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Abstract

Energy harvesting embedded systems are embedded systems that integrate with energy harvesting modules. In this
kind of systems, service tasks and energy harvesting tasks must be scheduled efficiently to keep the whole system
working properly as long as possible. In this paper, we model an energy harvesting embedded system with an energy
model, a task model, and a resource model and propose a dynamic task scheduling algorithm. The proposed algorithm
is based on dynamic voltage and frequency scaling technique and dynamically concentrates all disperse free time
together to harvest energy. We validate the efficiency and effectiveness of the proposed algorithm under both
energy-constraint and non-energy-constraint situations with the Yartiss simulation tool.
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1 Introduction

In embedding systems, the energy is usually provided
with batteries, and the requirements of real time and
many extensive smart functions make embedding
systems consume more and more energy [1]. If we run
the embedding systems arbitrarily, the energy would run
out very quickly; this would shorten the working time of
smart devices. The techniques of dynamic voltage and
frequency scaling (DVES) [2] and dynamic power
management (DPM) [3] could decrease the power
consumption of embedding systems whereas satisfying
the time constraints. However, once deployed, the
embedded application will run a long time, and the
energy of the battery will run out finally. Besides
replacement of the battery, the embedded systems can
harvest energy from the external environment [4],
such as sunshine [5], wind [6], and vibration [7]. By
applying these energy harvesting techniques [8, 9], the
working time of embedded systems can be increased.
While harvesting energy from the environment, both the
harvest and storage of energy need processing time, and
this needs to reschedule the processor and thus interrupts
the working tasks. So, an energy harvesting embedded
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system is an embedded system with different kinds of
energy harvesting modules inside.

In energy harvesting embedded systems [10], one
needs to schedule tasks between harvesting tasks with
working tasks, and the aim is to keep the energy of
embedded systems in a reasonable level, while providing
normal working services at the same time. During the
scheduling of the tasks in energy harvesting embedded
systems, both the energy output and storage units are
the physical environment and the change of status is a
continuous physical process [11]. The physical process
provides much information for the computing environ-
ment, and the decision-making process of the computing
environment affects the physical environment too. Ac-
cording to interaction and fusion [12] of the computing
and physical environment, one can allocate the resources
efficiently and thus optimize the performance of the
whole system.

In this paper, we study the problem of task scheduling
in energy harvesting embedded systems. In an energy
harvesting embedded system, the system needs to
harvest energy from the external environment during
free or idle time. We model an energy harvesting em-
bedded system with an energy model, a task model, and
a resource model and propose a dynamic task schedul-
ing algorithm. Based on dynamic voltage and frequency
scaling techniques, the proposed algorithm concentrates
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all disperse free time together to harvest energy by dy-
namically scheduling harvesting tasks and service tasks.

The rest of the paper is organized as follows. In
Section 1.2, we review related works about scheduling
algorithms in embedded systems. In Section 1.3, we
propose a model for energy harvesting embedded
systems. In Section 1.4, we propose a dynamic task
scheduling algorithm. Experiments and conclusions are
given in Sections 1.5 and 2, respectively.

2 Related works

In this section, we review related works about scheduling
algorithms in embedded systems, especially focus on en-
ergy saving and energy harvesting scheduling algorithms.

2.1 Energy saving scheduling algorithms

Energy saving task scheduling is a key research in
embedded systems and sensor networks. The techniques
of energy saving scheduling can be classified into trad-
itional scheduling method and utility-based scheduling
method. Traditional energy-saving scheduling methods
[13, 14] can be applied to the simple task-arrival mode,
such as period tasks, but it cannot assure the arrival
tasks to be scheduled in real time.

In general, every completion of a task would bring
some utility, and the utility depends on the running time
of the task. The longer the running time, the smaller the
utility is. Jensen et al. [15] proposed a time/utility function
to describe the relationship between the running time and
the utility of a task, and their aim is to maximize the total
utility by finishing all tasks as quickly as possible. Refer-
ences [16—-18] studied how to get the maximal utility with
limited energy. In addition, in order to satisfy the utility
acquirement and the energy budget, Wu et al. [19]
proposed a unimodal arbitrary arrival with energy bounds
algorithm (EBUA), and the EBUA solved the problem
of task scheduling based on unimodal arbitrary arrival
model.

