in WSS.
Tian and Giannakis introduced two kinds of com-

pressed sensing methods (called multi-step and one-
step) to recover the signal by wavelet approach [5] and
then developed the signal recovery idea and performed
the distributed compressive spectrum sensing in the co-
operative multi-hop CRNs [6]. However, for spectrum
sensing and detection, accurately reconstructing the
original signal is unnecessary. Following this idea, Polo
et al. presented a compressive wideband spectrum
sensing scheme by sampling the analog signal using
analog-to-information convert and then focused on the
performance of edge spectrum and power spectrum
density recovery [7]. The authors in [8, 9] also suggested
to only reconstruct the signal’s power spectrum, in order
to optimize the sensing performance at the expected
probabilities of detection and false alarm. As well
known, the final purpose of spectrum sensing is to find
the spectrum access opportunities for SUs [1, 5]. Based
on this point, all the aforementioned methods, aiming at
the signal reconstruction performance in [5, 6] or the
sensing performance in [7–9], give no considerations to
the optimization problem of the spectrum access oppor-
tunity. In this paper, we have a further study on this
problem, combining the challenge of energy consump-
tion in WSS. We propose a reconstruction structure
aiming at optimizing the energy efficiency, which is de-
fined as the ratio of SU’s spectrum access opportunity to
the energy consumption.
The proposed design includes (i) a sensing scheme

combining the compressed sensing and the multi-band
joint detection, (ii) the establishment of an analytical
model of the scheme, and (iii) the optimization of the
compression rate for energy efficiency maximization
under the sensing performance constraints. The contri-
butions of this paper can be generalized as follows.
In comparison with the traditional WSS schemes, the

proposed scheme reduces the sampling rate at the sub-
Nyquist rate and takes a shorter sensing time duration,

both of which are greatly favorable to energy saving. Nu-
merical and simulation results show that the perform-
ance of energy saving is better if the wideband spectrum
is sparser in the frequency domain.
Although the compressed sensing has been suggested

to reduce the sampling rate in WSS, the energy effi-
ciency and the optimization of compression rate have
never been considered. However, our study indicates the
uniqueness of the optimal compression rate for maxi-
mizing the energy efficiency.
Furthermore, lots of relevant studies are developed

under the ideal conditions. As in [10, 11], the authors
deduced the minimum required number of measure-
ments for sparsity estimation and signal reconstruction,
respectively, but in the noise-free case. Based on exten-
sive analysis and simulation, we identify the sparsity
order, the received signal-to-noise ratio (SNR), and the
compression rate as three key factors when performing
our proposed scheme and then quantify these contribu-
tions by mathematical approximation to support the the-
oretical derivation.
In addition, a joint SNR and sparsity order estimation,

and the conditions for implementing the compressed
sensing, are suggested to give consideration to the prac-
tical application of the proposed scheme.
The remainder of this paper is organized as follows.

Section 2 describes the signal and network model. Sec-
tion 3 presents the composition of the proposed scheme,
formulates the energy efficiency maximization problem,
and derives the optimal compression rate. Section 4
shows the performance analysis and simulations. Finally,
Section 5 concludes the paper.

2 Network mode
Consider a wideband spectrum that is divided into K
non-overlapping sub-bands. During a constant sensing
time duration, we model the detection problem on the
sub-band k as one choosing between a hypothesis H0; k,
which represents the absence of the primary signals, and
an alternative hypothesis H1; k , which represents the
presence of the primary signals, k ∈ {1, 2,…, K}. More-
over, we have Pr H0; k

� �þ Pr H1; k
� � ¼ 1 , where Pr(⋅) is

the probability of occurrence. Without loss of generality,
we assume that Pr H0; k

� � ¼ Pr H0ð Þ, and Pr H1; k
� � ¼ Pr

H1ð Þ , ∀ k. Let Sk(t) and Hk(t) be the primary signal and
the coefficient of the sub-band k at any given time t,
respectively. Then, define X(t) = {X1(t), X2(t),⋯, XK(t)},
where Xk(t) =Hk(t)Sk(t). Thus, the received signals at
SUs can be represented as R(t) = X(t) ⋅ 1(k, t) + V(t),
where V(t) is the additive white Gaussian noise and
1(k, t) is a K × 1 column vector in which the kth element is
equal to 1 in the hypothesis H1; k and is equal to 0 in the
hypothesis H0; k. In addition, we define the received SNR
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on the sub-band k as γk = pk/p0, where pk is the received
power of the primary signals and p0 the noise power.

