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Abstract

In this paper, we present a game-theoretic approach to the problem of joint transmit beamforming and power
control in cognitive radio (CR) multiple-input multiple-output broadcast channels (MIMO-BCs), where the primary
users (PUs) coexist with the secondary users (SUs) and share the same spectrum. The cognitive base station (CBS) is
equipped with multiantenna and transmits independent data streams to several decentralized single-antenna
terminals. Our design goal is to jointly adjust the beamformers and transmission powers according to individual SINR
(signal-to-interference-plus-noise ratio) requirements in order to meet SINR balancing for CR MIMO-BCs. In this
context, two problems need to be solved: (1) the design beamforming must enable a balancing of the SINR among all
SUs for a fixed total power of CBS and (2) the total transmission power must be minimized while satisfying a set of
SINR constraints for fixed beamformers. The proposed approach is an application of separable games, where
beamforming vectors are modeled as beamforming subgame and power control is modeled as power control
subgame. We then use the convex theory of noncooperative game to solve the optimalization problem. Finally, we
propose an iterative algorithm to reach Nash equilibrium (NE) of the joint beamforming subgame and power control
subgame. Numerical results are provided to validate the optimality and the convergence of the proposed algorithm.

Keywords: Multiple-input multiple-output (MIMO), Cognitive radio network, Beamforming, Power allocation,
Game theory

1 Introduction
Cognitive radio networks (CR-Nets) have received
tremendous attention due to its capability of compensat-
ing for the spectrum scarcity. The original idea of CR
allows secondary users (SUs) to access the spectrum that
is originally allocated to primary users (PUs) when the
spectrum is not in use [1–4]. To support this functionality,
SUs are required to precisely sense the radio environment
and detect the presence of PU, which is proved not to
be an easy task [5, 6]. Alternatively, the idea of spectrum
sharing in CR-Nets [7, 8] allows simultaneous transmis-
sions of PUs and SUs, provided that the quality-of-service
(QoS) of PUs is guaranteed. Recently, themultiple antenna
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technique is introduced to CR-Nets [9, 10]. By employ-
ing multiple antennas, the concurrent spectrum sharing
can be performed without any degradation in QoS for
PUs [11].
In CR multiple-input multiple-output broadcast chan-

nels (CR MIMO-BCs), the cognitive base station (CBS) is
equipped with multiple antennas and sends data to mul-
tiple SUs simultaneously in the same system resource,
where multiple antennas are employed at the transmitter
to facilitate spatial multiplexing. Appropriately design-
ing transmit beamforming for various spatial multiplex-
ing designs have been investigated to steer energy in
the directions of the intended users [12–15]. In [12],
the equivalent transmit beamforming matrix has been
designed to minimize the effect of the resulted interfer-
ence on the PU transmissions. However, this approach
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is not robust enough as there are some uncertainties in
both the CR transmit covariance matrix and the degrees
of freedom of CRMIMO system. In [13, 14], robust down-
link beamforming for multiuser CR-MISO system has
been investigated. However, it is quite difficult to pre-
dict in advance whether the problem with given SINR
(signal-to-interference-plus-noise ratio) targets, interfer-
ence thresholds, and total power budget is feasible. To
avoid infeasibility issues, some beamforming techniques
have been developed, for example, game theory that has
been proven to be successful in beamforming design [15],
as will be investigated in this paper.
To guarantee the QoS of PUs in the CR-Nets, both

the total power constraint and the individual interference
power constraint applied at each primary receiver are con-
sidered. Joint beamforming and power control have been
accepted as an efficient interference suppression tech-
nique in CR-Nets [16, 17]. In this paper, based on joint
beamforming and power control, we focus on the SINR
balancing problem [18] in CR MIMO-BCs. This problem
is of particular interest since the following issues affect the
SINRs of SUs.
First, transmit beamforming at CBS is more compli-

cated in that the beamformers must be optimized jointly.
This is because SUs’ beamformers cannot be separately
designed, as the interference introduced to each SU’s
beamformer is a function of all the beamformer vec-
tors and power allocation. We tackle this problem by
introducing separable game [19] to the design frame-
work, as explained in Section 3. Partially related results
have been found in [20–22]. In [20, 21], under the sum-
power constraint, an alternating optimization strategy for
joint power control or linear beamforming has been pro-
posed to solve the SINR balancing problem. Although this
beamforming strategy is optimal, identifying an eigen-
value optimization problem for an extended coupling
matrix poses heavy computational burden. In [22], subject
to interference constraints of PUs and peak transmis-
sion power constraints of SUs, a jointing beamforming
and power control algorithm called decoupled multiple-
constraint power allocation has been presented to balance
the SINR level for all SUs. However, when large numbers
of active PUs and SUs exist, the computation complexity
is still quite high. Our first contribution of this paper is
to solve SINR balancing problem in CR MIMO-BCs with
much lower complexity.
Second, due to the coupled structure of the transmit-