2.2 Energy harvesting scheduling algorithms

The task scheduling problem in energy harvesting
embedded systems was first proposed by Allavena and
Mossé in [20], and then some algorithms for solving this
problem were proposed. The lazy scheduling algorithm
(LSA) proposed by Moser et al. [21] adjusts the worst-
case execution time by adjusting frequency of the CPU
according to tasks’ energy consumption. The LSA is based
on a strong assumption that the worst-case execution
time of a task is related with its energy consumption dir-
ectly, and this assumption is impractical [22]. Chandarli
et al. [23] proposed an ALAP scheduling algorithm, and it
was a fixed-priority scheduling policy that delayed the
executions of jobs as long as possible. Abdeddaim et al.
[24] proposed an ASAP algorithm, and this algorithm
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scheduled tasks as soon as possible when there was
available energy in the battery and suspended execution to
replenish the energy needed to execute one time unit.
Under constraints of energy and time, ASAP is proved to
be optimal.

In addition, in order to get better system performance
and less energy consumption, some scheduling algorithms
[25, 26] take dynamic voltage frequency scaling into
consideration. The EA-DVFS algorithm [25], proposed by
Liu et al, adjusts the CPU frequency by the remaining
energy of the system. If there is not enough energy to run
the task, then it decreases the CPU frequency; otherwise,
it runs the task with maximal CPU frequency. The
HA-DVES algorithm [26] optimizes the system per-
formance and improves the energy utilization further
based on the EA-DVEFS algorithm. However, in some
real-time embedded systems with high reliability,
DVES and related algorithms can extend the running
time of tasks, affect the run-time attribute of the system,
and thus decrease its reliability.

3 Energy harvesting embedded system model
In this section, we model the embedded system with an
energy model, a task model, and a resource model.

3.1 The energy model

In this paper, we applied the system-level energy model
proposed by Martin [27] in his doctoral thesis. We let
the CPU value be 1, if it runs with maximal speed. So,
the amount of computation is also the number of clock
period under maximal speed. We assume that the
embedded system supports DVFS and the CPU has d
discrete speeds (or frequencies) fi(1<i<d). The CPU
speed f; means that the CPU runs f; clock periods per
second. When the CPU runs with speed f, the energy
consumption can be described as

PC = S3f® + Sof* + Sif + So, (1)

where Ss, S5, S1, and S, are constants.

In the above model, the system-level energy consump-
tion includes dynamic energy consumption, static energy
consumption, and the energy consumed by other
components. So, when the system runs with frequency f,
the energy consumption of every clock period is

E(f) :sgf2+szf+sl+% (2)

3.2 The task model

We assume that the embedded system is a preemp-
tive real-time system and the task set is I'={rj,
-, T,}. Every arrival task is an instance of its corre-
sponding task, and the jth instance of task z; is
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denoted as 7;;. In a unimodal arrival model, each task
is related with one tuple <a; P;> and the tuple
means that the maximal number of arrival instances is
a; in any sliding window P,. The periodic real-time task
mode is a special case of the unimodal arrival model,
where the value a; equals to 1.

We use Uy-) to denote the time/utility function of the
task 7;, and thus, Uj(-) is the time/utility function of any
instance of 7;. If 7;; finishes with time ¢, then the utility
is U(2). In addition, we define the beginning time of U;
with the arrival time of 7; and define the ending time of
U; with the sum of its beginning time and the length of
the sliding window P; We let the number of clock
periods be ¢; and the relative deadline be D;, and both
computations of ¢; and D; can be found in [19].

3.3 The resource model

We define the sharing resource set except for the CPU
as SR ={SRj, SRy, - SR,, where each sharing resource
SR; can be shared among all tasks but can only be
accessed by one task at one time. Once some task has
been authorized to access sharing resource, then this
task executes a critical section. After executing of the
critical section, the task releases the sharing resource.
We denote the jth critical section of task 7; as z;j, then
the amount of computation is c(z;;) and the accessed
resource is denoted as s(z;;) € SR. In addition, let N(z;)
be the number of critical sections for 7;, and the total
amount of computation for 7; under all non-critical
sections be c¢,,(7;), then the amount of computation for
task 7; is

Ncs(fi)
¢ = cns(T) + Z Ces (ziJ). (3)

j=1

The critical sections of a task can be nested, that is for
critical sections z;; and z;; of task 7;, we can have z;;c
Ziks Zik C Zij» OF Z;; 0 24 = null.

