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Abstract

Standard condition number (SCN) detector is an efficient detector in multi-dimensional cognitive radio systems since
no a priori knowledge is needed. The earlier studies usually assume a large number of dimensions and a large number
of samples per dimension and use randommatrix theory (RMT) to derive asymptotic distributions of the SCN metric.
In practice, the number of dimensions may not be large enough for the SCN distribution to be well approximated by
the asymptotic ones. In this context, the false alarm probability is considered in literature and formulas for 2D, 3D, and
infinite-dimensional systems have been derived. However, the detection probability, which is of great importance in
cognitive radio, has not been well discussed in literature. In this paper, we discuss, analytically, the detection
probability of the SCN detector. Since the probability of detection is totally related to the SCN distribution, we derive
new results on the joint ordered eigenvalues and SCN distributions for central semi-correlated Wishart matrices. These
results are used to approximate the detection probability by the non-central/central approximation. We consider
systems with three or more dimensions, and we give an approximated form of the detection probability. The
analytical results of this paper on probability of detection along with those on probability of false alarm present a
complete performance analysis and are validated through simulations. We show that the proposed analytical
expressions provide high accuracy and that the SCN detector outperforms the well-known energy detector and the
largest eigenvalue detector even with a small number of dimensions and low noise uncertainty environments.

Keywords: Cognitive radio, Joint distribution, Spectrum sensing, Standard condition number, Wishart matrix

1 Introduction
Cognitive radio (CR) is considered as a promising solu-
tion for the scarcity and inefficient use of the spectrum
[1, 2]. It allows the secondary (unlicensed) user (SU) to
use the spectrum in an opportunistic way so that it does
not cause harmful interference to the primary (licensed)
user (PU). One possibility is to detect whether the PU is
present or not to avoid any interference. Therefore, spec-
trum sensing has a key functionality in CR as it allows the
CR to differentiate between the spectrum being used and
the spectrum holes.
Several spectrum sensing techniques were proposed

in the last decade [3]. Energy detector (ED) is among
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the most popular sensing techniques; it is simple, non-
coherent, and needs no prior knowledge about the PU’s
signal. However, ED is very sensitive to noise variations
and requires perfect knowledge of the noise power. Thus,
the performance of ED suffers from a high degradation
under low signal-to-noise ratio (SNR) and noise uncer-
tainty conditions [4, 5].
Recently, eigenvalue-based detector (EBD) has been

shown to overcome noise uncertainty challenges and per-
forms adequately even in low SNR conditions. EBD is
based on the eigenvalues of the received signal covari-
ance matrix. In this context, the multi-dimensional aspect
of a cognitive radio could be (i) multi-antenna CR [6, 7],
(ii) cooperative scenario between several CR nodes [8],
(iii) oversampling within the CR node [9], or any com-
bination of them. If the entries within these dimensions
are considered Gaussian, then the receiver’s covariance
matrix is known as a Wishart matrix in random matrix
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theory (RMT) [10]. Results from RMT have been used to
study the EBD algorithms which include the largest eigen-
value (LE) detector proposed in [9, 11], the scaled largest
eigenvalue (SLE) detector [12, 13], and the standard con-
dition number (SCN) detector [9, 14–18]. The LE is a
semi-blind detector since it requires the knowledge of the
noise power whereas the SLE and SCN are blind detectors
that do not require this knowledge.
If we denote the maximum and the minimum eigenval-

ues of the receiver’s covariance matrix by λmax and λmin,
respectively, then the standard condition number (SCN)
is defined as the ratio between λmax and λmin (λmax/λmin).
In multiple-input multiple-output (MIMO) systems, the
SCNhas an effective connection withMIMO receiver per-
formance in spatial multiplexing systems [19–21] and it
indicates the multipath richness of the MIMO channel
[22, 23]. In CR systems, the SCN detector compares this
ratio to a threshold to decide whether the PU exists or
not. The performance of a detection algorithm is, usually,
characterized by two types of probabilities: the false alarm
probability (Pfa) and the detection probability (Pd). The
latter depends on the decision threshold and are related to
the statistics of the detector metric. Thus, the character-
istics of the SCN are of great importance in both MIMO
and CR systems.
The SCN metric was well studied in the recent years;

for example, this metric was studied asymptotically in [14]
and the threshold was presented according toMarchenko-
Pastur (MP) law [24]. If the size of the receiver’s matrix
is K × N , then MP law proves that the largest (λmax) and
the smallest (λmin) eigenvalues of the receiver’s covari-
ance matrix converge to constants as (K ,N) → ∞ with
c = K/N is a constant ratio [25]. These constants are sim-
ply determined by c and the powers of the signal and the
noise.
In [9], the authors improved the accuracy of the asymp-

totic statistical distribution of the SCN by using the Tracy-
Widom (TW) distribution to model the largest eigenvalue
(numerator of the SCN) [26] while maintaining the MP
representation of the smallest one. TW distribution is a
limiting distribution of the largest eigenvalue of a central
Wishart matrix as (K ,N) → ∞ [27]. This approximation
of the SCN, by TW distribution for the numerator and
MP law for the denominator, results in an approximated
relation between the decision threshold and the Pfa.
This work was further extended in [15, 16] by using

the Curtiss formula for the distribution of the ratio of
random variables (i.e., SCN) [28] where both the largest
and the smallest eigenvalues converge to Tracy-Widom
distributions when (K ,N) → ∞ as shown in [26, 29].
Moreover, by the exploitation of the normal and TW
distributions and using the Curtiss formula, the authors in
[17] provided a form for the probability of missed detec-
tion (Pmd = 1 − Pd) for sufficiently large values of K and

