
Lu et al. EURASIP Journal onWireless Communications and
Networking  (2016) 2016:136 
DOI 10.1186/s13638-016-0635-z

RESEARCH Open Access

Cooperative spectrum-sensing algorithm
in cognitive radio by simultaneous sensing
and BER measurements
Yingqi Lu1, Donglin Wang1,2* and Michel Fattouche1

Abstract

This paper considers spectrum utilization, the probability of detection in cognitive radio (CR) model based on
cooperative spectrum sensing with both simultaneous adaptive sensing and transmission at a transmitting secondary
user (TSU), and the bit error rate (BER) detection with variation checking at a receiving user (RSU). In this paper, a novel
detecting model is proposed in the being considered scenario for the full-duplex TSU’s simultaneous sensing and
transmitting. A spectrum sensing scheme with an adaptive sensing window is designed to improve the spectrum
utilization with a high SNR. At RSU, the BER variation is used further to detect whether a PU is active or not. Data fusion
based on the proposed adaptive sensing scheme and the BER detection is processed for better decison on the
spectrum holes. Simulation results show that (1) simultaneous spectrum sensing with an adaptive window improves
the spectrum utilization compared with a periodical sensing and (2) cooperative spectrum sensing with the
BER-assisted detection improves the probability of detection and spectrum utilization compared with the single
simultaneous sensing at TSU.
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1 Introduction
Cognitive radio (CR) is an important strategy to enhance
spectrum efficiency, allowing the secondary user (SU) to
utilize the licensed spectrum of the primary user (PU)
when PU is inactive. This kind of time slot is called as a
spectrum hole [1, 2]. CR has two important functionali-
ties: spectrum sensing and adaption [1]. Energy detection
is conventionally used for spectrum sensing [3]. Tradition-
ally, SU firstly detects the spectrum band using energy
collection periodically. If a spectrum hole is found, SU will
immediately utilize this time interval to transmit data by
upconverting to the PU’s frequency band. Once SU senses
the activity of PU, it will immediately stop transmitting
and give the spectrum back to PU. Then SU keeps detect-
ing the spectrum in its own period till the coming of next
spectrum hole.
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Different from the model described above where SU
executes sensing only when it does not transmit data [4, 5],
a couple of full-duplex spectrum sensing schemes have
been proposed in which the SU can simultaneously imple-
ment transmitting and sensing whether PU is active or
not. Researchers present a new design paradigm for future
CR by exploring the full-duplex techniques to achieve
the simultaneous spectrum sensing and data transmis-
sion in [6] , published in a magazine to explore key
research directions, and proposed an adaptive scheme
to improve SUs’ throughput by switching between the
“Listen-and-Talk” and “Listen-before-Talk” protocols in
[7]. Non-time-slotted CR has been investigated in [8] and
[9] and the full duplex spectrum sensing scheme is pre-
sented for non-time-slotted cognitive radio networks in
[8]. Afifi and Krunz [10] exploits self-interference sup-
pression for improved spectrum awareness/efficiency in
simultaneous transmit-and-receive mode. Results in [11]
show the performance of antenna for the full-duplex
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transmission in CR. The possibility of extending full-
duplex designs to support multiple input, multiple out-
put (MIMO) systems using commodity hardware has
been discussed in [12]. Tsakalaki et al. [13] describes the
basic design challenges and hardware requirements that
restrain CRs from simultaneously and continuously sens-
ing the spectrumwhile transmitting in the same frequency
band.
This paper also considers the full-duplex spectrum sens-