4 Dynamic task scheduling algorithm

In this section, we propose a dynamic resource sched-
uling algorithm. Here, “dynamic” means that the en-
ergy harvesting module is activated dynamically to
maximize the harvested energy, and at the same time,
the normal services cannot be disturbed. For conveni-
ence, we denote 7;; as 7; in the following sections.
The dynamic scheduling algorithm preserves the com-
puting ability for the following tasks, and for each 7,
constraints the number of instances in any sliding
window to be capacity(r;). In addition, we keep the
running speed in the critical section to be equal to
the static frequency, and thus, the dynamic algorithm
can acquire the speed in the non-critical section ac-
cording to the current running status. In order to
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describe the proposed algorithm, we define some pa-
rameters and functions first:

e ¢ (1;,t) is the remaining computing ability in
the non-critical section of task r; at time ¢.

o (. (z,v,/, t) is the remaining computing ability in
critical section z;; at time £.

e [EET(1;t) is the required estimating time for the
remaining part of task z; at time ¢, which can be
computed with the remaining computing ability, the
running speed in the non-critical section, and the
static running speed in the critical section.

e EEC(1;t) is the estimation of the required energy of
task 7; at time ¢, which can be computed with the
remaining computing ability, the running speed in
the non-critical section, the static running speed in
the critical section, and the energy consumption
defined in Section 1.2.1.

o UER(7; t) is the estimated ratio of utility to the energy
of task 7; starting from time ¢, while it is not blocked,
that is UER(t;, t) = Ut + EET(1;, £))/EEC(7; t).

o UER' (1;t) is the maximal speed of task ; starting
from time ¢, while it is not blocked.

e queue is the waiting queue of arrival tasks.

o recordtime(t;) is the starting time of the sliding
window of task 7;, which initializes to be 1.

e RC(t, t) returns the number of instances, which can
be accepted in the future, of task z; at time ¢, and it
equals to capacity(r;) minus the accepted number of
instances of task z; in the current sliding window.

o checkfeasible(t; t) checks whether or not the current
sliding window can accept new instances of task 7;
at time ¢, and if queue = null, ¢ - recordtime(r;) > D;
or RC(z; t) >0, then this is the idle rate of task z; at
time ¢, which can be computed by the following

equation:
No(r)  Ces(2rk) B;
— 7 4+ =),
k=1 Hes (erk) Dy Di

i Cns(Tr)
: <Z (nmm)-Dr ’

1. runningstate(t, t) reflects the running status of task
7; at time ¢, which returns true if 1; is selected to run
as a candidate task before ¢, and false, otherwise.

2. flr;, t) is the current running speed of task z; at time
¢, which can be computed by Theorem 1.

3. increaseslu(t; si, t) increases the idle rate of task 7; at
time ¢, that is SLU(t;, ) = SLU(t,, t) + sl/D,.

4. decreaseslu(t; si, t) decreases the idle rate of task r;
at time ¢, that is SLU(t;, t) = SLU(t,, t) + sI/D;.

5. selectcandidate(t) selects a candidate task to run.

6. resource(t; t) is the resource accessed by task 7; at
time ¢, which is effective when 1; is in the critical
sections, and returns null otherwise.
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Theorem 1. If ;s selected to run as a candidate task
at time t, then resource(t;, t) returns null, and the run-
ning speed of tin the previous non-critical section is
Az, t). In order to satisfy the schedulability of task T, the
current running speed is

flzi,t) = (14, 8) M—i— mm{SLL[ 7j,t) x D;}).

Sf(zit)
(4)

Proof. As can be seen from the assumption, the task 7;
runs in the critical section, so we have ¢/ (7;,t) = c];
(7;,¢'). At time ¢, the available free time for the task
7; is miny; ASLU(7;, t) x Dj}. At the same time, we
have

c, (Z',, )
f(T,,t)

So, we can get the following result

C;s Ti7t)
+ man]<z{SLu(Tl7 ) X Dj} :f(‘l('lit)

f(zi,t) = (T3, t /<f it —|— miny;;{SLU (;,t) x D;}.