ted signals, the BC optimization problems are usually
non-convex and thus cannot be solved directly. To tackle
this difficulty, the non-convex BC problem is transformed
into a convex multiple-access channel (MAC) problem via
a so-called BC-MAC duality relationship [23]. Under a
single sum-power constraint or a set of linear power con-
straint, the problem of BC can be solved as a minimax

optimization problem in its dual MAC setting [24]. Using
a minimax optimization approach, the sum-capacity for
the MIMO-BCs has been studied in [25, 26], which seeks
to maximize the minimal SNR among all the users under
the sum-power constraint by transforming into its dual
MAC problem. In this paper, the minimax optimization
problem is also investigated. We show that the proposed
method can handle multiple linear power constraint of CR
MIMO-BCs and is essentially equivalent to the method
based on SINR balancing.
The remainder of this paper is organized as follows.

Section 2 describes the system model and formulates
the problem. Section 3 forms joint transmit beamform-
ing and power control as noncooperative separable game.
Section 4 proposes an iterative algorithm that achieves the
optimal Nash equilibrium (NE) of joint transmit beam-
forming subgame and power control subgame. Section 5
provides numerical results and the related discussions.
Conclusions are drawn in Section 6.
Notation: Vectors and matrices are denoted by low-

ercase and uppercase boldface letters, respectively. (·)T ,
(·)H , and tr(·) denote transpose, conjugate transpose,
and trace of a matrix. ‖·‖2 represents the Euclidean
norm of a vector, and E[·] is the expectation. IM
is an M × M identity matrix, and {·} denotes the
subset.

2 Systemmodel and problem formulation
2.1 Systemmodel
The downlink scenario of a single-cell CR-Net coexist-
ing with a single-cell PR-Net is depicted in Fig. 1, in
which the system model of CR MIMO-BCs is shown in
detail in Fig. 2, where the cognitive base station (CBS)
is equipped with M antennas and transmits independent
data to K different SUs, each with one antenna. For sim-
plicity, we also assume that the primary base station (PBS)
and N PUs are equipped with a single antenna. Block
diagram of BC-MAC duality relationship for the trans-
mission process is shown in Fig. 3. In Fig. 1, the CR-Net
is installed far enough from PBS, which guarantees that
the amount of interference power to each PU receiver
is kept below a certain threshold [7]. Although PBS is
interfering with the normal operations of CR-Net, the
power received by SUs from CBS is much larger than
the power received from PBS, i.e., the interfering power
from PBS can be accumulated as a part of its noise term
[13]. Hence, the received signal at the kth SU (SUk) is
determined by

yk = hHk x + nk (1)

for k = 1, · · · ,K , where hk ∈ {
C
M×1}K

k=1 represents the
channel from CBS to SUk , and {nk}Kk=1 are white Gaussian
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Fig. 1 The downlink scenario of a single-cell CR-Net coexisting with a single-cell PR-Net

noise terms with nk ∼ CN(0, σ 2
k ). The signal transmitted

by the CBS is given by

x =
K∑

k=1

√pkwksk = Ũs (2)

where Ũ = [√p1w1,
√p2w2, · · · ,√pkwk] and s =

[ s1, s2, · · · , sk]T is the independent data streams. We
also assume that the data streams for different SUs are

independent of each other and E[|sk|2] = 1. Using{
wk ∈ C

M×1}K
k=1 as beamforming vectors for SUk,wk sat-

isfies ‖wk‖2 = 1. Moreover, pk is the power allocation
to SUk and is subject to a peak power constraint �pk , i.e.,
pk ≤ �pk .
In this paper, it is assumed that CBS has a perfect chan-

nel state information (CSI). Here, the protocol of CBS
can be designed as follows: each frame contains sensing