N. However, all these expressions include TWdistribution
and Curtiss formula that are hard to evaluate numer-
ically online in addition to the considered asymptotic
assumptions which are not necessarily practical.
By considering finite dimensions, the authors in [30]

provided the exact generic form of the distribution of the
SCN based on the joint distribution of the ordered eigen-
values of Wishart matrix. Consequently, [18] provides the
exact forms of the Pfa of the SCN detector for CR with two
dimensions and [31] provides Pfa form for three dimen-
sions. In addition, the Pd for two-dimensional systems
was approximated using the non-central/central approxi-
mation and provided in [18] following the results in [30].
When K ≥ 3 (for K-dimensional system), the form of the
Pd could be derived using the results in [30] as long as
the non-centrality matrix �K is full rank. Moreover, the
non-central/central approximation is used to approximate
the distribution of the non-central uncorrelated Wishart
matrix by the distribution of the central semi-correlated
Wishart matrix. However, using this method to approxi-
mate the distribution of the SCN requires normalization
and the behavior of this approximation could be affected
especially at high SNR.
In this paper, the non-centrality matrix (�K ) is not a

full-rank matrix as considered in previous studies [18, 30].
This case includes, for example, but is not limited to, a sin-
gle PU transmitting orthogonal frequency-division mul-
tiplexing (OFDM) signal. Accordingly, results derived in
literature may not be applicable since they are derived for
the full rank case. Thus, by using the non-central/central
approximation, we provide the new form of the Pd of the
SCN metric for general finite K-dimensional systems and
we give the form in the particular case when K = 3. Also,
we study the impact of the system parameters (K, N, and
SNR) on the approximation accuracy and on the detection
probability. The main contribution of this paper could be
summarized as follows:

• Using the non-central/central approximation, the
eigenvalues of the correlation matrix of the central
semi-correlated Wishart matrix may coincide. For
this purpose, we generalize the joint distribution of
the ordered eigenvalues of the central semi-correlated
Wishart matrix. In our derivations, the eigenvalues of
the correlation matrix can be equal or distinct.

• The authors in [30] consider the case where all the
eigenvalues of the correlation matrix are distinct. In
this paper, we show that the generic form of the
cumulative distribution function (CDF) of the SCN
given in [30] is still valid if the eigenvalues are not
distinct. However, the form of the parameters differ
where we give the new forms.

• We derive the analytical forms of the CDF and the
probability density function (PDF) of the SCN of
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three-dimensional systems when �K is not a
full-rank matrix.

• For the sake of completeness, we also derive the CDF
and the PDF of the SCN of three-dimensional
systems when �K is a full-rank matrix. Thus, the
results of this paper combined with results in [31]
form a complete closed-form system for the
three-dimensional cognitive radio.

• Since the previous studies consider the non-
central/central approximation in low SNR regions
[18], we study the impact of the system parameters
on the accuracy of the non-central/central
approximation. This impact is given in terms of Pd as
it is an important target in the general CR context.

The rest of this paper is organized as follows. In
Section 2, the system model is introduced and discussed.
In Section 3, the non-central/central approximation is
recalled and analyzed. In Section 4, we give the joint
ordered eigenvalue distribution with a generalization to
equal eigenvalues of the correlation matrix. In Section 5,
we emphasize on the general form of the CDF of the SCN
for the central semi-correlated Wishart matrix when L
eigenvalues of the correlation matrix are equal. The exact
CDF and PDF of this SCN for three-dimensional systems
are derived as well. Simulation results and approximation
accuracy are discussed in Section 6, and we conclude in
Section 7.
Notations: Vectors and matrices are represented,

respectively, by lowercase and uppercase boldface. The
symbols |.| and tr(.) represent, respectively, the determi-
nant and trace of a matrix while (.)1/2, (.)T, and (.)† are the
square root, transpose, and Hermitian symbols, respec-
tively. In is the n×n identitymatrix. Symbol ‖.‖2 stands for
the norm, E[.] stands for the expected value, and ∼ stands
for distributed as.

2 Systemmodel
We consider a K-dimensional CR system, and we aim
to detect the presence/absence of a single PU during a
sensing period which corresponds to N samples. The K-
dimensions might be K collaborating SUs, K antennas, an
oversampling by a factor ofK, or any combination of them.
For this detection problem, there are two hypotheses: H0
corresponds to the absence of PU transmission (i.e., spec-
trum hole) and H1 corresponds to the presence of the
PU transmission (i.e., spectrum being used). The received
vector, at instant n, under each hypothesis is given by

H0 : y(n) = η(n), (1)
H1 : y(n) = h(n)s(n) + η(n), (2)

where y(n) =[ y1(n), · · · , yK (n)]T is the observed K × 1
complex samples across all the dimensions at instant n.

