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Abstract

This paper presents the problem formulation, development, and use of a robust dynamic genetic algorithm (GA) for
channel allocation in cognitive radio. This approach offers an efficient way to access available spectrum for both
primary and secondary users. The proposed dynamic genetic algorithms based on the new sophisticated crossover
and mutation operators ensure the validity of channels and the fast convergence to the best solution in a highly
dynamic environment. Compared with existing methods, simulation results demonstrate that our approach algorithm
produces satisfactory results with reduced network interference and enhance efficiently the spectrum throughput.

1 Introduction

With the recent growing increases of wireless devices,
radio spectrum scarcity occurs and mandates the estab-
lishment of methods for developing technical description
to access efficiently the available radio spectrum. For
this, cognitive radio (CR) techniques [1] can be used to
provide a promising solution to increase the spectrum
utilization. The principle of the CR, included in the IEEE
802.22 and IEEE 802.16h norms [2], needs an alternative
spectrum management, when each secondary/unlicensed
user (SU) is permitted to sense and access the spectrum
when the spectrum is unoccupied by primary/licensed
users (PUs) [3, 4].

When a PU requests to access its own spectrum, the
SUs using the same spectrum opportunistically should
switch to other unoccupied spectra to protect the trans-
mission of the PU and continue their own data delivery
[4]. However, severe throughput degradation may occur
in this situation [5].

In the literature, several algorithms have been pro-
posed for channel allocation in cognitive radio, whether
they are local or distributed search methods.

In this context, our work consists of presenting a ro-
bust genetic algorithm to solve the channel assignment
problem in cognitive radio systems.

The objective of this problem concerns minimizing
the channel interference to the primary radio users
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meeting those requirements for opportunistic spectrum
utilization. The use of genetic algorithm is quite appro-
priate in the context of cognitive radio to control and
avoid interference in the channel assignment problem.

The rest of this paper is organized as follows: section 2
gives a brief analysis of existing methods for spectrum
allocation used in cognitive radio. Section 3 concerns
the representation and the construction of the objective
function for channel allocation. In section 4, we propose
the solution of the problem by using a sophisticated gen-
etic algorithm. Then, in section 5, experimental results
are presented and discussed. We conclude the paper in
section 6.

2 Approaches for cognitive radio

Cognitive radio offers a promising solution for an ef-
ficient and full use of radio channel resources. It has
attracted much research attention, and both distrib-
uted and centralized schemes have been proposed to
facilitate the spectrum sharing between SUs and PUs
[5]. Then, the concept of machine learning was
applied to maximize capacity and dynamic spectrum
access. Different learning algorithms can be used in
CR networks such as Fuzzy Logic, Neural Networks,
Hidden Markov Model, Genetic Algorithms, or Classi-
fication Algorithms [6, 7].

The multilayered neural networks were used to model
and estimate the performances of IEEE 802.11 networks.
They come in the form of a set of interconnected elem-
entary processors that can perform the entire processing
information chain. Each neuron adapts its parameters
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with its neighbors to achieve the objective for which
they have been designed. Therefore, the neural networks
can be considered as a suitable model for a cognitive
radio network, and where a prompt response to the
changing radio environment is required from an
unlicensed user (8, 9].

Fuzzy logic is often combined with neural networks
that can adapt to the environment during the evolution
of a CR system. It can be applied to obtain the solution
to a problem having imprecise, noisy, and incomplete in-
put information.

Instead of complicated mathematical formulations, the
fuzzy logic uses human understandable fuzzy sets and
inference rules to obtain the solution that satisfies the
desired system objectives. The main advantage of fuzzy
logic is its simplicity. It is more suitable for real-time
cognitive radio applications in which the response time
is critical to system performance [7].

A genetic algorithm is a robust evolutionary algorithm
that models biological processes to solve a highly com-
plex computational problem to find optimal solutions.
Crossover and mutation are two basic operators of GA.
Performance of GA depends tightly on these operators,
and new solutions are found based on old solutions
through the use of crossover and mutation processes.
Crossover and mutation perform two different roles.
Crossover is a convergence operation; it is intended to
pull the population toward a local minimum/maximum.
Mutation is a divergence operation; it is intended to oc-
casionally break one or more members of a population
out of a local minimum/maximum space and potentially
discover a better minimum/maximum space.

