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Abstract

Wireless network virtualization (WNV) is a promising technique to solve the ossification of current networks. In this
paper, a generalized Long Term Evolution (LTE) air interface virtualization framework is proposed where virtual
operators (VOs) are enabled to share the physical resources owned by the infrastructure provider (InP). This
user-centric feature provides VOs with the flexibility to manage their own virtualized networks according to different
user traffic demand. Hence, we introduce the “Gini Coefficient” to quantitatively characterize the user traffic behavior
among different VOs. In addition, we consider bandwidth-power allocation to optimize system energy efficiency (EE).
The resource allocation problem is formulated as a mixed combinatorial and non-convex optimization problem,
which is extremely difficult to solve. To reduce the computational complexity, we decouple the problem into two
steps. First, for a given power allocation, we obtain the bandwidth allocation. Adopting bankruptcy game model and
the well-known Shapley value, a heuristic bandwidth allocation algorithm is devised. Second, under the assumption
of known bandwidth allocation, we transform the original optimization problem into an equivalent convex
optimization problem and obtain the optimal solution via fractional programming. Through simulation, the results of
user behavior and resource allocation are jointly analyzed. The user behavior is proved to be effective and the
proposed resource allocation outperforms conventional schemes.
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1 Introduction
Internet-dependent lifeway will greatly increase the diver-
sity and density of communication demands in the next-
generation mobile network (5G) [1]. This will lead to a
burst of wireless traffic volume, which is anticipated to
increase tenfold for the next decade [2]. However, today’s
ossified network operation greatly limits network capacity
and efficiency. To cope with the situation, wireless net-
work virtualization (WNV) draws worldwide attention for
its potential to enhance flexibility, diversity, manageability,
and energy efficiency for current networks [3].
The main idea of WNV is to enable differentiated ser-

vices to run on common network infrastructure [3]. In
WNV, the traditional role of mobile network provider is
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separated into two parts. One is referred to as infras-
tructure provider (InP), who owns and supervises the
overall physical network infrastructure. The other is vir-
tual operator (VO) whose concentration is paid on offer-
ing on-demand services to their customers by purchasing
resources from InP.

1.1 Related work
One primary research trend of WNV is Long Term
Evolution (LTE) air interface virtualization, where multi-
ple VOs share resource on the air interface [4]. Gudipati
et al. [5] proposes logically abstracting multiple LTE
eNodeB (evolved NodeB) as one virtual big base sta-
tion. Hence, all the resource elements can be conceptually
thought of as three-dimensional resource grid with time,
frequency, and space. Li et al. [6] promotes replacing
LTE eNodeBs with remote radio units (RRUs) in order
to achieve complete virtualization. Thus the distributed
control units can be replaced by a central controller,
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which maintains a global view of the radio access network
(RAN). Yang et al. [7] refractors the LTE control plane as
software-defined to enhance classified user traffic quality
of service (QoS). The network performance is therefore
improved due to the additional flexibility provided to user
service.
Basically, the virtualization of the wireless resource on

the air interface can be considered as a resource schedul-
ing problem [8]. Existing researches mainly focus on
bandwidth allocation. A contract-based bandwidth allo-
cation algorithm is developed, where resources are allo-
cated based on four types of pre-defined contracts [9, 10].
Costa-Perez et al. [11] proposes virtualizing LTE eNodeB
into different bandwidth slices. The virtualized slices are
assigned to multiple mobile users according to their dif-
ferentiated priority of service flows.
Recently, game theory has been applied in the context

of WNV. Authors in [12] firstly introduce stochastic game
to model the interaction between InP and the VOs. VOs
dynamically compete for bandwidth resource from InP,
and the allocation is determined when the bidding price
is proved to reach a unique Nash equilibrium. To guar-
antee allocation fairness, bankruptcy game is proposed
in [13] to share the limited LTE air interface band-
width resource. Besides, [14] focuses on power resource
allocation in LTE air interface virtualization, where a
Vickrey-Clarke-Groves (VCG) auction is used to model
InP as auctioneer selling power resource to multiple
VOs.

1.2 Main contributions
Brilliant as above researches are, there are still several
disadvantages. Firstly, since conventional network archi-
tecture no longer suits virtualization, the functionalities
in operating virtualized network need to be re-defined.
And there lacks a systematic virtualization framework
for current LTE networks. Secondly, the user-centric
feature in WNV is neglected. By purchasing resources
from InP, VOs can operate their own virtualized net-
works. In other words, VOs can expand or shrink their
markets and customize different types of services to
satisfy whatever their users need to accomplish the
communication task. Therefore, we believe that exploit-
ing user behavior can improve the resource allocation
efficiency.
To address above issues, the main contributions of our

work can be summarized as follows:

• A generalized LTE air interface framework is
proposed where data plane, control plane, and
interface are explicitly defined. To decouple service
from infrastructure, conventional LTE eNodeB is
split into twofold components: data base station (BS)
and signaling controller. Data BS is contained in the

data plane, connected through gate-way to the
Internet. The signaling controller, InP, along with the
VO belong to the control plane. InP is in charge of
the radio access resource via the interface with the
signaling controller. VOs apply for resource from InP
to serve the customers through the interface with InP.