η(n) is aK×1 complex circular white Gaussian noise. h(n)

is aK×1 complex vector that represents the channel coef-
ficients between the PU and each of the CR dimensions,
and s(n) stands for the primary signal sample at instant n.
After collecting N samples from each dimension, the

received signal matrix Y is written as follows:

Y =

⎛⎜⎜⎜⎝
y1(1) y1(2) · · · y1(N)

y2(1) y2(2) · · · y2(N)
...

...
. . .

...
yK (1) yK (2) · · · yK (N)

⎞⎟⎟⎟⎠ . (3)

Without loss of generality, we suppose that K ≤ N
and we define the received sample covariance matrix as
W = YY †.
Under H0, the input of the matrix Y is a complex cir-

cular white Gaussian noise with zero mean and unknown
variance σ 2

η , then W is well known as a central uncorre-
lated complex Wishart matrix and is denoted by W ∼
CWK (N , σ 2

η IK ) where K is the size of the matrix, N is
the number of degrees of freedom (DoF), and σ 2

η IK is the
correlation matrix.
Under H1, we suppose that the channel remains con-

stant during the sensing time and we have a single PU
whose signal is drawn independently from Gaussian pro-
cess for every sample. Consequently, W follows a non-
central uncorrelated complex Wishart distribution which
is denoted as W ∼ CWK (N , σ 2

η IK ,�K ), where �K is a
rank 1 non-centrality matrix [32].
Let us denote by λ1 ≥ λ2 ≥ · · · ≥ λK > 0 the

eigenvalues ofW , then the SCN metric is given by

SCN = λ1
λK

. (4)

Denoting by t the decision threshold, then the detec-
tion probability (Pd), defined as the probability of correctly
detecting the presence of PU, and the false alarm prob-
ability (Pfa), defined as the probability of detecting the
presence of PU while it does not exist, are, respectively,
given by (5) and (6) and shown in Fig. 1.

Pd = P(SCN ≥ t/H1) (5)
Pfa = P(SCN ≥ t/H0). (6)

These probabilities depend on the threshold (t) being
used. However, if the expressions of the Pfa and Pd are pre-
viously known, then a threshold could be set according
to a required error constraint. Then, it is clear that these
probabilities depend on the distribution of the SCN met-
ric. If we denote the CDF and PDF of SCN, respectively,
by Fi(.) and fi(.) with index i ∈ {0, 1} indicating the
considered hypothesis, then we can write
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Fig. 1 Detection probability (Pd) and false alarm probability (Pfa) as a
function of the decision threshold (t) under both hypotheses

Pfa = 1 − F0(t) (7)
Pd = 1 − F1(t) (8)

The exact general form of the distribution of SCN under
H0 (F0(t)) has been derived in [30]. Two particular cases
have been considered in [18, 31] when K = 2 and 3,
respectively. Asymptotically, this distribution could be
found in [9, 14, 15]. Under H1, an asymptotic distribu-
tion of the SCN, F1(t), could be found in [17]. In the
finite case, the exact generic form of F1(t) is derived in
[30]; however, further numerical evaluation would either
require Nuttall-Q function which could be replaced by
Marcum Q-function and a finite weighted sum of Bessel
functions [33] or by hypergeometric functions that could
be expanded to an infinite sum (see, for example, [34]
for K = 2 and N = 2). Thus, and since both solu-
tions are difficult to manipulate,1 a third solution is to use
the non-central/central approximation that approximates
the distribution of the non-central uncorrelated Wishart
matrix by the distribution of the central semi-correlated
Wishart matrix. This approximation is presented in the
next section. The exact general form of the distribution of
the SCN of central semi-correlatedWishart matrix is pro-
vided by [30] and is used to approximate F1(t) for K = 2
in [18, 30].

3 Non-central/central approximation and
parameter analysis

The non-central/central approximation is recalled in
Lemma 1.

Lemma 1 ([35]). The complex non-central Wishart
matrix W ∼ CWK (N , κ2IK ,�K ) and the complex semi-
correlated Wishart matrix W ∼ CWK (N , �̂K ) with effec-
tive correlation matrix �̂K = κ2IK + �K/N have the same
first- and second-order moments differing by �K/N .