Fig. 2 The system model of CR MIMO-BCs
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Fig. 3 Block diagram of BC-MAC duality relationship for the transmission process

sub-frame and data transmission sub-frame. During the
sensing sub-frame, SUs remain silent, and thus CBS can
detect spectrum and measure the effect from PUs and
noise. During the first portion of the data transmission
sub-frame, CBS transmits training sequences to SUs so
that CBS can estimate downlink CSI. Although we confine
ourselves to a single-cell system in which all beamform-
ers belong to a CBS, this model can easily be extended
so as to incorporate multiple CBS. Let gn,k be the power
gain between CBS and the nth PU (PUn), the interference
power received by PUn is

In =
∑

k
gn,kpkwH

k wk (3)

To ensure the QoS of PUs, the interference power
should be below certain thresholds. Let p(n)

th represents
the interference power threshold for PUn, i.e., In ≤ p(n)

th .
Substituting (2) into (1), the received signal of SUk is
expressed as

yk = √pkhHk wksk +
∑

i�=k
√pihHk wisi + nk (4)

where the first term is the received signal of the intended
message, whereas the second and third terms denote the
interference from other messages and noise, respectively.
The SINR at SUk is given by [9, 27]

SINRk(wk ,p) = pkwH
k Rkwk∑

i�=k piwH
i Rkwi + σ 2

k
, subject to In ≤ p(n)

th ,

(5)

where Rk = hkhHk and
∑

i�=k piwH
i Rkwi is interference of

all the SUs with the exception the kth SU.

2.2 Problem formulation
Uplink-downlink duality is identified as SINR transfor-
mation between BC-MAC [26]. Based on this duality,
maximizing the minimum user SINR in the uplink can
be done straightforwardly since the beamformers can be
optimized individually and SINRs are only coupled by the

user’s transmit power [28]. In contrast, downlink opti-
mization is generally a nontrivial task because the user
SINRs depend on all optimization variables and have to
be optimized jointly. In this work, we propose to solve
the problem of transmit beamforming and power control
jointly by simultaneously maximizing the total numbers
of SUs that can be served in the same slot at their QoS
and minimizing the total power required to serve them.
However, to maintain user fairness, their SINRs should be
balanced and maximized.
Motivated by above consideration, we formulate the

SINR balancing [29] designs of CR MIMO-BCs into min-
imax optimization problems, where each SINR balancing
depends on the choice of all beamformers and trans-
mission powers. Thus, a necessary and sufficient condi-
tion for global achievability is obtained by maximizing
minkSINRk/γk over all possible beamformers and trans-
mission powers. Therefore, the SINR balancing problem
for CR MIMO-BCs is defined as

max
wk ,p

min
1≤k≤K

SINRk(wk ,p)

γk
(6)

subject to 0 ≤ pk ≤ �pk , ‖p‖1 ≤ p (7)

In ≤ p(n)
th (8)

where γk is the target SINR for SUk . The object function
(6) is to find power allocation such that all SUs can achieve
their target SINRs in a fair manner.

3 Joint transmit beamforming and power control
as noncooperative separable game

In this section, we form joint transmit beamforming and
power control as noncooperative separable game, where
beamforming vectors are modeled as beamforming sub-
game and power control is modeled as power control
subgame. We target at jointly adjusting the beamform-
ers and transmission powers according to individual SINR
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requirements in order to meet SINR balancing for CR
MIMO-BCs.

3.1 Noncooperative beamforming game
The beamforming design techniques based on the satis-
faction of target SINRs have been investigated in [18],
where the approaches use the criterion of minimizing
the total power of beamformer subject to SINR con-
straints for SUs and interference leakage constraints for
PUs. However, the resulting problems can be infeasi-
ble. In such cases, to make the problem feasible, the
design has to be repeated with lower SINR targets or
some SUs have to be dropped [12, 27]. A more attractive
problem formulation which always guarantees feasibility
is based on SINR balancing with extra PU interference
leakage constraints. In this paper, to make the prob-
lem feasible, the beamforming design adopts target SINR
γk for SUk . A set of optimal beamforming vectors
exists for feasible γk , and the optimization problem is
written as

Minimize
w̃k

K∑
k=1

‖w̃k‖2 (9)

where w̃k = √pkwk . The SINR-based beamforming
designed for downlink transmission immediately carry
over to uplink reception [18]. Using the principle of
uplink-downlink duality, the beamformer designed in the
virtual uplink mode can be used in the downlink mode
to achieve the same SINR values by choosing appropri-
ate downlink power allocations. Thus, the solution of
the downlink beamforming problem (9) is equivalently
obtained by solving an easier-to-handle uplink problem
instead. The game theory is usually suitable to solve beam-
forming problem where distributed decision making is
required [30]. According to uplink-downlink duality, we
also adopt the separable game theory to solve beamform-
ing problem.
The general structure of the optimal beamforming

is obtained via a network Lagrangian, which is com-
monly referred to as the minimum variance distortionless
response (MVDR) beamforming [31, 32]. Now, we define
normalized MVDR beamforming vector at SUk by

w†
k = hHk Rk(w̃−k)

−1hkwk (10)

where w̃−k =
{
w̃k : −k �= 1, · · · , k − 1, k + 1, · · · ,K

}
.