• A tractable expression to quantitatively characterize
user behavior is utilized to indicate the
equilibrium/disequilibrium of VOs’ user traffic rate
demand, which lays foundation for designing the
resource allocation strategies. To the best of our
knowledge, this is the first time to introduce user
behavior analysis to solve WNV problems.

• We consider energy efficiency (EE) optimization
from a system perspective with bandwidth and power
allocation. The problem is formulated as a mixed
combinatorial and non-convex optimization problem
and we decouple it into two steps. A bankruptcy
game is adopted to model VOs as players and the
bandwidth as the total estate. Using Shapley value, a
heuristic bandwidth allocation algorithm is devised to
optimize EE. Afterwards, the optimal power
allocation is obtained via fractional programming.

• Different from existing works, in our simulation, user
behavior is analyzed in joint with resource allocation
results. In different cases, the change of the user
behavior pattern is in line with the resource
allocation results. This indicates that user behavior
analysis can be a potential technique to be used in
WNV to improve its flexibility and efficiency.

The paper is organized as follows. Section 2 and
Section 3 present systemmodel and problem formulation,
respectively. Detailed resource allocation strategies are
investigated in Section 4. Simulation results are analyzed
in Section 5. Section 6 concludes the paper.

2 Systemmodel
The proposed virtualization model is in Fig. 1. In this
section, we will explicitly describe the model in two
aspects. And the user behavior definition is presented
to characterize the service traffic proportion of different
VOs in the system.
To make the paper more readable, we illustrate the

major notations in Table 1. And our proceeding work is
based on the following assumptions:

• Overall system physical resource block (PRBs, the
minimum LTE bandwidth allocation unit, consisting
of 12 sub-carriers) are ideally orthogonal so there
exists no interference problem.

• Consider a heavily loaded hotspot area where the
available resource is limited to meet the total traffic
demand.
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Fig. 1 LTE air interface virtualization framework

Table 1 Basic notations used in the paper

v VO index

V total VO number

S cooperative VO set

V total VO set

n data BS index

N total data BS number

k PRB index

Kv allocated PRBs number of VO#v

m user index

Mv user number of VO#v

Mv user set of VO#v

dv average user traffic rate demand of VO#v

bv minimum PRB number to operate VO#v

cv additional claimed PRB number of VO#v

Y estimated total PRB number to support the whole service area

� Shapley value

y characteristic function of coalition

Kmax
n total PRB number of BS n

Pmax
n transmission power budget of BS n

Rm,v
k,n data rate on PRB k in VO#v of BS n

gm,v
k,n user channel condition on PRB k in VO#v of BS n

am,v
k,n PRB allocation indicator

pm,v
k,n transmit power on PRB k in VO#v of BS n

Pcn circuit power of BS n

η power amplifier inefficiency

Rtot total data rate

Ptot total power assumption

2.1 Virtualized air interface model
As in Fig. 1, conventional LTE eNodeB functionalities
are split into two components: signaling controller and
data BS. Data BS belongs to the data-forwarding plane,
connected through gate-way (GW) into the Internet. Its
main task is to perform baseband processing and real-
ize physical transmission tasks defined by the control
plane. The main advantage of such function split is to
improve network flexibility and energy efficiency. Energy-
consuming data BSs are flexibly deployed and can be acti-
vated/deactivated based on different traffic conditions.
Signaling controller hosts control logic of RAN. Its main

task is resource management on the air interface. For
example, signaling controller can regulate data BSs acti-
vation/deactivation through interface X3 [15]. In night
time, about 85 % traffic reduction is predicted compared
with peak-load time [16]. Therefore, in order to optimize
network EE, redundant data BSs should be shut down.
Also, sleeping BSs can be activated by signaling controller
during busy hour.
In addition, signaling controller may also support part

of the mobility management functions: whenmobile users
cross the coverage boundaries of data BSs or signaling
controllers, handovers can be realized through the coop-
eration between signaling controllers and MME (linked
via interface S1).

2.2 InP-VOmodel
In Fig. 1, a hot-spot area is serviced by several co-located
data BSs. Consider one InP and multiple VOs, i.e., VO#1
and VO#2. VOs have distinct service objectives reflecting
particular performance targets and constraints.
The task of VO is to ensure a satisfactory quality of expe-

rience (QoE) for their users. Since VOs have no direct
access to physical network infrastructure, they may wish
to buy wireless resource from the InP. Hence, VOs are
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required to decide how much radio resource to purchase
from the InP. After obtaining the corresponding resource,
VOs implement their own buffering strategy to satisfy
users’ needs (e.g., which user payloads to drop or which
payloads to pass to the radio link layer). Therefore, VOs
should be equipped with isolated memory space to carry
out their own computation task without interfering with
each other.
InP undertakes two tasks: (1) supervising the whole

RAN and (2) supporting on-demand capacity requests
from different VOs. On one hand, InP gathers VOs’
user traffic information through the interface with dif-
ferent VOs. Based on the information, InP analyzes the
global user traffic behavior according to a predefined con-
tract or protocol. On the other hand, InP defines the
wireless scheduling via management interface towards
the signaling controller. The signaling controller, together
with data BSs, perform resource allocation and physical
transmission.