GA has been applied to spectrum optimization in cog-
nitive radio networks. For example, genetic algorithms
have been investigated through CR test-beds under cer-
tain controlled radio environments [9-11]. In [12], a
genetic algorithm has been used to optimize the Bit
Error Rate (BER) performance in cognitive radio. Unlike
the traditional GA, Kaur et al, in [13], proposed an
Adaptive Genetic Algorithm (AGA) to optimize QoS pa-
rameters in a cognitive radio system. The algorithm uses
different crossover and mutation rates [14]. In [15], the
genetic algorithm is used with two criteria: (1) maximiz-
ing the probability of detection (i.e., the capability of a
SU to determine if a PU is using a certain portion of
spectrum) and (2) minimizing the probability of false
alarm (i.e,, sensing the presence of a PU while it is not),
for an optimal space allocation. An improved genetic
spectrum assignment model with the consideration of
interference constraints is proposed in [16], in order to
reduce computational complexity, where the population
of genetic algorithm is divided into two sets: the feasible
spectrum assignment and the randomly updated
spectrum assignment. In [17], the genetic algorithm is
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compared to a Particle Swarm Optimization (PSO) algo-
rithm, and authors conclude that in a dynamic environ-
ment, the GA requires more operations to perform than
PSO and hence takes longer time.

In [14] a Chaotic Genetic Algorithm (CGA) was devel-
oped, where a chaotic sequence is used to generate the
initial population and incorporate chaos through the
crossover and mutation processes. In [18], A CGA based
on the new chaotic map is proposed having a better
distribution.

We would like to stress that each of the learning
techniques has its own advantages and disadvantages,
and none of them can be considered on its own to
fully accomplish the realization of cognitive radio sys-
tems. All of the proposed approaches introduced so
far can find solutions for radio resource management
but may not produce the best ones as they have limi-
tations in adapting parameters in a highly varying
radio environment.

Fuzzy logic is a far powerful and flexible method,
based on learning in transmission rate and prediction. It
has potential in either specific problem-solving areas or
as a part of cognitive radio system, to reduce its com-
plexity. Fuzzy logic can approximate the solutions inde-
pendently for certain input, but it does not provide
accurate solutions. Other parameters could be included
to predict the best radio configuration; it should estab-
lish a rule related to the specific situation in which it is
used, and these rules may involve some limitations in
programming.

Neural networks have a lesser need for prior know-
ledge; they can be used in any phase of cognition. They
include extensive training to generate observed behavior,
but they become unstable when constraints are neces-
sary to account for. Their application to different scenar-
ios needs to be analyzed for a CR; each individual node
has to be provided with a pre-trained network or a set of
training examples mapping observations to correct ac-
tions. For the latter case, each CR also has to know the
parameters used for training the neural network so that
all radios can create and reproduce the same neural net-
work deterministically [19].

GA is well suited for multi-objective performance and
non-mathematical optimization problems in cognitive
radio networks as it can search for multiple sets of solu-
tions over a large search space and can enforce con-
straints [20]. Fast convergence, ease of implementation,
and optimization of discrete and continuous radio pa-
rameters render GA as an excellent optimization tool for
making resource management decisions in cognitive
radio networks [21].

One of the main issues involved in successful genetic
algorithm behavior is the selection of the objective func-
tion(s) that is a non-closed form of constraints and may
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be difficult to use in practice for some parameters intro-
duced in cognitive radio algorithms.

The main advantages of the proposed algorithm in this
paper regarding the other approaches might be per-
ceived through the following criteria:

(1)Implicit parallelism and robustness; such algorithm
works on a set of solutions and can explore several
parts of the solution space in parallel,

(2)Distributed memory; the last solutions remain
registered and the GA looks for idle channels to
allocate new call requests, and

(3) The algorithm can operate under the assumption of
limited information exchange.