ing and utilization in CR. The being considered CR in
this paper consists of two SUs. One SU transmits data
and another SU receives the data. The SU which is used
to transmit the data is called TSU while the one receiv-
ing the data is called RSU. Both TSU and RSU are radio
transceivers. In this paper, a novel detecting algorithm
is proposed by combining an adaptive sensing in TSU
and the BER detection in RSU, where a dedicated line is
required for the transmission of the result of BER detec-
tion to the TSU and data fusion is processed in the TSU.
The difference of our algorithm from the existing full-
duplex cognitive radio lies in the adaptiveness of the
sensing window, the feedback of BER detection and the
data fusion of the sensing in TSU and the BER detec-
tion in RSU. One point to be noted is that we ignore
the overhead effect in this paper because the data is less
and negligible. The corresponding probability of detec-
tion as well as the false alarm are provided, on the basis
of which the utilization of spectrum holes is mathemat-
ically derived. With the proposed spectrum detecting
algorithm, a spectrum sensing scheme with an adaptive
sensing window is designed to improve the spectrum
utilization. Several schemes based on the adaptive sens-
ing window have been proposed in literature [14, 15]. In
this paper, the novel detection algorithm is followed by
an adaptive spectrum sensing algorithm to provide an
improved CR. Furthermore, in order to enhance the over-
all detection accuracy, this paper feeds back the detection
results based on the estimated bit error rate (BER) by
RSU to TSU. By data fusion, this information is com-
bined with the detection algorithm using an adaptive
sensing window at TSU. The combined detection algo-
rithm provides a better probability of detection and con-
sequently a higher spectrum hole utilization. Although
there is a trade-off between spectrum sensing and data
transmission, it is also important to improve its spectrum
utilization [16].
The rest of this chapter is organized as follows. Section 1

mentions the problems associated with recent develop-
ments in spectrum sensing. Section 2 describes the system
model and the spectrum sensing procedure that is pro-
posed in our novel P2P cognitive radio. Section 3 shows
the energy detection algorithm at TSU and derives its cor-
responding probability of detection as well as false alarm,
spectrum utilization and our proposed adaptive sensing

algorithm. Section 4 describes the detection algorithm
that is based on estimating the BER at RSU. Section 5
gives the derivations of spectrum utilization under peri-
odical sensing, simultaneously sensing with fixed win-
dow and adaptive window, as well as cooperative sensing
with simultaneous sensing and BER detection. Simulation
results are reported in Section 6 followed by a conclusion
in Section 7.

2 Problem statement
Most existing spectrum-sensing technologies have two
main problems. First, at TSU, periodical spectrum sens-
ing cannot determine the periodical duration of spec-
trum sensing. Here, we consider simultaneous spectrum
sensing and transmitting. Secondly, spectrum sensing at
TSU often brings miss-detection of PU signals when PU
becomes a hidden node compared to TSU. Thus, we
propose a novel BER-assisted detection to improve the
spectrum sensing.

2.1 Simultaneous sensing/transmitting at full-duplex TSU
In the majority of existing spectrum-sensing technologies,
spectrum sensing at TSU is executed periodically without
the transmission of SU signals. However, this periodi-
cal sensing exists a problem when selecting its periodical
duration. As shown in Fig. 1, if the duration is too long,
the SU signal can represent interference to the PU sig-
nal. It is obvious that this interference will decrease when
the periodical duration decreases. However, if the period-
ical duration is too short, it will cost more time to execute
spectrum sensing instead of transmitting SU signals which
will decrease the utilization of spectrum holes. In order to
overcome this problem, we propose a solution to execute
spectrum sensing while transmitting SU signals.When SU
detects the existence of a spectrum hole, it transmits its
signal over the licensed channel. Meanwhile, it will start
to detect whether PU is active or not in order to min-
imize interfering with the SU signal. TSU in cognitive
radio is a full-duplex systemwhich can transmit data while
simultaneously perform spectrum sensing.

2.2 Assisting detection based on BER At SU receiver
We have proposed the concept of cooperative spectrum
sensing between TSU and RSU based on estimating the
BER at RSU. This is useful because a PU transmitter some-
times becomes a hidden node compared to TSU which
means that TSU cannot detect the existence of PU. There
are two kinds of hidden nodes. The two cases are shown
below.

2.2.1 Case I: TSU is out of the transmitting range of a PU
transmitter

In Fig. 2, when TSU is out of the transmitting range of
a PU transmitter, the TSU cannot detect the presence of
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Fig. 1 Periodical spectrum sensing and simultaneous sensing/transmitting. Compare the periodical spectrum and simultaneous sensing/transmitting
at the same spectrum hole duration, we can find that the simultaneous sensing provides a higher spectrum utilization and less interference to PU

PU no matter whether PU is active or not. TSU will con-
tinue to transmit data to its receiver. However, if RSU is in
the transmitting range of a PU transmitter while hidden
from it, the transmission between TSU and RSU can bring
serious interference to PU.