3 Proposed wideband spectrum sensing scheme
3.1 Scheme description
Figure 1 illustrates our proposed scheme, which is tai-
lored to the WSS. The scheme includes five modules:
the compressed sensing module (A1), the multi-band
joint detection module (A2), the energy efficiency
maximization module (A3), the sparsity order and SNR
estimation module (B1), and the compressed sampling
decision module (C1). The work flow of Fig. 1 can be
described as follows.
If C1 is satisfied, i.e., the spectrum is sparse and all

the elements of γ = {γk, ∀ k} are above the lower limit
γ , in A1, R(t) is compressed sampled at the optimal
sub-Nyquist sampling rate, given by A3, for the en-
ergy efficiency maximization, and then reconstructed
through the orthogonal matching pursuit (OMP)
method [4] as R̂ ¼ R̂ nð Þ� �

, n = {1, 2,…,N}. Otherwise,
a ⋅ exp(b ⋅ δ) + c ⋅ exp(d ⋅ δ) is sampled at the Nyquist
rate as R = {R(n)}, n = {1, 2,…,N}. Next, R̂ (or R) is
used by A2 for the parallel multi-band detection.
Meanwhile, the summary statistic of each sub-band k,

T̂ k (or Tk), is used by B1 to estimate the sparsity
order and γ.
As an example of normal ADC chips, the energy con-

sumption of AD9257 can be described as [12]

E f s; τsð Þ ¼ 2:33f s þ 151:67ð Þ⋅τs; ð1Þ
where fs is the sampling rate and τs is the sampling time
duration; the units of E, fs, and τs are mW, Mbps, and s,
respectively. It can be observed that when fs is in a rela-
tively low regime, i.e., fs ≤ 65MHz, E is mainly dependent
on τs. This indicates that for a given N, where N = fsτs,
increasing fs (as a means of shortening τs) is efficient to
save energy. Compared with the sequential sensing
scheme, the parallel detection structure of A2 is more
suitable for sampling the wideband spectrum at a high fs.
However, when fs > 65 MHz, the energy consumption
caused by the increase of fs is apparent. To overcome
this, A1 is applied to reduce fs to a level of less than the
Nyquist rate for further energy saving.

3.2 Compressed sensing (A1)
In most cases, since X(t) does not occupy all the K sub-
bands, it may be sparse in the frequency domain. Ac-
cording to the compressed sensing theory [13], if X(t) is
truly sparse, it can be sampled at the sub-Nyquist rate
and then reconstructed with slight errors. Denote the

sparsity order of X(t) as ρ ¼ the number of occupied sub‐bands
K

and the compression rate for sampling as δ = fcs/fN,
δ ∈ (0, 1), where fcs is the compressed sampling rate and
fN is the Nyquist rate. It is well known that δ must be
larger than ρ in order to reconstruct the sparse signals.
Moreover, the reconstruction performance is improved
with the increase of δ.

Fig. 1 Proposed wideband spectrum sensing scheme
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Module A1 consists of two sequential sub-modules,
the compressed sampling and the signal reconstruc-
tion. It has been shown that samples acquired from
Gaussian and Bernoulli random sampling matrices
have a better chance to perfectly recover sparse signals
than other types of sampling matrices [6]. There are
several options for hardware implementations of com-
pressed sampling. An exemplary sampler is called an
analog-to-information converter (AIC). It has a serial
concatenated structure with three main components: a
wideband modulator made of a pseudo-random chip-
ping sequence, a low-pass filter, and a low-rate con-
ventional ADC [10, 11]. In this paper, for a given 1 × N
vector R, we simulate the process of compressed sam-
pling as follows:

� Choose an N ×N discrete Fourier transform (DFT)
matrix as the sparse representation basis Ψ, then
map R into the sparse domain as Θ =ΨTRT.

� Choose a V ×N uniform Gaussian random sampling
matrix Φ, where V = ⌈δN⌉ (⌈x⌉ is the smallest
integer not less than x), then calculate the
measurement matrix as W =ΦΨTRT.