Using Lemma 1, the distribution of the SCN under H1
hypothesis could hence be approximated by the distri-
bution of the SCN of complex semi-correlated Wishart
matrix with a proper correlation matrix. It is worth not-
ing that this approximation for the SCN distribution also
requires a normalization by κ2 (Wn = κ−2W) which
gives the same SCN as W. Therefore, following (8), the
detection probability is, accordingly, approximated.
Under hypothesis H1 and following our assumptions,

the non-centrality matrix -�K is a rank 1 matrix and the
only non-zero eigenvalue of �K is denoted by ω1. Con-
sequently, and after applying normalization of Lemma 1,
the effective correlation matrix, �̂K , has coincidence in
its eigenvalues. Let σ =[ σ1, σ2, · · · , σK ]T be the vector of
ordered eigenvalues of �̂K = IK + �K/N , then all but one
eigenvalue of �̂K are still equal to 1 (eigenvalues of IK )
while σ1 is given by

σ1 = 1 + ω1
N

. (9)

The average SNR, underH1, is defined by

ρ = σ 2
s σ 2

h
σ 2

η

, (10)

where the PU signal power, σ 2
s , could be estimated by2

(‖s‖2/N), and the channel power σ 2
h = (‖h‖2/K). The

non-centrality matrix is given by

�K = �−1
K MM† = 1

σ 2
η

‖s‖2hh†, (11)

where �K is the covariance matrix of Y , defined as
�K = E[ (Y − M)(Y − M)†]= σ 2

η IK , and M is the mean
of Y defined as M = E[Y ]= hsT with h =[ h1h2 · · · hK ]T
and s =[ s(1)s(2) · · · s(N)]T. It is worth mentioning that
(11) will not be changed after normalization.
As a result, and by using the property that the trace of a

matrix equals the sum of its eigenvalues, then ω1 could be
written as

ω1 = tr(�K ) = 1
σ 2

η

‖s‖2tr
(
hh†

)
= 1

σ 2
η

‖s‖2‖h‖2

= NKρ. (12)

Thus, �K is not full rank and the eigenvalues of �̂K
are not distinct. It is worth noting that for the exact form
of Pd, it would be useful to refer to the joint distribution
of the ordered eigenvalues of non-central uncorrelated
Wishart matrix with arbitrary non-centrality matrix rank
derived in [36, App. I] and consider rank 1 case. However,
as discussed before, it is hard to derive a tractable form for
the SCN distribution since it requires Nuttall-Q functions
or hypergiometric functions. Therefore, by considering
the non-central/central approximation, results based on
assuming all correlation eigenvalues distinct could not be
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used and new results must be derived. Accordingly, an
approximated and simpler form for the Pd will be derived.

4 Joint ordered eigenvalues distribution
generalization

As discussed in the previous section, all but one of the
eigenvalues of the correlation matrix are equal. In this
section, and since the distribution of the SCN metric is
derived using the joint distribution of the eigenvalues of
the Wishart matrix, we generalize the joint distribution
of the ordered eigenvalues of the central semi-correlated
Wishart matrix. This new form of the joint distribution
covers any number (L) of equal eigenvalues positioned
anywhere in vector σ and is given in Theorem 1 below.
In addition, Theorem 1 is also useful in MIMO systems

as it could be used to derive marginal and joint distribu-
tions in correlated Rayleigh channels when the correlation
eigenvalues may coincide. Moreover, these derivations
could, also, approximate that of the Rician channels when
the mean channel matrix is of rank 1; this could be satis-
fied when all channel vectors have the samemean value or
in some other practical scenarios where the line-of-sight
(LOS) component of the channel matrix approaches the
scaled all-ones matrix [37].

Theorem 1 (Central semi-correlated Wishart when �K
is full rank with L equal eigenvalues). Let W be a central
semi-correlated Wishart matrix W ∼ CWK (N ,�K ) and
denote by σ1 > σ2 > · · · > σp = · · · = σq > · · · > σK > 0
the ordered eigenvalues of �K assumed full rank with L
equal eigenvalues (from p to q with q = p + L − 1), then
the joint PDF of λ could be written as follows:

f (λ) = C|�(λ)| × |�(λ)|
K∏
i=1

ξ(λi) (13)

with the associated parameters defined as

• �(λ) is a K ×K Vandermonde matrix of entries λi−1
j .

• �(λ) is a K × K matrix of the form E(λ, σ ) given, for
all 1 ≤ j ≤ K , by

{E(λ, σ )}i,j =

⎧⎪⎨⎪⎩
∂q−i(e

− λj
σp )

∂σ
q−i
p

p ≤ i ≤ q

e−
λj
σi otherwise

(14)

• ξ(λi) is defined as ξ(λi) = λN−K
i .

• The normalization constant is given by

C =
∏K

i<j σiσj
K∏
i=1

(N − i)! σN
i

K∏
i<j

σi 	=σj

(σj − σi) �L(L)

, (15)

where �s(l) = ∏s
i=1(l − i)! and

∂n(e−
λj
σp )

∂σ n
p

=

⎧⎪⎨⎪⎩
e−

λj
σp

n∑
k=1

(−1)k+n·L(n,k)·λkj
σ n+k
p

if n > 0

e−
λj
σp if n = 0

(16)

with L(n, k) is the Lah number defined by

L(n, k) =
(
n
k

)(
n − 1
k − 1

)
(n − k)! (17)

Proof. See Appendix 1.

It can be easily shown that by taking L = 1, the param-
eters in Theorem 1 will be equivalent to the case of all
distinct eigenvalues in the literature [30, Table I].

5 SCN distribution
In this section, we will derive the general form of the CDF
of the SCN of central semi-correlated Wishart matrix for
arbitrary K andN. Then, we emphasize by considering the
three-dimensional case (K = 3). Given (8) and the results
of this section, Pd can then be directly computed.