2.2.2 Case II: PU signal is hidden from TSU
As shown in Fig. 3, the energy of the PU signal at TSU
is lower than the minimum detection threshold possibly
due to the existence of obstructions between TSU and
PU. Thus, it is difficult to detect the existence of PU if
the spectrum sensing only happens at TSU. In this case,
there will still exist serious interference between RSU and

PU when RSU is close to PU and there is no obstruction
between them.
From the two cases above, one can notice that it is

necessary to assist spectrum sensing at TSU with addi-
tional spectrum sensing at RSU based on BER measure-
ment. If the BER at RSU is large enough, the presence of
PU is detected even if the received energy of PU at TSU is
below the detection threshold.

3 Systemmodel
Spectrum sensing and transmitting at TSU in cognitive
radio could be represented as shown in Fig. 4. Denote h0,
h1, h2, · · · , hm−1 as spectrum holes, i.e., PU is inactive

Fig. 2 Hidden node case I. The TSU is outside the transmitting range of PU while RSU is in the transmission range of PU
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Fig. 3 Hidden node case II. Both TSU and RSU are in the transmitting
range of PU but there exists obstructions between TSU and PU

and the spectrum is idle during these time slots. The time
duration of spectrum hole hi is represented by Di, 0 ≤
i ≤ m − 1, which is also the time interval between two
adjacent transmissions by PU. In each spectrum hole, the
TSU first senses whether the spectrum is being used or
not. If the spectrum is unoccupied, the TSU borrows it
to transmit data while simultaneously sense the start of a
PU transmission. Therefore, the process consists of two
stages: “sensing” only, followed by “transmitting and sens-
ing”, as shown in Fig. 4. Si denotes the duration that TSU
takes to sense the spectrum before it can find a spectrum
hole, and Ti represents the duration that TSU executes
simultaneously sensing and transmitting. Spectrum sens-
ing includes both spectrum sensing at TSU by energy
detection and spectrum sensing at RSU by BER estima-
tion. The whole procedure of SU spectrum sensing and
signal transmission can be summarized as follows:

• Step I: TSU senses the PU spectrum by energy
detection.

• Step II: If TSU finds a spectrum hole, it awaits
sensing of a spectrum hole at RSU by BER estimation.
If not, it continues spectrum sensing by energy
detection alone at TSU.

• Step III: If RSU also detects the existence of a
spectrum hole, TSU starts to transmit data. At the
same time, it continues to sense the spectrum band
to detect when PU becomes active.

• Step IV: If TSU finds out that PU is active either by
itself or with the help of RSU, it stops transmitting at
once and goes back to Step I.

In the following section, we discuss spectrum sensing at
TSU based on energy detection and at RSU based on BER
estimation.

4 Energy detection at TSU
The block diagram corresponding to spectrum sensing
using energy detection at TSU is shown in Fig. 5. The
received signal is sampled to obtain a discrete time signal
as shown in Fig. 6. Then, the system estimates the energy
of the sampled signal during a sensing window. The length
of the sensing window W can be a fixed value or a vari-
able value. By comparing the threshold with the estimated
energy, the system can conclude whether PU is active or
not.