Next, we represent ΦΨT as Λ and feed Λ and W
into the OMP method to calculate R̂ , i.e., the recon-
struction of R. OMP is a kind of greedy iterative al-
gorithm for reconstruction. In each iteration, the
column of Λ having the highest correlation with the
error vector is selected and is used to update the ap-
proximate solution of R. The iterative process will
not be stopped until the error is small enough or
the number of iterations is equal to V. In detail, the
process of signal reconstruction through OMP
method can be described as follows:

� Initialization. Denote the iteration index as i = 0, the
error vector as r(0) =W, and the expected non-
negative error vector as r. Let R̂ 0ð Þ ¼ 0, Ω(0) = Ø,
where 0 is a 1 ×N vector consisting of zero
elements.

� Step 1: Calculate the inner products of the error
vector and the columns of Λ, g(i) = ΛTr(i − 1).

� Step 2: Find the maximum element of |g(i)|, then get
its column index as j ¼ argmax

n∈ 1;2;⋯;Nf g
g ið Þ nð Þ�� ��.

� Step 3: Update Ω(i) as Ω(i − 1)∪ {Λ(:, j)}, where Λ(:, j)
represents all the elements of the jth column of Λ.

� Step 4: Calculate the approximate solution of R

through the least square method, R̂ ið Þ ¼

Ω ið Þ� �T
Ω ið Þ

� �−1
Ω ið Þ� �T

W .

� Step 5: Update r(i) as W−ΛR̂ ið Þ.
� Step 6: If r ið Þ�� ��≤�r or i =V, output R̂ ¼ R̂ ið Þ and stop.

Otherwise, go to step 1.

So far, the compressed sampling and the signal re-
construction sub-modules have been present, and the
simulation model of the compressed sensing can be
established as a result.

3.3 Multi-band joint detection (A2)
To facilitate the description, we introduce the multi-
band joint detection module when sampling at fN. The
module implements the WSS in three steps:

� Calculate the discrete frequency response of R
(denoted as Y = {Y(n)}, n = {1, 2,…,N}) through an
N-point fast Fourier transform (FFT).

� For each sub-band k, calculate summary statistic Tk

as the sum of the received signal energy over an

interval of M samples, i.e., Tk ¼
XM

m¼1
Yk mð Þj j2,

where M =N/2K and n = (k − 1)M +m.
� Compare Tk with the threshold λk to make a

decision whether the primary signal is present or
not.

According to [4], for a large M, the probability dis-
tribution functions (PDFs) of Tk are close to normal

distributions and can be represented as N μi;k ; σ
2
i;k

� �
,

i ∈ {0, 1}, where

H0;k :
μ0;k ¼ Mp0
σ2
0;k ¼ 2Mp20

; H1;k :
μ1;k ¼ M γk þ 1

� �
p0

σ21;k ¼ 2M 2γk þ 1
� �

p20

((
ð2Þ

3.4 Impact of sparsity order, compression rate, and SNR
Now, we consider the multi-band joint detection when
the compressed sensing module A1 is valid. The spectrum
can be reconstructed through the OMP method but at
the expense of causing recovery errors. The perform-
ance of signal reconstruction depends on the sparsity
order and the compression rate. Thus, it is foreseeable
that the two factors should also affect the detection ac-
curacy. On the other hand, since the energy detector
used at each branch of A2 cannot extract the primary
signal from the noise, the received SNR is the most im-
portant factor for signal detection. In what follows, we
thus investigate the impact of sparsity order, compres-
sion rate, and SNR on the sensing performance of the
proposed scheme.
Assume N = 512, p0 = − 95.2 dBm, and a sparse wide-

band spectrum contains 10 TV bands each with 6-MHz
bandwidth. Within the range of δ ∈ (0, 1), Figs. 2a and 3a
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demonstrate that the probability of false alarm and the
probability of detection rapidly drop to 0 and raise to 1,
respectively, for ∀ ρ ∈ {0.1, 02, 0.3, 0.4} as the increase of
δ. This proves the feasibility of the scheme, i.e., the
structure of the combined A1 and A2 is the ability to ac-
complish the task of WSS if the spectrum is truly sparse.
In addition, for the same sensing performance, the
needed compression rate becomes lower as the sparsity

order decreases. Figures 2b and 3b show the probabil-
ity of false alarm and the probability of detection, re-
spectively, for different pairs of (ρ, γk) as δ = 0.5. We
can see that for any sub-band in the wideband
spectrum, the detection accuracy of the status
(occupied or not) is proportional to the received SNR
of the primary signal. This indicates when the sparsity
order and compression rate have been determined
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Fig. 2 Impact of sparsity order, compression rate, and SNR. a The probability of false alarm versus δ, when γk = 9 dB. b The probability of false
alarm for different pairs of (ρ, γk) as δ = 0.5
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that the higher the received SNR, the better the sens-
ing performance.