The interferer plus noise covariance at SUk is given by

Rk(w̃−k) =
K∑

i�=k,i=1
hkw̃H

i w̃ihHk + σ 2I. (11)

Substituting (10) into (5) and imposing the constraints,
the corresponding Lagrangian is obtained as

L(w) =
K∑

k=1
‖w̃k‖2 +

K∑
k=1

τk
(
γk − w̃H

k h
H
k R

−1
k hkw̃k

)
(12)

K∑
k=1

τk
(
γk − w̃H

k h
H
k R

−1
k hkw̃k

)
= 0 (13)

where τk is the Lagrangian parameter. We can obtain the
optimal beamforming vector wk by taking the derivative
of L(w) in (12) with respect to w̃k , we obtain

∂L(w)

∂w̃k
= 2w̃k − 2τkhHk R

−1
k hkw̃k

+
K∑

i�=k,i=1
τiw̃ihHi hiR

−1
i

∂Ri
∂w̃k

R−1
i hiw̃i = 0

(14)

where the identity ∂R−1
i / ∂w̃k = −R−1

i ∂Ri / ∂w̃kR−1
i is

used. We simplify (14) and obtain

w̃k − τkhHk R
−1
k hkw̃k +

K∑
i�=k,i=1

τihHi R
−1
i hiw̃iw̃H

i hHi R
−1
i hiw̃k = 0.

(15)

Substituting (10) into (15), the corresponding stationary
points of the Lagrangian (13) are given by

wk = τkQ−1
k hHk Rk(w̃−k)

−1hkwk (16)

where matrixQk is defined as

Qk =
K∑

k �=i,i=1
τip∗

i hi
(
w†
i

)H
w†
i h

H
i + σ 2I. (17)

Substituting (15) into (13), τk is given by

τk = wH
k Qkwk

wH
k h

H
i R

−1
i hiwk

. (18)

As described above, we aim to solve the SINR balancing
problem under the total transmission power constraint.
We propose the first-level game that it is defined as

wk = argmax
w

hHk Rk(w̃−k)
−1hkwk . (19)

Applying MMSE criterion, (19) can be rewritten as

wk = argmax
wk

hHk Rk(w̃−k)
−1hkwk

wH
k R∗

k(w̃−k)−1wk
. (20)

With regard to (20), there is nonunique solution. Hence,
it can be used to improve the result in an iterative
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algorithm to find the optimal beamforming vectors. We
set wk(m + 1) =

(
w†
k(m + 1)

)∗
and obtain

wk(m + 1) = R∗
k(w̃−k)

−1hHk Rk(w̃−k)
−1hkwk(m) (21)

wherem denotes iteration steps.

3.2 The noncooperative power control game
In this noncooperative game, the SU’s beamforming vec-
tors are fixed, and individual SUs adjust only their power
in their corresponding strategy spaces in order to mini-
mize the total transmission while satisfying a set of tar-
get SINR. The noncooperative beamforming subgame is
modeled as:

1. Players: � = {1, 2, · · · ,K}, where k = 1, 2, · · · ,K
represents SUk .

2. Action space: 	=p1×p2 · · ·×pK , where pk =[ 0,�pk]
represents SUk

′s action set. The action vector of all
SUs is denoted by p = [ p1, · · · , pK ], where pk ∈ 	.
The action vector excluding the action of SUk is
customarily denoted by p−k .

3. Utility function: we use uk(pk ,p−k) to represent
SUk

′s utility function.

Before establishing the uniqueness of NE in the power
allocation game, we need the following definition. The
best response function of SUk is given by

uk (p−k) =
{
pk ∈ pk : uk(pk ,p−k) ≥ uk

(
p†k ,p−k

)
, p†

k
∈ pk

}
.