2.3 User behavior curve
A user behavior model for large-scale cellular users is
introduced in [17–20]. The concept is based on Gini coef-
ficient, an economic measure of statistical dispersion to
evaluate the income distribution of a nation’s residents
[21]. It is an efficient index for assessment on regional
income or wealth inequality. In this article, we extend the
user behavior to more general cases and adopt it as a ref-
erence to describe VOs’ traffic volume share in the overall
system.
First, we sort all the VOs in ascending order of user traf-

fic demand dv: d1 ≤ d2 ≤ · · · ≤ dV . Thus, the user
behavior curve based on [19] can be re-drawn as Fig. 2.

Fig. 2 User behavior curve

X-axis represents cumulative user number proportion
from VO#1 to VO#V, ranging from 0 to 1. Y -axis repre-
sents cumulative traffic demand proportion fromVO#1 to
VO#V, ranging from 0 to 1. In this way, l1 in Fig. 2 forms
the general VO user behavior curve. Each segment of l1
stands for a certain VO, and its slope equals to respective
VO’s traffic demand dv. Therefore, the coordinate of fold
point (xv, yv) in l1 can be calculated as follows:

xv =
∑v

i=1Mi∑V
i=1Mi

, yv =
∑v

i=1Midi∑V
i=1Midi

(1)

where v = 1, 2, · · · ,V . Without loss of generality, let
us define m0 = 0, d0 = 0, and the coordinate can be
modified as:

xv =
∑v

i=0Mi∑V
i=0Mi

, yv =
∑v

i=0Midi∑V
i=0Midi

(2)

where x0 = y0 = 0.
Furthermore, in order to quantitatively depict the user

behavior, we further introduce the user behavior coef-
ficient concept to our model. As defined in [19], user
behavior coefficient h is defined as the ratio between the
area “A” over the total area “A” plus “B”. Area A is enclosed
by curve l0 and l1. Area B is enclosed by curves l1 and l3 as
well as X-axis. Since area B can be regarded as the sum of
a triangle and several trapeziums, the area of B can be cal-
culated by adding up all the sub-graphs. Herein, we derive
the expression of area B as follows:

B =
∑V

v=1
(yv + yv−1)(xv − xv−1)

2
(3)

Substituting Eq. (2) into (3), we can obtain:

B = 2
∑V

v=1
∑v−1

i=0 MiMvdi + ∑V
v=1M2

vdv
2

(∑V
i=0Midi

) (∑V
i=0Mi

) (4)

Next, according to the user behavior coefficient defini-
tion, h can be calculated in relation to Eq. (4) as follows:

h = A
A + B

= (A + B) − B
(A + B)

= 1 − 2B (5)

For better understanding user behavior coefficient h, we
discuss it under two extreme cases:

• First, consider the case where users of each VO
generate equal traffic rate demand, i.e.,
d1 = d2 = · · · = dV . Thus, Eq. (4) can be
transformed as:

B = 2
∑V

v=1
∑v−1

i=0 MiMv + ∑V
v=1M2

v

2
(∑V

i=0Mi
)2 (6)



Fan et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:107 Page 5 of 12

According to multinomial theorem [22], we have:

(∑V

i=0
Mi

)2
=

∑V

i=0
M2

i + 2
∑V

j=1

∑j−1

i=0
MiMj

= m2
0 +

∑V

i=1
M2

i + 2
∑V

j=1

∑j−1

i=0
MiMj

=
∑V

v=1
M2

v + 2
∑V

v=1

∑v−1

i=0
MiMv

(7)

Substituting (7) into (5) and (6), we can obtain
B = 1

2 , h = 0, which means the traffic demands are
equivalent over the whole service area across various
VOs (equilibrium). This way, the user behavior is
completely equality and user behavior curve l1
converges to curve l0 in Fig. 2.

• In the second case, the traffic amounts demanded by
multiple VOs are exceedingly disequilibrium. This
may correspond to the situation that all the traffic
demand are generated by one dominated VO while
other VOs generate few amounts of traffic (called as
“oligopoly” in economics). In this situation, we have
di → 0,∀i = 1, 2 · · · ,V − 1. So by observing Eq. (4)
we find:

∑V
v=1

∑v−1
i=0 MiMv → 0,

∑V
v=1M2

vdv →
M2

VdV and
(∑V

i=0Midi
) (∑V

i=0Mi
)

→ MVdV∑V
i=0Mi. Finally, we have: B → MV

2
∑V

i=0 Mi
, h →

1 − MV∑V
i=0 Mi

. This way, the user behavior is
completely inequality and user behavior c urve l1
converges to curve l2 in Fig. 2. To take a step further,
assuming that the user number of VO#V is much less
than the total number, i.e.,MV <<

∑V
i=1Mi, so

MV∑V
i=0 Mi

→ 0. In such condition curve, l2 approaches
to curve l3 and B → 0, h → 1.