3.5 Analysis model
Denote that the primary signal does not occupy channel
k as hypothesis H0; k, otherwise as H1; k. Using the Cen-

tral Limit Theorem (CLT) as in [4], we have that T̂ keN
μ̂ i;k ; σ̂

2
i;k

� �
, where μ̂ i;k and σ̂ 2

i;k is the mean and variance

of the received primary signal, i ∈ {0, 1}, respectively.
Thus,

Pr T̂ k > λk Hi; k

�� � ¼ Q
λk−μ̂ i;k

� �
σ̂ i;k

0@ 1A0@
ð3Þ

can be used to unify the expressions of the probabil-

ity of false alarm P kð Þ
f (when i = 0) and the probabil-

ity of detection P kð Þ
d (when i = 1), where Q xð Þ ¼

1=
ffiffiffiffiffiffi
2π

p� �
⋅
Z ∞

x
exp −t2=2
� �

dt . Based on the extensive

analysis and simulation above, we identify ρ, γk, and
δ as three key factors that affect the sensing per-
formance of the proposed scheme. Therefore, to

establish a relationship between T̂ k and Tk, we
denote

μ̂ i;k ¼ αi;k ρ; γk ; δ
� �

⋅μi;k
σ̂ 2
i;k ¼ β2i;k ρ; γk ; δ

� �
⋅σ2

i;k
; i ∈ 0; 1f g; ∀k;

(
ð4Þ

where αi,k and β2i;k are normalized coefficients, both of
which are closely linked to ρ, γk, and δ. Substitute
Eqs. (2) and (4) into Eq. (3). For a target probability
of detection Pd, the probability of false alarm can be
calculated by

P kð Þ
f ¼ Q



β1;k
β0;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γk þ 1

p
Q−1 Pd
� �

þ α1;k γk þ 1
� �

−α0;kffiffiffi
2

p
β0

ffiffiffiffiffi
M

p �
ð5Þ

On the other hand, for a target probability of false
alarm Pf , the probability of detection is

P kð Þ
d ¼ Q



1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γk þ 1
p 


β0;k
β1;k

Q−1 Pf
� �

−
α1;k γk þ 1
� �

−α0;kffiffiffi
2

p
β1

ffiffiffiffiffi
M

p ��
ð6Þ

For simplification, we rewrite αi,k as αi and βi,k as βi in
the following sections. The analytical expressions of the
coefficients αi and βi can be obtained from simulation
results through the curve-fitting method. Since there are
similar fitting results for different pairs of (ρ, γk), we
choose ρ = 0.2 and γk = 9dB for demonstrations. Table 1
gives the experimental data of the coefficients. It can be
found that α1 converges to 1 rapidly as δ increases.
Then, α0 and βi can be accurately fitted into functions
of δ as

a⋅ exp b⋅δð Þ þ c⋅ exp d⋅δð Þ ð7Þ
Furthermore, as shown in Table 2, a is always positive

while b is negative. As for c and d, at least one of them
is close to zero.

3.6 Energy efficiency maximization (A3)
SU’s final goal is to access the spectrum and transmit its
own data [1, 5]. There are two different spectrum access
schemes, namely the underlay and overlay approaches
[1, 4, 14]. Under the underlay approach, SUs are allowed
to transmit on occupied sub-bands but suffer to severe
transmitting power limit for avoiding interference with
the primary signals. On the contrary, although only the
unoccupied sub-bands can be utilized when the overlay
approach is selected, SUs can greatly increase their
transmitting powers to improve the quality of service
(QoS). Generally speaking, the overlay approach is more
suitable for the communication of CRN; thus, it is con-
sidered in this paper and the spectrum access opportun-
ity of SU can be represented as

~ζ˜ ¼ 1−average probability of false alarmð Þ⋅ Pr H0ð Þ;
þ 1−average probability of detectionð Þ⋅ Pr H1ð Þ