(22)

The goal in CR MIMO-BCs is to achieve the opti-
mal power allocation pk . From (22), we can obtain
u′
k

(
p†k ,p−k

)
= 0. We assume that SUk has target SINR γk

corresponding to the best response. The target SINRmust
be admissible and satisfies [33]

K∑
k=1

γk
1 + γk

< M, (23)

In this case, the corresponding utility function is

uk(γk) = γk
γk + α

(24)

where α (α ≥ 1) is a constant for all SUs’ channel and
is defined as adjustable parameter. Given the existence of
the NE solution, we need to propose an algorithm for SUs
to reach NE. In CR MIMO-BCs, the NE is not Pareto
optimal because each SU independently selects strate-
gies thus affects each other. Each SU must pay off some
price in selecting the strategy. A linear pricing function
is commonly used because of its implementation simplic-
ity, which allows a distributed implementation where the
price can be broadcast by the base station to all terminals
[30, 34]. In this paper, we use independent linear pricing

function λpk , where λ is a constant, called pricing fac-
tor. The net utility function is uk = γk / (γk + α) − λpk .
The optimal power allocation problem for SUk is repre-
sented as

argmaxuk = argmax
(

γk
γk + α

− λpk
)
. (25)

Taking the derivative of uk in (25), we have

∂uk
∂pk

= ∂uk
∂γk

· ∂γk
∂pk

− λ = ρkα

(γk + α)2
− λ = 0. (26)

Solving (26), we can obtain optimal power allocation to
SUk expression as

pk =
√

α

λρk
− α

ρk
, ρk = wH

k Rkwk∑
i�=k piwH

i Rkwi+σ 2
k
. (27)

From (27), power allocation is a process of dynamic
interaction. Now, the problem is whether the pk defined
above exists and whether it is globally optimal (when it
exists) [35].We need to find a NE that allows the system to
achieve the optimum performance. According to the Nash
theorem [36], the following two conditions must be satis-
fied. First, power allocation pk is not empty, closed, and
bounded convex set in the Euclidean space. Second, the
net utility function is a continuous function and is quasi-
concave in pk . The first condition is satisfied as each SU’s
selection action set is defined as [ 0,�pk]. For the second
condition, the second derivative of the net utility function
is given by

∂2uk
∂p2

k

=
∂

(
ρkα

(γk+α)2
− λ

)
∂pk

= −2ρ2
kα

(ρkpk + α)3
< 0. (28)

From (28), the net utility function is a continuous func-
tion and is concave in pk . The concave function is also a
quasi-concave function. Hence, the corresponding power
allocation solution must exist.
If the best response function of SUs is a standard func-

tion, then NE in this game will be unique. A function u(p)

is said to be a standard function if it satisfies the following
three properties [37]:

1. Positivity: u(p) > 0.
2. Monotonicity: If p ≥ p†, then u(p†) ≥ u(p).
3. Scalability: For all μ > 1, μu(p†) ≥ u(μp).

To show that the best response function of SUk is a
standard function, we prove the above three properties as
follows:

1. Positivity: Since each SU can obtain a certain utility
through power allocation and satisfies u(pk) > 0.

2. Monotonicity: Since u(pk) > 0, if pk ≤ p†k , then
ρk ≥ ρ

†
k . We can derive γk

γk+α
− λpk ≥ 0 ⇒ ρkpk

ρkpk+α
≥
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λpk ⇒ α
λ

≥ α2

ρk
, u(pk) − u

(
p†k

)
=

(√
α

λρk
− α

ρk

)
−

(√
α

λρ
†
k
− α

ρ
†
k

)
≥

(
αρ

†
k−α

√
ρkρ

†
k−αρ

†
k+αρk

)

ρkρ
†
k

=
(
ρk−ρkρ

†
k

)
α

ρkρ
†
k

≥0

3. Scalability: For μ > 1, ρμ = wH
k Rkwk∑

i �=k μpiwH
i Rkwi+σ 2

k
, then

ρμ < ρk , μu(pk) − u(μpk) = μ
(√

α
λρk

− α
ρk

)
−(√

α
λρμ

− α
ρμ

)
≥

√
α
ρ

(
μ√
ρk

− 1√
ρμ

)
+ α

ρμ
− μα

ρk
=

α
(

ρk−√
ρkρμ

ρkρμ

)
> 0

From the propositions in the previous section, the best
response of SUs is to maximize its individual net utility
function.