In conclusion, the value of user behavior coefficient gen-
erally lies in the interval [0,1]. In practice, however, both
extreme values are barely reached. On the one hand, a
low user behavior coefficient indicates the traffic demand
share across all the VOs follows rather even distribu-
tion, with 0 corresponding to complete equilibrium. On
the other hand, high user behavior coefficient indicates
the traffic demand share of different VOs follows uneven
distribution, with one corresponding to complete conver-
gence (i.e., the total traffic demands are requested by few
users of the dominated VO).

3 Problem formulation
Our focus is on the resource allocation problem of InP
to different VOs, and EE metric is adopted to evaluate
the system performance. Given the channel state gm,v

k,n , the
transmitted data rate on PRB (k, n) (PRB k of data BS n) of
user (m, v) (userm of VO v) can be calculated by:

Rm,v
k,n = W log2

(
1 + am,v

k,n g
m,v
k,n p

m,v
k,n

σ 2

)
(8)

where σ 2 and W denote additive white Gaussian noise
power and PRB bandwidth. am,v

k,n is the PRB allocation indi-
cator. am,v

k,n = 1 denotes that PRB (k, n) is allocated to
user (m, v); otherwise, am,v

k,n = 0. The total amount of
system-transmitted data rate Rtot during one scheduling
period can be calculated as: Rtot = ∑V

v=1
∑Mv

m=1 R
m,v
k,n =∑N

n=1
∑Kmax

n
k=1 Rm,v

k,n . Hence, the overall system power con-
sumption can be expressed as:

Ptot = ∑N
n=1

∑Kmax
n

k=1 ηpm,v
k,n + ∑N

n=1 pcn (9)

where η is the power amplifier inefficiency. pcn denotes
the circuit power of the data BS. The classic EEmetric, i.e.,
the number of delivered bits per energy unit, is adopted
in this paper [23]. Hence, the optimization problem for
maximizing the system EE can be written as:

max
A,P

Rtot(A,P)
Ptot(A,P)

s.t.
C1 : am,v

k,n ∈ {0, 1},∀ k, n,m, v
C2 :

∑V
v=1

∑Mv
m=1 a

m,v
k,n = 1,∀ k, n

C3 :
∑Mv

m=1 a
m,v
k,n ≥ bv,∀ k, n, v

C4 : pm,v
k,n ≥ 0,∀ k, n,m, v

C5 :
∑Kmax

n
k=1 pm,v

k,n ≤ Pmax
n ,∀ n,m, v

(10)

where A with element am,v
k,n and P with element pm,v

k,n are
the PRB allocation vector and the power allocation vec-
tor, respectively. C1–C3 are PRB allocation constraints.
C2 means that one PRB can be only allocated to one user
at most. C3 is used to guarantee the minimum bandwidth
(PRB number) requirement of each VO. C4–C5 are the
power allocation constraints, and Pmax

n is the maximum
transmit power of BS n.
The resource allocation problem in (10) is a mixed

combinatorial and nonconvex optimization problem. The
combinatorial nature comes from the PRB allocation con-
straints C1 and C2. The nonconvexity feature is caused
by the fractional form of the objective function. Besides,
the variables are mixed integer. Hence, the problem is
very difficult to solve. Therefore, we decouple the resource
allocation problem into two sub-problems: PRB (band-
width) allocation for a given power allocation and power
allocation for a given PRB allocation.

4 Resource allocation strategy
In this section, we first devise a heuristic PRB alloca-
tion algorithm using bankruptcy game and Shapley value.
Second, power allocation problem is solved by fractional
programming.
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4.1 PRB allocation algorithm
First, let us assume that power allocation is known, and
sub-problem 1 can be defined by extracting constraints
C1–C3 from (10):

max
A

Rtot(A)

Ptot(A)

s.t. C1, C2, C3
(11)

The problem is a nonlinear integer programming under
constraints. Conventional solutions include branch-and-
bound method and intelligent algorithm. For both
methods, the computation complexity is rather high, espe-
cially when multiple constraints exist. In addition, one
major concern of the problem is to guarantee alloca-
tion fairness, which is neglected in conventional solutions.
Because the rate demands differentiate from user to user,
allocation according to the demands efficiently optimizes
the resource utilization.
In our work, bankruptcy game is introduced to solve

the problem. VOs are modeled as bankrupt players, and
total PRBs are modeled as overall estate. The reasons are
as follows. First, bankruptcy defines a model where the
estate is insufficient to satisfy the demand of all players
[24]. Since the PRBs owned by the InP are limited, the
total traffic demand should exceed the rate that the PRBs
can provide (according to assumption 2). Second, as a
cooperative game, bankruptcy game enables VOs to coop-
eratively share the PRB resource. Third, to guarantee the
allocation fairness, Shapley value is adopted as a solution
to the bankruptcy game [25].
In order to maintain the virtual network operated, each