ð8Þ
where Pr(⋅) is the occurrence probability of the hypoth-
esis, H0 is that the channel is unoccupied by PUs, and

Table 1 Experimental data of the coefficients, ρ = 0.2, γk = 9 dB

δ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α1 0.96 1.02 1.03 1.02 1.01 1.01 1.01 1.00

α0 10.93 4.06 1.53 1.05 0.83 0.71 0.61 0.57

β1 11.56 5.73 2.95 2.29 1.96 1.72 1.59 1.52

β0 48.79 17.42 5.29 3.48 2.65 2.30 1.97 1.80
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H1 is not. In practice, ~ζ˜ can be approximated by the
first part of Eq. (8), since the second part is generally

much smaller. Based on this, we define ζ as ~ζ˜=Pr H0ð Þ
and the energy efficiency as η = ζ/(energy consumed).
When the compressed sensing module A1 is valid, to
enhance the spectrum access opportunity, we formu-
late the problem of energy efficiency maximization as
follows.

max
δ

η ¼
Ε
XK

k¼1
1−P kð Þ

f

� �� �
E f cs; τsð Þ ; ð9Þ

s:t: P kð Þ
d ≥Pd; ∀k; ð10Þ

P kð Þ
f ≤Pf ; ∀k; ð11Þ

ρ < δ < 1 ð12Þ

The constraint (10) ensures that the primary transmis-
sion is not interrupted by the maximization process. The
constraints (11) and (12) give an exact range of the
compression rate.
To solve the above problem, we firstly focus on the

sub-problem as

max
δ

ηk ¼
1−P kð Þ

f

E f cs; τsð Þ ; ∀k: ð13Þ

Substitute Eqs. (1) and (5) into Eq. (13). Then, the
derivation of ηk against δ is

η′k ¼ E⋅ exp −υ2=2
� �

⋅υ′⋅ 1=
ffiffiffiffiffiffi
2π

p� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{A

− E′⋅ 1−Q υð Þð Þ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{B

0BB@
1CCA=E2;

ð14Þ

where υ ¼ β1=β0
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γk þ 1
p

Q−1 Pd
� �þ α1 γk þ 1

� �
−

��
α0Þ

ffiffiffiffiffi
M

p Þ= ffiffiffi
2

p
β0. After some simplifications, e.g., α1→ 1,

α0, and βi → a ⋅ exp(b ⋅ δ), υ can be approximated as

υ≈
aβ1
aβ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γk þ 1

p
Q−1 Pd
� �

exp bβ1−bβ0
� �

δ
� �

þ γk þ 1ffiffiffi
2

p
aβ0

exp −bβ0δ
� �

−
aα0ffiffiffi
2

p
aβ0

exp bα0−bβ0
� �

δ
� �0@ 1A ffiffiffiffiffi

M
p

:

ð15Þ
From Table 2, we see that there are small differences

between any two b values. When δ ∈ (0, 1), we have

υ≈
aβ1
aβ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γk þ 1

p
Q−1 Pd
� �

þ γk þ 1ffiffiffi
2

p
aβ0

exp −bβ0δ
� �

−
aα0ffiffiffi
2

p
aβ0

 ! ffiffiffiffiffi
M

p
ð16Þ

Correspondingly,

υ′ ¼ −bβ0 γk þ 1
� �ffiffiffi
2

p
aβ0

exp −bβ0δ
� � ffiffiffiffiffi

M
p

; ð17Þ

thus, υ′ > 0, then υ is monotonically increasing as δ
increases. Given the fact that Q(x) is a decreasing func-
tion and upper bounded by 1, we find that both part A
and B of Eq. (14) have non-negative values. Moreover, A
and B are monotonically decreasing and increasing as

Tk ¼ T̂ 0ð Þ
k ; T̂ −1ð Þ

k ;…−T̂ −Sþ1ð Þ
k

n o
increases, respectively, so

η′k is monotonically decreasing as δ increases. In the limit,
when δ→ ρ and ρ→ 0,

lim
δ→ρ; ρ→0

A≈
−bβ0 γk þ 1

� �
2
ffiffiffi
π

p
aβ0

ffiffiffiffiffi
M

p
⋅E 0; τsð Þ > 0; ð18Þ

lim
δ→ρ; ρ→0

B≈0; ð19Þ

then we have lim
δ→ρ; ρ→0

ηk′ > 0 . On the other hand, when

δ→ 1, υ is close to be a constant being equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γk þ 1

p
Q−1 Pd
� �þ ffiffiffiffiffiffiffiffiffiffi

M=2
p

γk þ 1
� �

; thus, lim
δ→1

υ′≈0 .