3 System model

We will use the model described in [5] where the chan-
nel (i.e., frequency band) allocation problem is fo-
rmulated as a graph coloring problem. As in Fig. 1, the
network is abstracted as an undirected graph G =(V,
E, L), where vertices (V) represent users, edges (E)
represent interference, so that no channels can be
assigned simultaneously to any adjacent nodes, and L
represents the availability of channel bands at vertices
of G. For the sake of simplicity, the interference
graph is assumed the same for all channel bands.
This can be generalized to the case where each chan-
nel band has its own interference graph, a possible
scenario due to the different propagation properties
in the environment associated with individual bands.
Furthermore, let K be the number of available chan-
nels in G. Although it is possible that different
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channels have different bandwidths, the model treats
all channels with the same bandwidth [19].

The available channel band is divided into orthogonal
channels of the same bandwidth using the FDMA
method. It is assumed that there is a mechanism that
enables wireless devices to use multiple channels to
communicate at the same time.

Let N = | V| denotes the total number of secondary users.
Edges will be represented by the Nx N matrix E = {e;},
where e; =1 if there is an edge between vertices i and j
and e; = 0 implies that i and j may use the same channel;
note that since G is an undirected graph, E is symmetric.
In a similar notation, we represent the availability of chan-
nels at vertices of G by an N x K matrix L = {[;}, referred
as the coloring matrix. In particular, /;;=1 means that
channel k is available at vertex i, and /;z = 0 otherwise. For
instance, Fig. 1 shows four PUs, represented by num-
bers I to IV, using channel bands A, B, and C. These
channels cannot be utilized by secondary users in the
vicinity and the nodes within a certain range of each
primary user cannot reuse the same channel. The same
Fig. 1 shows five different secondary users, represented
by numbers I to 5. If a secondary user is within the
dashed circle of a specific primary user, it cannot access
the channel band used by this primary user. For in-
stance, node 3 is within the interference range of pri-
mary user I, who uses channel B, and is within the
interference range of primary user II, who uses channel
A. Therefore, it cannot reuse channels A and B. As a
consequence, each node has access to a different set of
bands. In Fig. 1, the available channels at vertex 1 are
{A, B, C} and {A, C} at vertex 5 [19]. Figure 1 is then
represented by the following matrices:

(A.B.C)

I(channel B)

IV(channel C)

A0 II(ch/:mnel A)
©
©)

Fig. 1 Graph of a model of such a network. PUs are referenced with numbers from | to IV. SUs are represented with numbers from 1 to 5.
Available channels are g, b, and c. Circles delimit PUs interference domains. [19]

A.0)
III(channel B)
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Let us denote a channel assignment policy by an N x K
matrix S = {s;}, where s;z =0 or 1 and s;, =1 if channel k
is assigned to the nodes i and 0 otherwise. We call S a
feasible assignment if the assignments satisfy the inter-
ference graph constraint and the channel availability
constraint. More specifically, for any node i, we have s;
=0if /=0 (i.e., a channel can be assigned only if it is
available at that node). Furthermore,

SikSjk€ij ZO,VL,]: 1, . ,N,k

=1, ... K. (3.1)

In other words, two connected nodes cannot be
assigned the same channels. The objective of the re-
source allocation is to maximize the spectrum
utilization. This problem can be formally represented as
the following nonlinear integer programming problem.

N K
max SZZS,’/(
i=1 k=1
st su<li, sasixe; =0, sk =0,1,

(3.2)

For each node i, and for k=1, -, K if s;z=1, the [z =1
(i.e., a channel is assigned to i), or else if s =0, the [ = 1,
(i.e., a channel is available but not assigned at that node).

Forall i, j=1,-, N, k=1,--, K The above problem is
sometimes referred to as a list multicoloring problem.
When time is taken into account, a time index can be
introduced into the equation where the objective is to
maximize the utilization averaged over time and the
three constraints are satisfied at each time instant. The
corresponding decision list coloring problem is formu-
lated below.