VO is likely to reserve a minimum number of PRBs bv,
where

∑V
v=1 bv ≤ ∑N

n=1 Kmax
n . In addition, each VO

should claim additional PRBs cv to satisfy its customers’
traffic needs as much as possible. This establishes com-
petition among different VOs. Therefore, to guarantee
fairness, the allocation strategy should be centrally han-
dled by the InP based on the instantaneous traffic flow
demand reported from VOs.
The InP firstly makes an assessment on the total PRB

number Y to support the whole service area. This can
be realized by combining the most recent traffic demand
information and average channel states in previous trans-
mit time intervals (TTIs). We recommend that the InP
may assume a rather deteriorated channel condition well
below the average value, so that Y >

∑N
n=1 Kmax

n −∑V
v=1 bv. Then, the additional claimed PRBs can be calcu-

lated through the following formulas:

cv =
(

Mvdv∑V
i=1Midi

)
∗ (Y − V ) + 1, ∀v (12a)

∑V

v=1
cv = Y (12b)

In the bankruptcy game, VOs cooperatively share the
physical resource and form coalition with each other.
When a coalition of VOs cooperates, a certain overall
payoff is obtained from the cooperation. Shapley value cal-
culates the contribution or the relative importance that
each player makes to the total payoff. First, let us define
coalition S as a subset of N (i.e., S ⊆ N ). For example,
S = {1, 2} means VO#1 and VO#2 cooperatively apply for
the PRB resource in the bankruptcy game. Here, we define
the cooperation payoff (y in respect of S) as [24]:

y(S) =
[∑N

n=1
Kmax
n −

∑V

v=1
bv −

∑
v/∈S cv

]+
(13)

In total, there are possibly 2N coalitions and for each
possible coalition, y takes a particular value. For exam-
ple, y(∅) = 0 means no VO cooperates in the game,
while y(N) = ∑N

n=1 Kmax
n − ∑V

v=1 bv means all VOs
cooperate. Using y(S), Shapley value can be calculated as
follows [25]:

�v =
∑

S⊆N ,v∈S

(
(|S| − 1)! (N − |S|)!

N !
(y(S) − y(S − {v}))

)

(14)

where |·| represents set’s cardinality. The Shapley value is
expressed as a weighted sum of the cooperation payoff.
y(S) − y(S − {v}) calculates the incremental payoff that
VO v owes to coalitionS . (|S|−1)!(N−|S|)!

N ! is a weighting fac-
tor that assigns equal share of the generated payoff to each
coalition of interest. Shapley value calculates the contri-
bution or the relative importance that each player (VO)
makes to the total payoff. Thus, the optimal allocation
PRB number Kv can be calculated as follows:

Kv = [bv + �v] ,∀v (15a)∑V

v=1
Kv =

∑N

n=1
Kmax
n (15b)

where symbol [x] denotes rounding to the nearest inte-
ger of x. bv is the the minimum PRB number to maintain
a certain VO network operated and �v is the addi-
tional allocated PRB number calculated based on VO’s
traffic demand. (15b) means that the total allocated
PRB number should meet the maximum PRB number
constraint.
The PRB allocation algorithm is presented in

Algorithm 1. In each iteration, PRB is allocated to VO
user with the aim of maximizing energy efficiency. Oper-
ator filter() is defined as: filter(Mv,Kv) = ∅ if and only if
Kv = 0; otherwise, filter(Mv,Kv) = Mv. filter() is used to
guarantee VO v quitting the allocation when its allocated
PRB number exceeds Kv.
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Algorithm 1 PRB allocation algorithm
1: Initialization:
2: Calculate Kv as in (15a), (15b)
3: for n = 1 : N do
4: for k = 1 : Kmax

n do

5:

{
(m, v)=argmax

(
Rm,v
k,n

Pm,v
k,n

)
|m∈⋃V

v=1 filter(Mv,Kv)

}

6: am,v
k,n = 1,Kv = Kv − 1

7: end for
8: end for

4.2 Power allocation
Assuming the PRB allocation is known, the original
problem (10) is decoupled to a power allocation problem.
To eliminate the non-convexity of the power allocation
problem, we transform it into an equivalent convex opti-
mization. And the optimal power allocation is obtained by
Lagrange dual approach.

4.2.1 Problem transformation
Extracting constraints C4 and C5 from (10), sub-problem
2 can be written as:

max
P

Rtot(P)

Ptot(P)

s.t. C4, C5
(16)

where (16) is non-convex due to the fractional form of the
objective function. To make the problem more tractable,
several transformations are required to eliminate the non-
convexity. Hence, let q = Rtot

Ptot , then we have the following
theorem [26].

Theorem 1.
q∗ = Rtot(P∗)/Ptot(P∗) = max{Rtot(P)/Ptot(P)}

if, and only if,
F(q∗) = F(q∗,P∗) = max{Rtot(P) − q∗Ptot(P)} = 0

Theorem 1 is proved in Appendix 1. From Theorem 1,
we know that for an optimization problem with a frac-
tional form objective function, there exists an equivalent
objective function in subtractive form. Thus, the origi-
nal optimization problem in (16) can be reshaped into
following formations:

max
P

Rtot(P) − qPtot(P)

s.t. C4, C5
(17)

where it is easy to verify that the objective is a concave
function with respect to p(v,n)

k . Hence, we can first solve
(17) and then solve (16) by adopting iterative algorithms
as given in Algorithm 2.