5.1 The general form
The CDF, F(x), with x ≥ 1, of the SCN of the central
semi-correlated Wishart matrix W ∼ CWK (N ,�K ) with
distinct correlation eigenvalues, denoted by σ1 > σ2 >

· · · > σK > 0, is given by [30]

F(x) = C
K∑
l=1

∞∫
0

∣∣∣∣∣∣∣
⎡⎢⎣ xλK∫

λK

φi(u)ψj(u)ξ(u)du, i 	= l

φi(λK )ψj(λK )ξ(λK ), i = l

⎤⎥⎦
∣∣∣∣∣∣∣ dλK ,

(18)

where φi(λj) = [�(λ)]i,j and ψi(λj) = [�(λ)]i,j with �(λ),
�(λ), ξ(λi), and C are defined in [30, Table I].
If we have L equal correlation eigenvalues (say from p to

q with q = p+L−1), then (18) is still valid by considering
the parameters �(λ), �(λ), ξ(λi), and C that are defined
in Theorem 1. This could be easily shown by comparing
the joint distribution parameters in Theorem 1 and Table
I of [30] and noting that they have the same general form
used in deriving the SCN CDF in (18).
It is important to note that all the integrals inside the

determinant in (18), Ii,j = ∫ xλK
λK

φi(u)ψj(u)ξ(u)du, still
admit a closed-form solution given, directly after integrat-
ing using [38, Eq. (3.351.1)], by
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Ii,j =

⎧⎪⎨⎪⎩
[
γ
(
l, xλK

σj

)
− γ

(
l, λK

σj

)]
· σ l

j i < por i ≥ q
q−j∑
k=1

[
(−1)k+q−jL(q − j, k) ·

[
γ
(
l + k, xλK

σp

)
− γ

(
l + k, λK

σp

)]]
σ
l+j−q
p p ≤ i < q

, (19)

where γ (., .) is the lower incomplete gamma function
[38, Eq. (8.350.1)], the constant l = N − K + i, and
1 ≤ i ≤ K .

5.2 SCN distribution for three-dimensional systems
In the previous sections, we have considered an arbitrary
number (L) of equal eigenvalues positioned anywhere in
vector σ . Considering our assumptions that�K is a rank 1
matrix reveals, from Lemma 1, that the eigenvalues of the
effective correlation matrix of the central semi-correlated
Wishart matrix has (K − 1)-equal eigenvalues such that
σ1 > σ2 = · · · = σK > 0.
Now, if we consider the case K = 3, then �̂K has two

equal eigenvalues (σ1 > σ2 = σ3 > 0). In this case, the
CDF and PDF of the SCN are given in Theorem 2 and
Corollary 1, respectively.

Theorem 2 (CDF of SCN of central semi-correlated
Wishart matrix when �3 has two equal eigenvalues). The
CDF of the SCN of a 3× 3 central semi-correlated Wishart
matrix W ∼ CWK (N ,�3) whose �3 has two equal
eigenvalues (σ1 > σ2 = σ3) is given by

F1(x) = Csc[R1(N , x) − G1(N , x)] , (20)

where R1(N , x) is defined in (21), G1(N , x) in (22),
S1(r, s, t,μ, ν, x) in (23), �1(r, s, t,μ, ν, ε, x) in (24), and Csc
in (25).

Ri(N , x) = Si
(
N − 3,N ,N − 2, σ−1

1 , σ−1
2 , x

)
+ Si

(
N − 2,N − 2,N − 1, σ−1

1 , σ−1
2 , x

)
+ Si

(
N−1,N−1,N−3, σ−1

1 , σ−1
2 , x

)
, i = 1, 2

(21)

Gi(N , x) =�i
(
N − 2,N − 1,N − 2, σ−1

2 , σ−1
2 , σ−1

1 , x
)

+ �i
(
N − 2,N ,N − 3, σ−1

2 , σ−1
2 , σ−1

1 , x
)

+ �i
(
N − 3,N − 1,N − 1, σ−1

2 , σ−1
2 , σ−1

1 , x
)
, i =1, 2

(22)

Si(r, s, t,μ, ν, x) = �i (r, s, t, ν, ν,μ, x) + �i (t, r, s, ν,μ, ν, x)
− �i (r, t, s, ν,μ, ν, x) − �i (r, s, t, ν,μ, ν, x)
+ �i (t, s, r, ν,μ, ν, x) , i = 1, 2

(23)

�1 (r, s, t,μ, ν, ε, x) = −μ2�3 (r, s, t, ν, ε,μ, x) (24)

Csc = (σ2 − σ1)
−2

(N − 1)! (N − 2)! (N − 3)! σN−2
1 σ

2(N−2)
2

(25)

with �3 defined in (35) in Appendix 2, Theorem 3.

Proof. The proof could be summarized as follows:

1. Considering (18) and setting K = 3.
2. Substituting the parameters from Theorem 1.
3. Expanding the summation and using (19).
4. Expanding the determinant and integrating using

Eqs. (3.351.1) and (3.351.3) of [38].