Problem 3.1 [19] (DListColor Problem) Given a graph
G=(V; E, L) and a positive integer B, is there a solution
with the same set of constraints as in (3.2)? Such that:

K
Zsik > B7

k=1

N
(3.3)

14

3.1 Proposition 3.1
The DListColor problem is NP-complete.

PROOFE: This problem is clearly in NP since once a
valid coloring assignment S is obtained, condition (3.3)
may be verified in O(|V| K ) time [19].

Note that a clique is a fully connected subgraph (a
subnet), i.e., a clique consists of a set of nodes where
any pair of its nodes has an edge in between.
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We now show that the maximum clique problem can
be reduced to the DListColor problem in polynomial
time and that the maximum clique problem has a solu-
tion if and only if DListColor has a solution.

Let G=(V, E, L) be the undirected graph of the
maximum clique problem. We construct the graph G
"=(V', E’, L") for our DListColor problem, such that
V=V, and E’ is the complementary set of E. Further-
more, the color matrix L is of dimension |V]|x1,
where L =[1,1,..., 1]7. Since any pair of nodes connected
in G are not connected in G' and vice versa, we cannot
simultaneously assign to nodes inG’ the same color if
these nodes form a clique in G. Therefore, there exists a
clique in G of size at least m if and only if there is no solu-
tion for DListColor for B = |V| — m. This reduction is obvi-
ously polynomial time as shown in [19].

3.1.1 Color decoupling

The list coloring problem may be reduced to a set of
maximum-size clique problems when fairness is not in
consideration. In other words, in the process of finding
the maximum in (3.2), nodes are allowed to be assigned
zero channels.

According to the logic diagram of the proposed reso-
lution model, the channel assignment problem in a cog-
nitive radio system is based on opportunist channel
exploitation where each channel will be used by the
maximum number of nodes. Therefore, the initialization
of such “possible channels allocation” for a maximum
clique problem as a list of channels is constructed to
produce a solution for a subnetwork, which can be ex-
tended to the entire network. For each channel, a greedy
assignment is determined to maximize the number of
nodes assigned to this channel, and then a subnet of
connected nodes is generated. Finally, nodes are con-
nected in the original graph G.

The problem of assigning each node a set of colors
(channels) may be solved by coloring the graph in se-
quence with individual colors:

N K K N
max E E s,»k<:>§ max E Sik (3.4)
f O = =1 =1

The feasible assignment matrix is S = {s;} where s =1
if channel k is assigned to the nodes i and 0 otherwise.
Sk denotes the channel allocation with respect to chan-
nel (color) k. More specifically, Sy is the kX column in
the assignment matrix S. Note that the equality in (3.4)
does not hold in general situations, e.g., a graph col-
oring problem that requires each node to be colored
with nonempty colors. Note that when fairness is
taken into account, e.g., each node has to be assigned
at least one color, and then the decoupling property
does not apply [19].
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With fewer assigned channel to the connected nodes,
our proposed algorithm can result in very unfair alloca-
tion. Nodes with greatest degrees of saturation will be
first served, and their subnet obtains the maximum
number of used channels. The algorithm will allow the
addition of new assignments in its structure during the
search. This is one of the great primary advantages of
the proposed genetic algorithm.

4 Spectrum allocation using genetic algorithm
A genetic algorithm (GA) is an optimization heuristic
for searching very large spaces that mimic the process of
natural selection. An initial population of individual so-
lutions can be combined to make fitter solutions (Fig. 2).
At each step, the GA uses three main types of rules to
create the next generation from the current population:
selection rules, crossover rules, and mutation rules.

In this section, we first discuss the background of GA
and then the implementation of the proposed solution
model on the channel allocation in CR.

4.1 Main genetic algorithms

Genetic algorithms were originally developed by John
Holland. They are used in order to find a solution, usu-
ally numerical solving of a given problem, without hav-
ing a prior knowledge on the search space [20].