Algorithm 2 iteratively approximates the optimal solu-
tion of (17) towards a minimum threshold ε (ε > 0)
and finally achieves optimal EE q with the termination
condition satisfied. We give the convergence proof of
Algorithm 2 in Appendix 2. The algorithm converges to
the optimal EE with a superlinear convergence rate [27].

Algorithm 2 Power allocation algorithm
1: Initialization:
2: Set maximum tolerance ε

3: Initialize optimal EE q1 = 0 and iteration index l = 1
4: repeat
5: For a given ql, the InP solves the problem in (15)

and obtain the power allocation Pl
6: if |Rtot(Pl) − qlPtot(Pl)| ≥ ε then
7: InP sets ql+1 = Rtot(Pl)

Ptot(Pl)
8: else
9: BS obtains the optimal power allocation strategy

as: P∗ = Pl
10: end if
11: l = l + 1
12: until optimal power allocation P∗ is obtained

4.2.2 Power allocation for transformed problem
The optimization problem in (17) is a concave optimiza-
tion problem. As proved in [28], the duality gap equals
to zero under some mild conditions (strong duality).
Therefore, we can use Lagrange duality method to solve
problem (17). The Lagrange function can be derived as
follows:

L
(
pm,v
k,n , λn

)
=

∑N

n=1

∑Kmax
n

k=1
Rm,v
k,n

− q
(∑N

n=1

∑Kmax
n

k=1
ηpm,v

k,n +
∑N

n=1
Pcn

)

−
∑N

n=1
λn

(∑Kmax
n

k=1
pm,v
k,n − Pmax

n

)
(18)

where λn ≥ 0(n = 1, 2, · · ·N) are the Lagrangian multi-
pliers. Thus, the dual problem of (17) can be expressed as:

min
λn≥0

max
pm,v
k,n ≥0

L
(
pm,v
k,n , λn

)
(19)

Therefore, we can solve (19) by decomposing it into two
layers. Layer 1: solve the maximization Lagrange problem
with respect to pm,v

k,n under a fix set of Lagrange mul-
tipliers. Layer 2: obtain λn by minimizing the Lagrange
problem.
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1) Solution for layer 1: By dual decomposition, we first
solve the following Layer 1 sub-problem:

max
pm,v
k,n ≥0

L
(
pm,v
k,n , λn

)
(20)

with a given parameter q and a fixed set of Lagrange mul-

tipliers λn. Using standard KKT condition
∂L

(
pm,v
k,n ,λn

)
∂pm,v

k,n
= 0,

power allocation policy is obtained as:

pm,v
k,n =

[
W

(qη + λn) ln 2
− Am,v

k,n

]+
(21)

where Am,v
k,n = σ 2

gm,v
k,n

.
2) Solution for layer 2: by substituting (21) into (19),

layer 2 sub-problem can be described as follows:

min
λn≥0

f (λn) (22)

where

f (λn) =
∑N

n=1

∑Kmax
n

k=1
W

Am,v
k,n (qη + λn) ln 2

+
∑N

n=1

∑Kmax
n

k=1
Am,v
k,n λn +

∑N

n=1
λnPmax

n

+ qη
∑N

n=1

∑Kmax
n

k=1
Am,v
k,n − q

∑N

n=1
Pcn

(23)

Since f (λn) is differentiable with respect to λn, we derive
its second derivative form as follows:

f ′′(λn) = Kmax
n

(qη + λn)
2 ln 2

(24)

where it can be obviously observed that f ′′
(λn) > 0.

According to [28], we know that f (λn) is a convex func-
tion of λn. Therefore, we can obtain the optimal solution
below:

λn
∗ =

⎡
⎣ WKmax

n(∑Kmax
n

k=1 Am,v
k,n + Pmax

n

)
ln 2

− qη

⎤
⎦

+
(25)

Thus, deriving (25) into (21), we can solve problem (17).

5 Simulation and analysis
In our paper, a hot-spot region is simulated under the
proposed LTE air interface virtualization framework. The
area is covered with three data BSs, shared by three VOs
(i.e., VO#1, VO#2, and VO#3). Mobile users are uniformly
distributed in the area with two types of traffic config-
uration: video and VoIP. Simulation details are given in
Table 2.
In addition, “legacy” LTE network without virtualization

is introduced as a benchmark to compare with the pro-
posed virtualization architecture. In legacy LTE network
setup, the network operators own their individual physical
infrastructure and frequency band and operate isolated

Table 2 Simulation configuration

Parameter Configuration

Simulation area Circular, R = 750 [m]

Coordinate of circle center (0, 0)

Data BS configuration 3 data BS, 10 MHz bandwidth each

(corresponds to about 50 PRBs)

Data BS coordinates (0, 10) (−5, 8.66) (5, 8.66)

Data BS power Pmax
n = 43 dBm, Pcircuit = 25 dBm

Path loss model 128.1 + 37.6log10(d) dB, d in km [29]