Then, the result comes after simplification.

Corollary 1. The PDF of the SCN of a 3×3 central semi-
correlated Wishart matrix W ∼ CWK (N ,�3) whose �3
has two equal eigenvalues (σ1 > σ2 = σ3) is given by

f1(x) = Csc · [R2(N , x) − G2(N , x)] , (26)

where R2(N , x) is defined in (21), G2(N , x) in (22),
S2(r, s, t,μ, ν, x) in (23), Csc in (25), and �2(r, s, t,μ, ν, ε, x)
in (27) below.

�2 (r, s, t,μ, ν, ε, x) = −μ2�4 (r, s, t, ν, ε,μ, x) (27)

with �4 defined in (38) in Appendix 2, Corollary 2.

Proof. Obtained by differentiating Eq. (20).

For the sake of completeness, the reader could find, in
Appendix 2, the CDF and PDF of the SCN of the central
semi-correlated Wishart matrix when all the correlation
eigenvalues are distinct.

6 Simulation and discussion
In this section, we discuss the analytical results through
Monte Carlo simulations. We, firstly, validate the theoret-
ical analysis presented in Sections 4 and 5. Given the non-
central/central approximation in Lemma 1, we study the
approximation accuracy as well as the impact of the SNR
on this approximation. Since the probability of detection
is the main target, we study the effect of the approxima-
tion accuracy and the impact of system parameters on Pd.
Finally, we show that the SCN detector outperforms the
ED and the LE detector if noise power is not perfectly
known.
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For this purpose, we, first, generate 105 central semi-
correlated Wishart matrices. This type of matrices can be
easily generated underH0 by considering a certain corre-
lation between different dimensions of the CR system. The
received matrix, underH0 hypothesis, is then written as

Y = �
1/2
K G, (28)

where G is the Gaussian noise matrix and �K is the
correlation matrix.
Figures 2 and 3 validate the analytical form of the distri-

bution of the SCN of the central semi-correlated Wishart
matrix derived in Section 5. A three-dimensional system
is considered, and the receiver matrix is given in (28).
The correlation matrix, �K , is modeled according to the
normalization of Lemma 1; thus, σ1 = 1 + Kρ and
σ2 = σ3 = 1. Figure 2 shows the impact of varying the
number of received samples (N) while the SNR (ρ) varia-
tion is considered in Fig. 3. Results show a perfect match
between the empirical SCN distribution of the central
semi-correlatedWishart matrix and the analytical form in
Section 5. Moreover, these figures show a validation of the
joint distribution given in Theorem 1.
Central/non-central approximation accuracy is shown

in Fig. 4. In this case, we consider a BPSK modulated
signal and a complex Gaussian noise with unit variance
(σ 2

η = 1). Since we have considered a flat fading channel,
we suppose that the signal will experience a unity fading
magnitude. Figure 4 gives the empirical distribution of the
SCN of non-central uncorrelatedWishart matrices (under
H1 hypothesis) and its corresponding normalized analyti-
cal approximation using Lemma 1 for different SNR values
(ρ). Results show a perfect match between the empirical
results and the analytical approximation at low SNR val-
ues, however, approximation accuracy degrades as SNR
increases (ρ > −2 dB).
Figures 5 and 6 present the impact of the system param-

eters (K, N, and ρ) on the approximation in terms of
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Fig. 2 Empirical and analytical probability density functions of the
SCN of the central semi-correlated Wishart matrices as N varies
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Fig. 3 Empirical and analytical probability density function of the SCN
of the central semi-correlated Wishart matrices as ρ varies

the performance of the SCN detector for a preset target
Pfa. Figure 5 shows the Pd of the SCN detector of three-
dimensional CR as a function of SNR for different number
of samples (N = {10, 30, 50, 100}) while in Fig. 6, we varyK
(K = {2, 3}) with the false alarm being set to to Pfa = 0.1.
Both figures show perfect accuracy for low SNR values
(ρ < −2 dB); however, as SNR increases the approxima-
tion starts to show dissimilarity with the empirical results
until both probabilities reach 1 (both distributions, the
empirical and the analytical, are totally to the right of the
considered threshold).
Figure 5 shows that the dissimilarity between the curves

decreases as N increases and becomes very close to zero
atN = 100. This is related to the threshold selection crite-
ria. In CR, the threshold is—usually—selected according
to a target Pfa (i.e., the distribution of the SCN under H0
as shown in Fig. 1). As N increases, the detection proba-
bility is improved as the part of the distribution underH1
to the right of the threshold increases. This reveals that,
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Fig. 4 Empirical probability density function of the SCN of non-central
uncorrelatedWishartmatrices and the corresponding analytical probability
density function of central semi-correlated Wishart matrices using
normalized non-central/central approximation
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Fig. 5 Empirical detection probability of the SCN metric and its
corresponding analytical detection probability using normalized
non-central/central approximation as a function of SNR for K = 3 and
Pfa = 0.1