4 Iterative algorithm
In order to better understand the analytical structure of
SINR balancing, an iterative algorithm is proposed to
obtain the optimal beamforming matrix and power allo-
cation, where each iteration has two steps. In the first
step, the beamforming vectorswk is fixed, and the optimal
power vector p is obtained. In the second step, we fix the
update power vector p to get the corresponding optimal
beamforming matrix wk . One key property of the itera-
tive algorithm is that, for a given beamforming matrix,
the optimal power allocation vector p should satisfy the
following two necessary conditions

SINRk(wk ,p)

γk
= l1

(
w, p(1)

th

)
(29)

∑
k
g1,kpkwH

k wk = p(1)
th (30)

where l1
(
w, p(1)

th

)
is called SU’s SINR level for the given

beamforming matrix. Here, we assume that there is only
one PU that it is enough to demonstrate the key aspects of
spectrum sharing while avoiding unnecessary complica-
tions. The optimal power allocation leads to the balanced
SINR for all SUs, and it satisfies the interference con-
straints in (8) with equality. According to the definition of
SINRk(wk ,p) in (5), l1

(
w, p(1)

th

)
can be represented as [38]

Cp̃ = l1
(
w, p(1)

th

)
Bp̃ (31)

where C =
[
IK×K 0K×1
gT1 −p(1)

th

]
, B =

[
R̃ 


01×K 0

]
, and p̃ =

[pT , 1]T , i.e., p̃ is a (K + 1) × 1 vector with [ p̃]K+1 = 1,
where g1 = [ g1,1, · · · , g1,K ]T . Let R̃ and 
 be respectively
defined as

R̃ =
{
wH
k Rkwk/wH

i Rkwi k �= i
0 k = i (32)


 =
[
σ 2
1 /wH

k R1wk , · · · , σ 2
k /wH

k Rkwk
]

(33)

In (31), C is nonsingular, and we have

�0
(
wk , p(1)

th

)
p̃ = 1

l1
(
w, p(1)

th

) p̃ (34)

�0
(
wk , p(1)

th

)
= C−1B =

⎡
⎣ R̃ 


gT1 R̃
p(1)
th

gT1 


p(1)
th

⎤
⎦ . (35)

For a given beamforming vector wk , l1
(
w, p(1)

th

)
equals

the reciprocal of the largest eigenvalue of non-negative
matrix �0(wk , p(1)

th ) [38, 39] and is given by

l1
(
w, p(1)

th

)
= 1

max λ
(
�0

(
wk , p(1)

th

)) (36)

For fixed beamformers, the transmit powers can be
adjusted so as to guarantee the target SINR values with
minimal total power. However, an update of the power
allocation makes it necessary to reconsider the optimal-
ity of the beamformers. Therefore, to reach the NE of the
joint beamforming subgame and power control subgame,
we combine (5), (20) and (36) to obtain the utility function
as follows

Jk
(
pk ,wk ,w−k

) = τk
(
γk − pkl1(w̃k , w̃−k)

)
+ lnwH

k hHk Rk(w̃−k)
−1hkwk

− lnwH
k R∗

k(w̃−k)
−1wk

(37)

where the utility function is subject to the target SINR
constraints, corresponds to an optimal ensemble of SUs’
beamformers and power allocations. The corresponding
iterative game algorithm is given in Algorithm 1.

5 Numerical simulation results and discussions
In this section, numerical results are provided to examine
the performance of our proposed algorithms with finite
numbers of secondary users and antennas. For Rayleigh
fading, the power gain matrix g1 can be described as
exponentially distributed and assume g1,1, g1,2, · · · g1,K are
unit-mean and mutually independent [35]. The elements
of the channel matrix Rk are assumed to be circularly
symmetric complex Gaussian with zero mean and unity
variance. The noise covariance matrix is assumed to be
the identity matrix. We consider CBS with five antennas
(M = 5), the four SUs each equipped with single antenna.
In addition, an interference threshold of 0.01 is used to
protect PU, i.e., p(1)

th = −20 dB. The SUs power allocation
and the target SINRs are initialized p = 0.014 and γ =
{2, 1.9, 1.8, 1.7}, respectively, where we set target SINRs for
SUs that they satisfy the admissibility condition in (23).
The total transmission power p and power allocations to
SUs are defined in dB relative to the noise power. For
each scenario, 10,000 simulation runs are used for aver-
age. The following parameters are used in all numerical
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Algorithm1:The joint beamforming and power control
update algorithm
1. Initialize:m = 0, set beamforming vectors
w = [

w(0)
1 ,w(0)