Slow fading model Lognormal with zero mean value

Standard deviation = 8 dB

Correlation distance = 50 m

Fast fading model Jakes model

Modulation schemes QPSK, 16 QAM, 64 QAM

Link-2-System interface Effective exponential SINR mapping [30]

Video traffic bit rate 242 kbps [13]

VoIP traffic bit rate 8.4 kbps [13]

from each other. In our simulation, each operator man-
ages one of the three data BSs such that the resource on
the air interface cannot be shared. To evaluate the pro-
posed resource allocation strategy, three different cases
are simulated, as shown in Table 3.
In case 1, 90 total users are equally distributed among

the three operators. User traffic type is video streaming.
According to user behavior definition in Eqs. (1)–(5), we
calculate the user behavior coefficient as h = 0, which
means that the traffic demands generated by VOs are
totally equilibrium. The allocated PRB number in virtual-
ized and legacy network are compared in Fig. 3. In legacy
setup, each operator is assigned with a fixed number of 50
PRBs via its operated BS. In virtualized setup, since dif-
ferent VOs generate equal traffic proportion, the total 150
PRBs are uniformly allocated (50 PRBs each VO).
In case 2, we deploy 40 VoIP users to VO#1, 20 video

users to VO#2, and 30 users to VO#3. Users in operator
3 enjoy a mixed traffic of both video and VoIP. Based on

Table 3 Simulation case

Virtual operators configuration: VO#1: 30 video users

Case 1 VO#2: 30 video users

VO#1: 30 video users

Virtual operators configuration: VO#1: 40 VoIP users

Case 2 VO#2: 20 video users

VO#2: 30 video+VoIP users

Virtual operators configuration: VO#1: 20 VoIP users

Case 3 VO#2: 50 VoIP users

VO#3: 20 video users
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Fig. 3 Operator PRB allocation of case 1

Tables 2 and 3, we can approximately estimate the total
rate demand relationship as: VO#1 < VO#2 < VO#3.
Similiarly, we calculate behavior coefficient as h = 0.42.
Figure 4 compares the PRB allocation of case 2. Legacy
network demonstrates stable PRB allocation while the
PRBs are allocated in relation to the traffic demand infor-
mation of different VOs.
In case 3, VO#1, VO#2, and VO#3 are burdened with 20

VoIP users, 50 VoIP users, and 20 video users respectively.
We can estimate that VO#3 accounts for about 90 % of the
total traffic volume. In this disequilibrium case, the user
behavior coefficient is calculated as h = 0.67. The PRB
allocation in Fig. 5 indicates that VO#3 is allocated 116
out of 150 total PRBs. while the rest PRBs are shared by
the other two VOs with lower traffic burdens.
In summary, the above three simulation cases reflect

different scenarios with different VOs’ service objectives

Fig. 4 Operator PRB allocation of case 2

Fig. 5 Operator PRB allocation of case 3

and constraints. Case 1 exhibits ideally identical traffic
rate while in case 2 VOs undertake disequilibrium traffic
requirements. Case 3 further increases the traffic rate dis-
equilibrium, where the dominated VO#3 generate more
than 90 % of the total rate. Correspondingly, user behavior
coefficient h takes 0, 0.42, and 0.67. And different h val-
ues can effectively reflect different VO traffic condition.
Through Figs. 3, 4 and 5, it is observed that the proposed
PRB allocation enables multiple VOs to dynamically share
the PRBs according to different traffic conditions. By con-
trast, the static PRB management in legacy LTE network
is rather ossified.
Figure 6 compares operators’ average EE in kbits/Joule.

In vertical, the proposed allocation scheme outperforms
the legacy network setup. This is caused by the multiplex-
ing gain from virtualization, i.e., the additional flexiblity
provided to VOs of scheduling PRBs from the shared
resource pool (possibly with better channel condition). In
horizontal, EE of legacy network decreases as disequilib-
rium increases. This is because the redundant PRBs in the

Fig. 6 Operator EE of simulation cases 1–3
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legacy network are wasted when traffic rate is satisfied
or in call silence. By contrast, virtualization enables the
redundant PRBs to be used by VO#3 with comparatively
heavy traffic load.
From the above analysis, we can conclude that VO#1

is “economical” because of its light traffic burden. By
contrast, “greedy” VO#3 claims high-rate services and
consumes a large amount of resources. While VO#2 is
rather “elastic,” for the reason that it expands or shrinks
its service level by dynamically obtaining access to mobile
resource from the shared pool. This is the so-called
flexibility provided by the virtualization, which greatly
improves the system efficiency.
To further investigate the multiplexing gain brought

about by virtualization, we demonstrate operator EE in
Fig. 7 with configurable BS bandwidth. Figure 7 shows
EE of operator#3 by changing user behavior coefficient
h and BS bandwidth. The reason we select operator#3 is
that the performance of such resource-consuming oper-
ator is notably enhanced through the proposed virtual-
ization in our work. As indicated in Fig. 7, EE gain in
point 1, point 2, and point 3 are 0.068, 1.43, and 1.08
(kbits/Joule), respectively. Compared point 2 with point
3, the EE gain is improved 33.80 % when system over-
all bandwidth increases from 20 to 30 MHz. Compared
point 2 to point 1, the EE gain improves from 0.072 to
1.47 when h increases from 0 to 0.67. This reveals that
the proposed virtualization approach can be even more
advantageous with large-scaled bandwidth and traffic
configuration.
Figure 8 demonstrates the cumulative distribution func-

tion (CDF) of system EE. Compared with legacy network
setup, overall system EE is improved 23.25 % on average.
Figure 9 shows the convergence of Algorithm 1. It can

be observed that themethod has a fast convergence rate; it
converges to 90 % of the upper bound performance within
five iterations.