in the sense of detection performance, the normalized
non-central/central approximation could be considered
as a good fit for the empirical distribution of the SCN
for sufficiently large values of N. Indeed, both distribu-
tions perfectly match at low SNR values and exceed the
threshold for higher SNR values where the approxima-
tion accuracy degrades. Moreover, the same result could
be deduced from Fig. 6 where the performance of the
detector increases as K increases.
To stand on the previous results and to validate the

approximation accuracy obtained at low SNR for different
values ofN and K, we present in Fig. 7 the Pd of SCNmet-
ric for different N and K with SNR fixed at ρ = −10 dB
and Pfa = 0.1. The figure shows a perfect match between
the empirical and the analytical results for all values of K
and N. As it could be seen from the figure, the distribu-
tion under H1 hypothesis partially exceeds the threshold
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Fig. 6 Empirical detection probability of the SCN metric and its
corresponding analytical detection probability using normalized
non-central/central approximation as a function of SNR for N = 10
and Pfa = 0.1
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Fig. 7 Empirical detection probability of the SCN metric and its
corresponding analytical detection probability using normalized
non-central/central approximation as a function of the number of
received samples for ρ = −10 dB, and Pfa = 0.1

(Pd < 1), therefore, the approximation perfectly fits the
empirical distribution. Thus, at an acceptable SNR value,
the approximation does not show any degradation as N
and K values change.
The performance comparison between the SCN detec-

tor, the LE detector, and the ED [5] is illustrated in Fig. 8.
In this case, we set K = 3, N = 500, and Pfa = 0.1.
If noise variance is perfectly known, results show that
the LE detector outperforms the SCN detector as it is
the optimal detector under this condition. However, noise
variance is not known in practice. Accordingly, we consid-
ered a 0.3 dB noise uncertainty and the results are shown
in Fig. 8. Results show that the SCN detector outperforms
both the LE and ED as noise uncertainty is considered.

7 Conclusions
In this paper, we have considered the detection probabil-
ity of the SCN detector. We have provided new statistics
for the SCN metric, particularly for a K-dimensional cog-
nitive radio system, by generalizing the form of the joint
distribution of the ordered eigenvalues of central semi-
correlated Wishart matrices. Then, we have considered a
three-dimensional system and have derived the approx-
imated detection probability by the use of normalized
non-central/central approximation. The analytical results
are validated through Monte Carlo simulations in differ-
ent environments and with different system parameters.
Results show that the approximation perfectly fits the
empirical results at low SNR values; however, the approx-
imation accuracy degrades as SNR increases. For a target
false alarm probability, results prove that the probability of
detection could be approximated using normalized non-
central/central approximation for all SNR values when the
values of N and K are large enough. In addition, and by
considering the noise uncertainty problem, results show
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that the SCN detector outperforms the LE detector and
the ED even with very small noise uncertainty value.

Endnotes
1 The infinite sum of the hypergeometric function

could be truncated to a finite sum with good accuracy if
the K, N, and SNR are small. However, for a CR system, N
is usually large.

2 The norm of the PU signal, ‖s‖2, is still a random
variable; however, this randomness decreases fast as N
increases and (‖s‖2/N) can be well approximated by σ 2

s
for sufficient value of N.

Appendices
Appendix 1: proof of Theorem 1.
Before we start the proof, it is required to give the follow-
ing Lemma presenting the nth derivative of any function
of the form e− a

x with respect to the variable x.

Lemma A.1. Let us define the function f (x) = e− a
x , then

the nth derivative of f (x) is given by

f (n)(x) = a
x2n

· e− a
x ·
[ n∑
k=1

(−1)k+nL(n, k)xn−kak−1
]
(29)

with L(n, k) the Lah number defined in (17).

Proof. It should be noted that, for any value of n, the nth
derivative of e− a

x will result into the function e− a
x multi-

plied by sum of (a/x) with different powers for a and x.
Regardless of the sign, it is found that the number multi-
plied by each component of this sum is exactly equals to
the Lah number.
Following the pattern seen by calculating the derivative

of f (x) for small values of n, and matching the numbers at
each derivative level, “n,” with the Lah number L(n, k), it

can be proved, by recurrence, that the nth derivative of the
function f (x) of the form e− a

x is given by (29).

Now, we proceed in proving Theorem 1. If we have L
equal eigenvalues (σp = · · · = σq), we must generalize
the result of central semi-correlated Wishart with distinct
correlation eigenvalues for arbitrary number of coincident
eigenvalues by taking the limit of joint distribution given
by Eq. 6 of [30] as follows:

lim
σp,q→σp

f (λ) = |�(λ)|
K∏
i=1

ξ(λi) lim
σp,q→σp

(C × |E(λ, σ )|)

= |�(λ)|
K∏
i=1

ξ(λi) lim
σp,q→σp

⎛⎜⎜⎜⎜⎝
∏K

i<j σiσj
K∏
i=1

σN
i (N − i)!