Algorithm 1: Dynamic DVFS algorithm

While switch triggering event at time 7 do
Case task _completion(t,)
Remove this instance from gueue and
adjustRC(7,,1);
If queue # null then
7, = selectcandidate(t);
Caleulate f(7,,t) ;//see algorithm 2
Case task _arrive(t,;)
If checkfeasible(t,,t) = true then
Check if a new sliding window opens;
If t — recordtime(t,) > D, or queue = null
then
recordtime(t;) =1t ;
letinitializeSLU (7,,T) and setRC(7,,t)
Be capacity(r,) minus the number of
Instances of 7, in queue at time 7

Initialize the execution frequencies of critical Sections and non critical sections to their static ones
respectively;

Append the new arrived instance to gueue and adjustRC(z,,t);
If all new task arrivals and checked then
7, = selectcandidate(t) ;

Calculate f(7,,t);//see algorithm 2

Page 4 of 8

Algorithm 1 describes the proposed dynamic DVFS
algorithm. Line 3 rectifies the accepted number of in-
stances in the current sliding window; line 5 selects a
candidate task to run; and line 6 adjusts the running
speed of the candidate task (details are in Algorithm 2).
If a new sliding window is opened (line 10), we use line
11 to initialize the parameters and preserve the computing
ability for the following tasks. When a new task arrives,
line 14 restricts the number of the following tasks by
adjusting RC(7;, t). From lines 11 to 13, we see that every
sliding window of task 7; can have capacity(r;) instances at
most. Lines 15 to 17 reselect a candidate task and com-
pute its running speed.

Algorithm 2: Compute f'(7,,1) of task 7, at time ¢

If runningstate(z,,t) = false then
increaseshu(t,,sl,t), where sl is the slack time that
B,/ capacity(z;) minus the actual blocking time for task 7;;
If resource(t,,t) = null then
Get f(z;,t) by theoreml;
[ (z,,t) = selectfrequency(max {UER (z,,1), f (z,,0)}):

m=cl (z,0)] f(z,,0) =i (7,0 f(7,,1)
If m > 0 then
V', 2i,increaseslu(z;,m,t) ;
Else
v,z i,increase’s/u(r/,fm,t)
Else

f(z..t)=n,(z,,) where z,, is selected to run;

The aim of Algorithm 2 is to decrease the energy con-
sumption by releasing/recycling free time and maximize
the total utility. When a candidate task starts to run,
lines 1 and 2 recycle the free time between the maximal
blocking time with the practical blocking time. When
the resource occupied by task z; at time ¢ is null (line 3),
line 4 computes the running speed of the candidate task in
non-critical sections, line 5 selects the running speed for
task 7; at time £, and line 6 is equal to Vj > i{SLU(T; t) x D;.
When we have the running speed of the candidate task,
the available time of the task would be deducted (line 8) or
released (line 10). Finally, we use line 12 to assure that the
running speed of the candidate task in the critical section
is equal to its static running speed.

5 Experiments

5.1 Experimental setup

In this experiments, we compare our proposed algorithm
with the ASAP and ALAP algorithms and use the
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simulation tool Yartiss [28] to implement these algo-
rithms. Yartiss provides a simulation framework, and this
framework can execute massive tasks of different algo-
rithms with different parameters. We let the output of en-
ergy harvesting unit be equal to the energy supply rate ep,;
of the system, and every time unit provides several energy
units. The energy consumption of a task is linear, and
every task consumes E;/C; energy units per time unit. In
order to evaluate the performance of algorithms, we com-
pare our proposed algorithm with the ASAP and ALAP
algorithms under both energy-constraint and non-energy
constraint situations. Under energy constraints, we
evaluate the performance of algorithms by increasing the
number of tasks; and under non-energy constraints, we
design six application scenes with different amount of
batteries and let Py, = ep, =15, Epin =0, and the running
time Duration = 2550.

In simulation experiments, we use the following six
metrics:
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o
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Fig. 2 Average idle period under non-energy constraints

o 1) Average busy period is the average period of the
CPU under simulation. The longer the average
busy period, the higher the utility of the CPU is.