Fig. 7Multiplexing gain from virtualization represented by increasing
user behavior coefficient and BS bandwidth

Fig. 8 Cumulative distribution function of the system energy
efficiency

6 Conclusions
In this paper, a novel LTE air interface virtualization archi-
tecture is proposed based on user behavior analysis. An EE
resource allocation problem is studied to support dynamic
resource sharing among multiple VOs. We formulate the
problem as a mixed combinatorial and non-convex opti-
mization problem. To reduce the computational complex-
ity, the problem is decoupled into two steps. First, to
guarantee fairness, bankruptcy game and Shapley value
are introduced to develop a heuristic bandwidth alloca-
tion problem. Second, fractional programming and con-
vex optimization are adopted to obtain the optimal power
allocation.
In simulation, PRBs are dynamically allocated to mul-

tiple VOs based on different user traffic demands. The
defined user behavior can effectively reflect the VO traf-
fic condition. The flexibility is proved in the sense that

Fig. 9 Convergence of Algorithm 1
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rate-consuming VOs can get more PRB resource while a
minimum number of PRBs are reserved for “economical”
VOs to maintain the network operated. Besides, energy
efficiency is improved in comparison with conventional
networks.

Appendix 1
Proof of Theorem 1
First, let P∗ be the solution of problem (16). We have:

q∗ = Rtot(P∗)/Ptot(P∗) ≥ Rtot(P)/Ptot(P) (26)

Hence:

Rtot(P) − q∗Ptot(P) ≤ 0 (27a)
Rtot(P∗) − q∗Ptot(P∗) = 0 (27b)

From (a), we know that max
{
Rtot(P) − q∗Ptot(P)

} = 0.
From (b), we know that the maximum is taken on at point
P∗. Thus, the first part of our proof is finished.
Second, let P∗ be the solution of problem (17). Based on

the definition of (17), we can obtain following equations:

Rtot(P) − q∗Ptot(P) ≤ Rtot(P∗) − q∗Ptot(P∗) = 0 (28)

Hence:

Rtot(P) − q∗Ptot(P) ≤ 0 (29a)
Rtot(P∗) − q∗Ptot(P∗) = 0 (29b)

From (a), we have q∗ ≥ Rtot(P)/Ptot(P), i.e., q∗ is the
maximum value of problem (16). From (b), we have q∗ =
Rtot(P∗)/Ptot(P∗), i.e., P∗ is the solution vector of problem
(16). Thus, the equivalence of the two problems defined in
Theorem 1 is proved.

Appendix 2
Proof of Algorithm 2 convergence
Note that the problem equivalent to (17) is F(q) =
max
P

{Rtot(P)−qPtot(P)}, as defined in Theorem 1. And the
proof can be decoupled into three steps as follows:

Step 1
F(q) is a nonnegative function in the definition domain.

Proof. Assuming that P is an arbitrary solution of the
problem and q = Rtot(P)/Ptot(P). Hence:

F(q) = max
P

{Rtot(P) − qPtot(P)}
≥ Rtot(P) − qPtot(P) = 0

(30)

Step 2
F(q) is a strictly monotonic decreasing function with
respect to q.

Proof. Assuming P1 and P2 are two optimal solutions to
F(q1) and F(q2), respectively, and q1 < q2. Hence,

F(q2) = max
P

{Rtot(P) − q2Ptot(P)}
= Rtot(P2) − q2Ptot(P2)

< Rtot(P2) − q1Ptot(P2)

≤ max
P

{Rtot(P) − q1Ptot(P)} = F(q1)

(31)

As for any arbitrary pair q1 < q2, we have F(q1) > F(q2).

Step 3
ql > ql+1,∀l = 1, 2, · · · in Algorithm 2.

Proof. According to Algorithm 2 definition, Pl is the
optimal solution to F(ql) in l-th iteration and ql+1 =
Rtot(Pl)/Ptot(Pl). Based on step 1, F(ql) > 0, the following
fact is obtained:

F(ql) = Rtot(Pl) − qlPtot(Pl)

= Rtot(Pl)(ql+1 − ql) > 0
(32)

Since Rtot(Pl) > 0, we have ql+1 > ql.

Based on steps 1–2, we know that F(q) is a strictly
monotonic decreasing function with nonnegative value.
According to step 3, ql increases as iteration number l
accumulates, i.e., ql+1 > ql. Therefore, as long as the iter-
ation time is large enough, this will eventually approach
to zero and satisfy the optimality condition of Theorem 1,
i.e., l → ∞, F(ql) → 0.
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