4.2 Genetic operators

The main steps of the proposed genetic algorithm are
individual coding, and then for each generation, child
population division, niche crowding operation, and by
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evaluating the fitness function the GA can exclude indi-
viduals that do not accord with constraint conditions,
and then apply selection, crossover, and mutation opera-
tions to ameliorate quality of solution. The adjustment
of these parameters is an important issue for GA.

o [ndividual coding

Let there be N secondary users and K channels in the
system. A cell can use any available channel if such a
choice satisfies the interference graph and the channel
availability constraints.

In the proposed models, each gene represents a chan-
nel state and the channels of a node form a chromo-
some. The set of all nodes composes an individual
representing an assignment policy. Hence, each individ-
ual is denoted by a vector of dimension V=NxK, as
shown in Fig. 3. Furthermore, a population can be repre-
sented by an array of strings (individuals).

The rows of the array represent strings (of bits) in a
population, and the columns represent the (the status
bit of the condition of availability) available channel
numbers which will be assigned. There are P strings for
a population and each string has Q (possible states)
channels which are the total number of available chan-
nels in the system Q < K.

A string S, is composed of N substrings which is
the number of nodes in the network. Each substring
S,: (for node i) is composed of m; genes (channel: bits
of the condition of availability). Each gene is repre-
sented as a binary bit.

Basic Structure of a GA :

. Given:

1

2

3

4. begin
5. ke=1;
6.

7.

8

. do
9. k=k+l1;
/*produce new generation Xnew™/
12. Produce two new chromosomes X.

crossover probability p.,
13. Perform mutation operation onxy®”

p

15. Insert xy® and xg®" into X"**;
16. end for

18.  x*:=the best chromosome in X*;

20. return(x*);
21. end

|chr|: number of chromosomes. /*the size of population™®/
. MaxGeneration: terminal criteria for while loop.

Generate initial populationX* = {x{‘, x5, x{;m};
Calculate Fitness(xik), fori=1,.,|chr|
10.  for(iter=1; iter<=|chr|/2; iter:= iter+1)

11. Randomly pick two chromosomes x, and x, from X!,

p¢" and xg®" by crossover x, and x, with

and xg®"with mutation probability pm,
14. CalculateFitness(xy®") and Fitness(xg®");

17. Pick |chr| best chromosomes from X*! and X""to form X*;

19.  while(k <= MaxGeneration) && (Fitness(x*) > ()

new

Fig. 2 Pseudo code for the GA algorithm. [4]
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Node*1 Node*#2 Node N

N -~ ~ ~
[OT0 e (1] o JO]X[ o [0]L[0] e [0] Strings,
#] #2 #m) #] %2 £y 2] %2 smy
[oJo[a]--Jo - [oJo] . J1]oJo]1].... o] Strings$,
2] #2 #mj 2] =2 #My 2] %2 smy

[

[

O[] O] e JI]0] e [O]O O] o [1] String Sp

2] %2 #m) 2] %2

Fig. 3 Structure of the population string
A

#m) #] #2 smy

An A x Q two-dimensional array is constructed to im-
plement a number of strings (a population) as shown in
Fig. 2 step 6.

o [nitial population

According to [14], the initial population for each string
is as follows:

(1)For each node i* with the largest number of
constraints, the channel for the /* node is the
minimal channel interval in the available channel
domain.

(2)For all nodes with a maximum degree of saturation,
choose the node i* with the greatest degree of
saturation, assign i* with the minimum channel, and
update the degrees of saturation of the neighbors of i*

Notice that the degree of separation D(i*) of node i* is
the sum of the incident constraints values for each node.
They are compiled once and for all. The degree of satur-
ation dj(i*) in step j is used as a criterion for selecting
the node that we will assign in this step. This degree is
determined from the non-allowed intervals for nodes
that are not yet affected (this process provides to use the
minimum number of channels and reusing, to its max-
imum, the same channels, while avoiding deadlock)

(3) Repeat step 2 until all nodes have the assigned
channels.

e Reproduction

According to the target of channel allocation, the
interference constraint will be presented in reutilization
matrix C={C;;i|C;jx€ {0, I}}nxnxx» Where C;;=1, if
users i and j would cause interference if they used the

spectrum band k simultaneously. Note that constraints
are spectrum band specific. Note also that two users
who are constrained by one spectrum band cannot use
this band simultaneously.