Moreover, there is υ > 0 when P
–
d ≥ 0.5. Then, we have

lim
δ→1

A≈0 and lim
δ→1

B≈E′ > 0; thus, lim
δ→1

ηk′ < 0. As a re-

sult, there is a zero point of η′k within the interval of
δ ∈ (0, 1), so the convexity of ηk is proved. Considering
all the K independent sub-bands, the maximum η must
also be unique within the range of δ, and it can be
easily found through the one-dimensional exhaustive
search. In practical application, we can replace the
module A3 by an optimal compression rate matrix
indexed by the sparsity order ρ and the SNR vector γ,
which can be stored in the computer’s memory. When
the estimation of ρ and γ is finished, the compression
rate δ can be chosen by searching through the matrix.
This makes the energy consumed by A3 be neglected
compared with that of ADC.

Table 2 Fitting results of the coefficients, ρ = 0.2, γk = 9 dB

a b c d

α0 89.04 −10.59 0.461 0.277

β1 63.67 −9.23 1.73 −0.12

β0 427.7 −10.81 0.77 1.01
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3.7 SNR and sparsity order estimation (B1)
To take into account the applicability of the scheme,
we give a possible solution of joint SNR and sparsity
order estimation in this section. It employs the SNR
classification through the multiple-hypothesis-testing-
based type-I testing method (see the details in Section
V in [14]). In our applications, the received SNR is par-
titioned into a noise level plus k signal levels with the
strength of each level equal to (l − 1)dB, l = {1, 2,…, L}.
Denote the confidence level as ε and the probability
matrix as p = [pk,l]K × L, where pk,l is the probability that
the hypothesis Hk;l is accepted, i.e., γk should be classi-
fied into signal level l. To improve the exactness of
SNR classification, pk,l is calculated by using the sum-

mary statistic sequence Tk ¼ T̂ 0ð Þ
k ; T̂ −1ð Þ

k ;…; T̂ −Sþ1ð Þ
k

n o
obtained from the past S tests before the current mo-
ment. The process of SNR classification is as follows:

� Initialization: Let l = 1 and the set of accepted
Hk;l for sub-band k as H k ¼ Hk;1;Hk;2;⋯;Hk;L

� �
.

� Step 1: At the signal level l, sort p(:, l) in ascending
order of p values, p(1) ≤ p(2) ≤⋯ ≤ p(K), where p(:, l)
represents all the elements of the lth column of p.

� Step 2: Find the maximum index of p(j) satisfying the
condition that p jð Þ≤ j

L ε, j∈ {1, 2,⋯, K}, and denote it
as J.

� Step 3: Reject all the Hk;l if k∈ [1, J], then
eliminate them from Hk.

� Step 4: If l = L, break the loop. Otherwise, l = l + 1,
then go to step 1.

� Step 5: If Hk ≠ Ø, choose the maximum l from Hk as
the SNR level of sub-band k. Otherwise, classify it
into the noise level.

Considering all the K sub-bands, the estimation of γ can
be obtained. Furthermore, after the SNR classification, ρ

can be estimated by the number of SNR classified into signal levels
K .

3.8 Compressed sampling decision (C1)
Since there is no uniform criterion for judging the
sparsity [10], in our application, we say the spectrum
is truly sparse if ρ < 0.5. Finally, by canceling out the
threshold variable λk of Eq. (3) when i = 0 and i = 1,
we evaluate the lower limit of the received SNR γ
with the solution of

M ¼ 2⋅
β0 Q−1 Pf

� �
−β1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�γ þ 1

p
Q−1 Pd
� �

α1 γ þ 1ð Þ−α0


 �2

; ð20Þ

when ρ = 0.5 and δ = 1, to ensure M is not less than the
minimum number of required samples to achieve the
pair of target probabilities Pd; Pf

� �
.