2) Average idle period is the average period of the
CPU while it is free. Under energy constraints, it
includes free time and relaxed time. The longer
the average idle period, the higher the average
energy level is, and thus, the lower energy
constraints the system has.

3) Average overhead is the average time required to
execute a task under simulation. The bigger the
average overhead, the more likely the task will be
missed before the stopping time.

o 4) Average preemption is the ratio of the preempted
tasks to total tasks. The bigger the average
preemption, the more context switches it has,
and thus, the heavier the overhead is. The heavy
overhead will decrease the performance of the
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whole system and make the scheduling algorithm
unpracticable.

e 5) Average energy level is the average energy percent
of batteries. The higher the average energy level,
the lower energy constraints the system has.

e 6) Average battery switch mode is the ratio of
battery switch modes to total tasks. The more
the average battery switch mode, the lower the
energy utility is. Low energy utility would make
the system work un-properly.

5.2 Experimental results
We compare our proposed algorithm with the ASAP and
ALAP algorithms under both the non-energy-constraint
and the energy-constraint situations, and the results are in
Figs. 1,2, 3,4,5,6,7,8,9,and 10.

Under non-energy constraints, the comparisons of
average busy period, average idle period, average

10 —

X—X ALAP
8 +—+ ASAP|]
O—0O Ours

Average Idle Period (%)
[e)}
|
|

4l i
x>
2 i
+—t | —t—
L | | L L |
50100 200 300 400 600

Battery Energy

Fig. 6 Average idle period under energy constraints

overhead, and average preemption are in Figs. 1, 2, 3, and
4, respectively. The ALAP algorithm postpones the execu-
tion of tasks as long as possible, and it generates massive
free time, so both the average busy period and idle period
are minimum. However, with the increase of the number
of tasks, the average overhead of the ALAP algorithm
increases obviously. The ASAP algorithm executes tasks
as soon as possible, and it is equal to the scheduling
of fixed-priority preemption. Our algorithm is based
on fixed-priority preemption, and increases the threshold
of preemption, so it has similar average busy period,
average idle period, and average overhead to the
ASAP algorithm. In addition, with the introduction of
preemption threshold, our algorithm avoids the tasks
with high priorities preempted, while keeping these
tasks finished in time. So, our algorithm has the least
number of preemptions.

Under energy constraints, the comparisons of average
busy period, average idle period, average overhead,
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average energy level, average preemption, and average
battery switch mode are in Figs. 5, 6, 7, 8, 9, and 10,
respectively. As we can see from these figures, our algo-
rithm has the least preemption too. The reason is that
the ASAP algorithm judges preemption after every exe-
cution time unit and our algorithm runs tasks concen-
tratedly. When the energy is not enough, our algorithm
concentrates all available relaxed time to harvest energy,
which reduces the preemptions caused by lacking
energy. Our algorithm reduces the battery switch mode,
uses the relaxed time to harvest energy, and then
maximizes the busy period and idle period. So, our
algorithm provides higher energy level and decreases
the energy constraints of the system. The overheads of
all the above algorithms tend to be identical. Our
algorithm keeps the battery being on charge or
discharge mode all the time and has less battery switch
mode than the ASAP algorithm.

(5 4.5 T T T T T I

S’; *X—xX ALAP

3 +—+ ASAP

S 40F O—0O Ours [

<

£

3

> 3.5} s

2

)

@

o 3.0} .

o

o

9]

3: 2.5 L ] ] ] L ]
50100 200 300 400 600

Battery Energy
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6 Conclusions

In energy harvesting embedded systems, the system
needs to harvest energy from the external environment
during free or idle time and schedule service tasks and
energy harvesting tasks to keep the whole system work-
ing properly as long as possible. In this paper, we study
the problem of task scheduling in energy harvesting
embedded systems. We model an energy harvesting
embedded system with an energy model, a task model,
and a resource model and propose a dynamic task
scheduling algorithm. Based on the dynamic voltage and
frequency scaling techniques, the proposed algorithm
concentrates all disperse free time together to harvest
energy by dynamically scheduling harvesting tasks and
service tasks. In the future, we will build a real energy
harvesting embedded system, which implements the
proposed algorithm. Currently, we only do some simula-
tion experiments to validate the effectiveness of the
proposed algorithm theoretically, and real improvement
of lifetime on a real system will be our future work too.
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