Considering the spectrum allocation matrix S = {S;}x«
x which denotes the effectiveness of spectrum allocation,
where S; =1 denotes that spectrum band k is assigned
to user n. S satisfies all the constraints defined by C, i.e.,
SirSik=0,if C;j=1, Vi, j<N, k< K.

If we consider B = {b;}n « x describe the reward that a
user i* gets by successfully acquiring available spectrum
band k% i.e., b;; represents the maximum bandwidth/
throughput that can be acquired (assuming no interfer-
ence from other neighbors), and from the matrix R = {{;;-
b;i/n « x representing the throughput or the bandwidth of
each channel which is available for each user to use. The
resource allocation performance can be expressed as the
following fitness value and the total bandwidth of the
system:

N-1 M-

Z > Subik

i=0 k=0

—_

(3.5)

The fitness value of each individual is calculated ac-
cording to the fitness function (objective function). After
evaluation of the fitness function, a certain pair of in-
dividuals (strings) should be selected for the parents. We
can use a simple biased roulette wheel to select
individuals.

Each string in the population has a roulette wheel slot
size in proportion to the radio of its fitness over the total
sum of fitness in the population. A random number be-
tween 0 and 1 is generated for each selection. A string is
selected for reproduction if the random number is
within the range of its roulette wheel slot. The copy of
the selected string is gathered into a mating pool, in
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which they are mated for further genetic operations.
Strings with higher fitness have higher probabilities of
selection so that those with higher fitness produce more
offspring’s than those with lower fitness in the next gen-
eration [14].

e Crossover

The reproduced strings in the mating pool are mated
under crossover operation at random. Crossover oper-
ation is performed with a pair of substrings in the mated
strings for each model [14].

The crossover technique adopted in our approach is
the conflict-based crossover; this method distinguishes
between genes that do not create a conflict from genes
creating conflicts. Two children are generated based on
the parent’s genes: for each created child, values not cre-
ating conflict are duplicated on the children. If conflicts
are generated by a value, it must be modified. Then, a
deterministic change could be used: If a value is in con-
flict for a parent, and is not for the other parent, the
non-conflict value is duplicated for the two children.
However, if a value is in conflict with both parents, then
each child will copy the value of the gene of its parent,
even if it causes conflict. Figure 4 shows an example of
possible crossover.

o Mutation

The mutation operator used in our approach is named
Conflict-Based Mutation (CBM); it applies individually
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for the conflict chosen channel. The CBM consists of
three main steps:

— Select randomly one user from the conflict users.

— Choose the best value of available channel bands
that provide more choices for the neighborhoods
users.

From a purely intuitive point of view, this operator
should give better results than random mutation, which
consists in randomly selecting a channel of the solution
and modify it on taking a new value of the channel at
random [22].

4.3 Operation parameters
The implementation of our GA requires the adjustment
of some parameters like the population size, the number
of generations, and the mutation rate. The stopping cri-
terion can be defined as the maximum number of itera-
tions or detection of an optimum solution.

In our simulation, the population size is set to be 100.
Hence, the initial population procedures are repeated
100 times.

5 Performance evaluation and comparison
For verification of operation, the proposed genetic algo-
rithm was modeled using some aspects or parameters/
genes and several simulations were run and results
verified.

Computer simulations are used to analyze the percent-
age of removed interference by the algorithm when the

-

Parent 1 o|2|3(3(|2|0]2|1|1]0
Conflict Vector | ves| no | No | Yes| No | Yes| No | Yes | No | Yes
Parent 2 1lo|3|1]|1]3|1]2]2]3
Conflict Vector | no | ves| Yes| No | Yes [ Yes | No | Yes | ves | No
L
Child 1 123|120 2]1]1]|3
P2 (P1|pPr|P2|PL|PL|PL|PL]PL]|P2
Child 2 123|123 |1]2]1]3
p2(Pr|Pr|P2|PL|P2|P2|P2|PL]|P2

Fig. 4 Example of conflict-based crossover [14]
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number of nodes and the available channels increase.
The approach was designed to assign one channel for
each opportunistic user under the primary users by
using a uniform cost function to select the best available
channel (and for its neighbors alike).