4 Performance analysis and simulations
In this section, the performance of energy efficiency
maximization and energy saving is demonstrated by
simulations. We consider a sparse wideband spectrum
contains 10 TV bands each with 6-MHz bandwidth.
Assume the occurrence probabilities as Pr H1ð Þ ¼ q , Pr
H0ð Þ ¼ 1−q, and q ∈ (0, 1), the number of signal levels as
L = 10, and the received SNRs of the primary signal on
each sub-band as γ = {0, 1,…, L − 1} (dB). Moreover,
assume that Pd ¼ 0:9, Pf ¼ 0:1, N = 512, ε = 0.95, S = 20,
and p0 = − 95.2 dBm.
From Fig. 4, we observe that there is a maximum en-

ergy efficiency in each case of (ρ, κ), where κ is the set of
occupied sub-bands. As the number of occupied sub-
bands decreases, the optimal compression rate can be
reduced, which means a lower sampling ratio is needed.
As a result, the maximum energy efficiency can also be
substantially improved. For instance, when κ = {3}, the
maximum energy efficiency is 728 at the optimal com-
pression rate δ = 0.55, then drops to 607 at δ = 0.8 when
κ = {3, 5, 7, 9}. In addition, all the simulated results match
to the numerical results very well, which confirms that
the analytical model of the proposed scheme and the
process of energy efficiency maximization are valid.
For thorough analysis of energy efficiency maximization,

Fig. 5a, b illustrates the maximum energy efficiency and
the optimal compression rate, respectively, versus the re-
ceived SNR and the sparsity order. When focusing on the
sparsity orders, ∀ ρ ∈ {0.1, 02, 0.3, 0.4}, we observe that the
higher the received SNR, the larger the maximum energy
efficiency can be achieved, and a lower optimal compres-
sion rate is needed. Moreover, the positive effect of spars-
ity order on the energy efficiency can be clearly seen, i.e.,
the sparser the spectrum, the more energy efficient the
proposed scheme.
Finally, to highlight the energy efficiency of our pro-

posed scheme, we compare the energy consumption of
the proposal with those of the two sensing schemes
mentioned in the introduction, (i) the sequential sensing
scheme sampling at the Nyquist rate [3] and (ii) the
one-step compressed sensing scheme sampling at the
sub-Nyquist rate but aiming at signal reconstruction
[5]. Sequentially, denote the energy consumption of the
three schemes as E_pro, E_seq, and E_com. In order to
facilitate the analysis, under the same sensing perform-
ance constraints (Pd≥0:9, Pf ≤0:1), we normalized E_pro
and E_com by E_seq, respectively, i.e., Ẽ_pro = E_pro/
E_seq, Ẽ_com = E_com/E_seq. In Fig. 6, we assume that
the SNR vector and sparsity order are a priori infor-
mation and calculate the optimal compression rate
through A3. Then, we can obtain the numerical result
of Ẽ_pro. On the other hand, we estimate the practical
SNR vector and sparsity order through B1 (in particular,
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to improve the performance of parameter estimation, the
signal is sampled at the Nyquist rate in the first 20 sensing
time durations) and use them to choose the optimal com-
pression rate from the stored compression rate matrix
mentioned above, to obtain the simulated result of Ẽ_pro.
In addition, when performing the one-step compressed
sensing scheme as comparison, we use the OMP algo-
rithm to solve the ℓ1-optimization problem (see the details
in formula (11) in [5]). We can see from this figure, the
energy consumption of our proposal, Ẽ_com, is always
smaller than that of the one-step compressed sensing
scheme, Ẽ_com. Furthermore, the energy saving is more
obvious if q is smaller, which means the wideband
spectrum is sparser. However, when q ≥ 0.7, although C1

cannot be satisfied in most cases and the sampling rate is
chosen to be the Nyquist rate, the energy consumption of
the proposal is only about 24 % of that of the sequential
sensing scheme, which can be attributed to the parallel
multi-band detection scheme used in A2 shortening the
sampling time.

5 Conclusions
Taking advantage of the frequency-domain sparsity of
the wideband spectrum, a new wideband spectrum sens-
ing scheme has been proposed to save energy through
reducing both the sampling rate and sensing time dur-
ation. The sparsity order, the received signal-to-noise

ratio, and the compression rate are identified as three
key factors that affect the sensing performance. More-
over, under the sensing performance constraints, the
uniqueness of the maximum energy efficiency within the
range of the compression rate has been proved. It is
indicated that the sparser the wideband spectrum, the
higher the energy efficiency and the lower the energy
consumption. All these advantages have been corrobo-
rated by simulations.
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