· |E(λ, σ )|
K∏
i<j

σj − σi

⎞⎟⎟⎟⎟⎠
(30)

with σp,q =[ σp, · · · , σq], and C the normalization con-
stant, �(λ) is a Vandermonde matrix of entries λi−1

j ,

E(λ, σ ) is matrix of entries e
−λj
σi , and ξ(λi) = λN−K

i
[30, Table I]. To evaluate the limit in (30), we apply Lemma
2 from [39] to obtain

lim
σp,q→σp

|E(λ, σ )|
K∏
i<j

σj − σi

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e (λ1, σ1) · · · · · · e (λK , σ1)
...

. . .
. . .

...
e(λ1, σp−1) · · · · · · e(λK , σp−1)

e(L−1)(λ1, σp) · · · · · · e(L−1)(λK , σp)
...

. . .
. . .

...
e(0)(λ1, σp) · · · · · · e(0)(λK , σp)
e(λ1, σq+1) · · · · · · e(λK , σq+1)

...
. . .

. . .
...

e(λ1, σK ) · · · · · · e(λK , σK )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
K∏
i<j

σi 	=σj

(σj − σi) · �L(L)

(31)
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with e(λi, σj) = e
− λi

σj , the required derivatives are evalu-
ated using (29) and �s(l) = ∏s

i=1(l − i)!. Then, the result
is obtained by substituting (29) and (31) into (30) and
simplifying.
In the case, we have several coincidences (e.g., σp,q = σp,

σt,s = σs), the same analysis could be applied and the limit
must be taken over all coincidence cases.

Appendix 2: the CDF and PDF of SCN
In the case where �3 is not a rank 1 matrix (we have more
than one PU), then the eigenvalues of �3 are not equal
anymore. For sake of completeness of three-dimensional
system case, we give in Theorem 3 and Corollary 2 the
CDF and PDF of the SCN metric when all the correlation
eigenvalues are distinct.

Theorem 3 (CDF of SCN of Central Semi-Correlated
Wishart Matrix when �3 has distinct eigenvalues). The
CDF of the SCN of 3 × 3 central semi-correlated Wishart
matrix W ∼ CWK (N ,�3) when eigenvalues of �3 are
distinct is given by

F1(x) = Cs · R3(N , x), z ≥ 1, (32)

where R3(N , x) is defined in (33), S3(r, s, t, x) in (34),
�3(r, s, t,μ, ν, ε, x) in (35), and Cs in (36).
Ri(N , x) = Si (N − 2,N − 1,N − 3, x)

− Si (N − 3,N − 1,N − 2, x)
+ Si (N − 3,N − 2,N − 1, x) , i = 3, 4

(33)

Si(r, s, t, x) = �i
(
r, s, t, σ−1

2 , σ−1
1 , σ−1

3 , x
)

− �i
(
r, s, t, σ−1

3 , σ−1
1 , σ−1

2 , x
)

− �i
(
r, s, t, σ−1

1 , σ−1
2 , σ−1

3 , x
)

+ �i
(
r, s, t, σ−1

3 , σ−1
2 , σ−1

1 , x
)

+ �i
(
r, s, t, σ−1

1 , σ−1
3 , σ−1

2 , x
)

− �i
(
r, s, t, σ−1

2 , σ−1
3 , σ−1

1 , x
)
, i = 3, 4

(34)

�3 (r, s, t,μ, ν, ε, x) =
(

r! s!
μr+1εs+1

) r∑
k=0

s∑
u=0

[
(k + u + t)!
k!u!μ−kε−u ·

×
(

1
(μ + ε + ν)k+u+t+1

− xu

(μ + εx + ν)k+u+t+1

− xk

(μx + ε + ν)k+u+t+1

+ xk+u

(μx + εx + ν)k+u+t+1

)]
(35)

Cs = [(σ2 − σ1) (σ3 − σ1) (σ3 − σ2)]−1

(N − 1)! (N − 2)! (N − 3)! σN−2
1 σN−2

2 σN−2
3

.

(36)

Proof. The proof could be summarized as follows:

1. Considering (18) and setting K = 3.
2. Substituting the parameters from Theorem 1 with

L = 1.
3. Expanding the summation and using (19) with p = q.
4. Expanding the determinant and integrate using Eqs.

(3.351.1) and (3.351.3) of [38].

Then, the result comes after simplification.

Corollary 2. The PDF of the SCN of 3 × 3 central
semi-correlated Wishart matrix W ∼ CWK (N ,�3) when
eigenvalues of �3 are distinct is given by

f1(x) = Cs · R4(N , x), z ≥ 1, (37)

where R4(N , x) defined in (33), S4(r, s, t, x) in (34), Cs in
(36), and �4(r, s, t,μ, ν, ε, x) in (38).

�4(r, s, t,μ, ν, ε, x) =
(

r! s!
μr+1εs+1

) r∑
k=0

s∑
u=0

[(
(k + u + t)!
k!u!μ−kε−u

)
·

×
(
xk+u−1 (ν(k + u) − x(t + 1)(μ + ε))

(μx + εx + ν)k+u+t+2

− xu−1(u(μ + ν) − εx(k + t + 1))
(μ + εx + ν)k+u+t+2

−xk−1(k(ε + ν) − μx(u + t + 1))
(μx + ε + ν)k+u+t+2

)]
.

(38)

Proof. Obtained by differentiating Eq. (32).
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