For each scenario, we consider a total number of PUs
equal to 10 and then different interference topology
graph instances are randomly generated, with the num-
ber of nodes varying from 10 to 50, with the interference
ranges defined in a reutilization matrix C, where each
channel is occupied by a primary user in a certain range,
and each node within a PU’s range cannot use the chan-
nel occupied by this PU. Each node in the network has
its own available channel set, according to the positions
of the PUs. Two nodes can use the same channel if they
are not in range.

The impact of the dynamic occupation of channel by
the PUs was modeled considering an average inactive
time at least ten times larger than the time needed for
the algorithm to reach the stopping criterion.

The channel assignment problem of this network is
solved by the proposed algorithm, and analyzed, for
three different scenarios:

(1)varying the number of available channels K;

(2)varying the number of network nodes N; and

(3)varying the stopping criterion H (number of
generations).

According to the observations made experimentally,
we can remark that, as shown in Fig. 5, the performance
in terms of removed interference (i.e., satisfied con-
straints during the search) decreases when the number
of nodes increases with an acceptable degradation not

100 —
90 1 S
80
70— - L[]
60— .
50

30
20
10

Removed Interfereces %

1 2 3 4 5 6 7 8 9
Number of nodes

Fig. 5 Impact on removed interference considering the number of
nodes N
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exceeding 6 %, and each node has less chance to find
and use a forbidden channel.

In addition, the algorithm obtains good results and
keeps good performance in terms of the percentage of
expected goals calculated as the number of assigned
nodes; the algorithm can reduce the network interfer-
ence up to 90-98 %.

According to Table 1 and Fig. 6, one can deduce that
the processing requirement has increased with channel
increase, and then the optimal fitness decreases. An in-
crease in the number of channels causes an increase in
the Time per Generations (7pG) and in the optimal gen-
eration. Note that all of the tests were performed on a
core 2 duo CPU 2.00 GHz with 1 GB RAM memory.

Therefore, during all simulated cases, for both states
before and after channel allocation, and when the stop-
ping criterion is reached, channel availability corre-
sponds to keeping stable the number of available
channels varying from 1 to 8.

The memory process in the algorithm improves the
determination of the best solution. On one hand, the
reproduction process ensures that the best string in the
actual population (with the highest fitness) is maintained
(and copied) and put in a mating pool for the next gen-
eration. On the other hand, the algorithm uses its feed-
back information to adapt its response.

The algorithm will be able to adapt its response to the
cognitive radio’s need to adapt to a changing environ-
ment and avoid the negative effect of other arrival
nodes.

Therefore, we can conclude that the GA has good per-
formance on the users’ service and channel gain,
achieves channel allocation robustness, and maintains
minimum network interference.

Furthermore, the GA can be easily extended to chan-
nels of different capacities by considering different ver-
sions of the dynamic channel assignment, as the
dynamic assignment of coordination controls channels
in cognitive radio networks (CRNs).

To examine the efficiency of the proposed algorithm
in larger-scale problems, we show the evaluation results
for the simulation service area considered in [23]. Nodes
are randomly distributed in a 200 x 200 unit square, and
a certain number of PUs is generated, when each pri-
mary user occupies one channel. Each node in the

Table 1 Resulting fitness measures and GA performance per
number of channels

Number of Optimal Optimal Time per
channels generation fitness (%) generations (ms)
2 89 984 1,0

4 689 94,4 34

8 745 90,6 6,7
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network has its own available channel set according to
the positions of PUs.

The parameters used to compare the performance of
various algorithms are (1) number of nodes in the net-
work, (2) the total number of channels, and (3) interfer-
ence range of primary users.

The settings of parameters are shown in Table 2 [23].