2 , · · ·w(0)
K

]T , power allocations to SUs
p = [

p(0)
1 , p(0)

2 , · · · p(0)
K

]T , channel matrix hk , target
SINRs γk , noise covariance σ 2

k , constant α, λ and
tolerance ε, calculate Rk , C and B.
2.m = m + 1, solve

�0
(
wk , p(1)

th

) [
p(m)

1

]
= λmax(m)

[
p(m)

1

]
, satisfy

|λmax(m) − λmax(m + 1)| < ε, calculate wk(m).
3. Using (21) to update wk(m) and solve (27), and
satisfy

∣∣∣u(m+1)
k

− u(m)
k

∣∣∣ < ε, calculate p(m)

k .

4. Using u(m+1)
k

= argmax
(

γk
γk+α

− λp(m)
k

)
to update

p(m)

k .
5. Iteration termination,

∣∣∣J(m+1)
k

− J(m)
k

∣∣∣ < ε, where ε

(ε > 0) is also a small-valued positive number in
practice to represent an infinitely small quantity. If
iteration termination condition is satisfied, then stop, a
n optimal NE has been reached. Otherwise, go to step 2.

simulations unless stated otherwise: α = 1, λ = 0.1, and
ε are small-valued positive numbers and equal to 0.005,
respectively.
Figure 4 shows the normalized maximum SINR and the

total transmission power p for the proposed algorithm
with different iteration steps m. It is assumed that CBS is
composed of five omnidirectional uniform linear arrays.
The linear arrays are separated by a distance 10λ0, where
λ0 is the signal wavelength. From Fig. 4, we can observe
that the proposed algorithm converges very fast (m ≥ 30)
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Fig. 4 Normalized maximum SINR and the total transmission power p
curves for the proposed algorithm with different iteration stepsm
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Fig. 5 Normalized beam pattern power for the proposed algorithm

to the normalized maximization SINR. As expected, the
total transmission power p can impact the performance
very significantly.
Figure 5 illustrates the normalized beampattern power

for the proposed algorithm. SUs are respectively located
in the directions of φ1 = −102°, φ2 = −26°, φ3 = 44°, and
φ4 = 112° relative to CBS, where φ is the azimuth angle. It
is assumed that the change in direction of arrival (DOA)
of input waves to the SUs may be up to ±3° arbitrarily.
One PU is located at the direction φ = 60°. It can be seen
that each beampattern has minimum interference at the
directions of the mainlobes of the other beampatterns, but
they do not affect beamforming directions at SU.
Figures 6 and 7 show the variations of SUs power and

SINRs for variable target SINRs. These features are use-
ful in CR MIMO-BCs, where different QoS requirements
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Fig. 7 SU’s SINR versus iterations for variable target SINRs

may lead to the target SINRs variation, which makes a NE
configuration be achieved. We then vary the first SU’s tar-
get SINR to a new value γ ∗

1 = 1, leading the algorithm
to reach a new NE configuration. Finally, we change SINR
back to its old value γ ∗

1 = 2, restoring essentially the same
NE configuration, and it achieves a faster convergence
speed.
Figure 8 plots the total transmission power p versus the

numbers of iterations under different values of λ and α for
the proposed algorithm. It can be seen that the number
of iterations decreases as the values of the pricing factor λ

increases. This is because SUs will pay off higher pricing
with the increase of the pricing factor. In addition, setting
different values of λ and α, we can find a trade-off between
the system performance and convergence speed for the
proposed algorithm. As a result, we can conclude that the
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Fig. 8 The total transmission power p versus the numbers of iterations
under different values of λ and α for the proposed algorithm

proposed bound is a useful tool for finding the optimal
value of λ and α.

6 Conclusions
We have formulated the SINR balancing designs of CR
MIMO-BCs into optimization problem. Exploiting BC-
MAC duality, we have formed joint transmit beamforming
and power allocation as noncooperative separable game.
We have then exploited the convex theory of noncoopera-
tive game to solve the optimalization problem. Finally, we
have proposed an iterative algorithm to reach the NE of
the joint beamforming subgame and power control sub-
game. Numerical results are provided to validate the opti-
mality and the convergence of the proposed algorithm.
Moreover, a trade-off between the system performance
and convergence speed for the proposed algorithm can be
flexibly controlled by setting different parameter values.
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