In order to evaluate such algorithm and compare its
performance with existing ones, we assess the perform-
ance of the GA against three schemes in terms of the de-
livery rate:

— a node-link-based [23] algorithm with a fast conver-
gent localized protocol that assigns conflict-free
channels to maximize connectivity in multi-chip
Cognitive Radio Networks consisting of a cognitive
source—destination node pair and multiple cooperat-
ing cognitive relays.

— an optimal algorithm which maximizes the assigned
link rate, without consideration of the number of
rounds [23]

— the distributed greedy algorithm in [24].

The delivery rate evolution is analyzed by varying
three parameters:

In Fig. 7a, the total number of nodes varies from 10
and 40 while keeping the total number of channels as 10
and the interference range of primary users is randomly
selected in [60, 70]; one can observe that the GA algo-
rithm can find better or equivalent results compared

Table 2 Simulation settings

Total number of nodes (10, 40]
Communication range of each node (in meters) [50, 70]
Total number of channels [4, 30]
Total number of PUs 10
Interference range of PUs (in meters) [40, 140]
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Fig. 7 Comparison of assigned link rate among the GA, node-link-
based, greedy, and optimal algorithm

with existing optimization methods. In Fig. 7b, the num-
ber of channels varies from 4 to 30 while keeping the
number of nodes at 15 and interference range of PUs in
[60, 70].

The results show that the GA finds better solutions
compared with the optimal algorithm and the node-link-
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based algorithm and achieves self-configuring radio cog-
nitive networks without the need of additional signaling
loads and changes. It shows a rapid convergence to an
optimal solution and guarantees that there are idle chan-
nels, for last affectation of a new cognitive node appears
on the current channel assignment.

In Fig. 7c, the number of nodes is kept at 15 and num-
ber of channels at 10, and the interference range of pri-
mary users varies. The results show that our proposed
approach has improved the forecasting accuracy, and it
is almost 30 % better than the other schemes.

As shown in Fig. 7, we can conclude that for each
scheme, and compared to the optimal algorithm, the
proposed GA can reduce efficiently the network interfer-
ence up to 84-98 % with an important increase of the
number of available channels and keeping it relatively
constant. Particularly, since the goal is to construct a
robust topology with minimizing interference, our algo-
rithm obtain the optimality in a reasonably short execu-
tion time for these instances; it can obtain high-quality
solutions and much better than those of a node-link-
based and optimal algorithm.

6 Conclusions

Channel allocation problem is the main issue in cogni-
tive radio network, and the deployable real-time dy-
namic spectrum policies are one of its powerful means
to improve the global spectral efficiency to develop new
wireless communications services.

In this paper, we adopt a suitable mathematical formu-
lation for opportunistic channel allocation. While taking
into account spectrum dynamicity, we propose a genetic
algorithm for channel assignment problem in cognitive
radio and we give the steps of its implementation. The
GA is based on the new enhanced crossover and muta-
tion operators. It has a uniform distribution compared
to the classical genetic algorithm, since it is oriented to
explore promising solutions in the search space.

Experimental results show the validity of this ap-
proach. It cannot only find good solutions to the radio
channel allocation problem but also obtain the optimal
solution in a reasonably short execution time, with high-
quality solutions and better than those of the best
current approaches used in node-link-based and optimal
algorithm. It promotes the real-time allocation of cogni-
tive radio spectrum.

The algorithm ensures improved performance in terms
of satisfying the demands of cognitive radio’s need, and
the adaptability to a changing environment; in the simu-
lation, we assume that the channel availability is dy-
namic during the time. So, the algorithm can recompute
allocations as the topology changes and adapt the envir-
onment change.
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Furthermore, the simulation researches of this paper
are principally executed on the theoretical benchmarks
and oriented toward qualitative analysis; therefore, it is
necessary to do some experiments on real benchmarks
with quantitative analysis in the next studies to verify its
superiority in the actual cognitive radio system.

Another possible future work will focus on channel al-
location algorithm based on genetic algorithm to achieve
a better performance and a better spectrum utilization
and taking profit from the advantages of other heuristics
through hybrid genetic algorithms.

Our future research direction will be the implementa-
tion of this algorithm for optimizing the 802.22 norm.
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