4.1 The energy detection algorithm and corresponding
probability of detection at TSU

At the ith “sensing” stage, Si in Fig. 4, the sensing signal at
TSU can be expressed as:

y(n) =
{
v(n) for H0
αp(n) + v(n) for H1

, (1)

where y(n), 0 ≤ n ≤ N − 1, denotes the received signal at
TSU, N is the number of samples, αp(n) denotes the PU
signal at TSU, v(n) denotes the AWGN with zero mean

Fig. 4 The spectrum sensing scheme in licensed channel. TSU senses the spectrum and transmits signal when spectrum is idle
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Fig. 5 The spectrum sensing system at TSU

and variance σ 2, α represents the channel gain between
PU transmitter and TSU which depends on their relative
positions and surrounding environment. Hypothesis H0
indicates that PU is inactive while hypothesisH1 indicates
that PU is active.
At the ith “transmitting and sensing” stage, Ti in Fig. 4,

the sensing signal at TSU can be expressed as:

y(n) =
{
s(n) + v(n) for H2
s(n) + αp(n) + v(n) for H3

, (2)

where y(n), p(n) and s(n), 0 ≤ n ≤ N − 1, have the
same definition as the ones corresponding to the sens-
ing stage, and s(n) denotes the received SU signal after
going through the interference cancellation module in
Fig. 7. Hypothesis H2 indicates that PU is inactive while
hypothesis H3 indicates that PU is active. Without loss of
generality, it is assumed that p(n), s(n) and v(n) are all
independent from each other.

The test statistic for energy detection under the four
hypotheses, H0 though H3, can be expressed as

T(y) = 1
W

W−1∑
n=0

|y(n)|2, (3)

where y(n) is the TSU’s sensing signal as given in Eqs. (1)
and (2), and W is the length of the sensing window, i.e.,
the number of baseband samples used for each detection
decision. It can be described as:

W = fsτ , (4)

where fs is the sampling frequency at TSU and τ is the
duration of W. In order to estimate the energy, TSU esti-
mates the energy for a time duration τ , which corresponds
to fsτ baseband samples.

Fig. 6 Received signal sampling at SU. The received continuous signal is sampled to form a discrete time signal at TSU
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Fig. 7 The duplex SU detector which applies antenna cancellation
technique

Based on the theory described in [16], it is easily shown
that the test statistic follows a normal distribution:

T(y) ∼
{
N
(
σ 2, 2

W σ 4) for H0
N
(
(1 + γ1) σ 2, 2

W (1 + 2γ1) σ 4) for H1
,

(5)

T(y) ∼
{
N
(
(1 + γ2) σ 2, 2

W (1 + 2γ2) σ 4) for H2
N
(
(1 + γ3) σ 2, 2

W (1 + 2γ3) σ 4) for H3
,

(6)

where γ1 = α2σ 2
p

σ 2 is the SNR under hypothesis H1, α2σ 2
p

denotes the power of the received PU’s signal, γ2 = σ 2
s

σ 2 is
the SNR under H2, σ 2

s denotes the power of the received
SU’s signal, and γ3 is the SNR under H3, which can be
obtained as γ3 = σ 2

s +α2σ 2
p

σ 2 = γ1 + γ2.
Based on Eqs. (5) and (6), at the “sensing” stage, the

probability of detection Pd1 and of false alarm Pf1 can be
obtained as

Pd1 = P (T(y) > λ1|H1) = Q

⎛
⎜⎝ λ1 − (1 + γ1)σ 2

σ 2
√

(1 + 2γ1) 2
W

⎞
⎟⎠ ,

(7)

Pf1 = P (T(y) > λ1|H0) = Q

⎛
⎜⎝λ1 − σ 2

σ 2
√

2
W

⎞
⎟⎠ , (8)

where λ1 is the assumed threshold value which needs
to be selected appropriately and Q(·) represents the Q-
Function.
Similarly, at the “sensing and transmitting” stage, the

probability of detection Pd2 and of false alarm Pf2 can be
obtained as

Pd2 = P (T(y) > λ2|H3) = Q

⎛
⎜⎝ λ2 − (1 + γ3)σ 2

σ 2
√

(1 + 2γ3) 2
W

⎞
⎟⎠ ,

(9)

Pf2 = P (T(y) > λ2|H2) = Q

⎛
⎜⎝ λ2 − (1 + γ2)σ 2

σ 2
√

(1 + 2γ2) 2
W

⎞
⎟⎠ ,

(10)

where λ2 is the assumed threshold value to be selected
appropriately. In the selection of thresholds, we hope to
strike a balance between decreasing the probability of
false-alarm and increasing the probability of detection.
The threshold values λ1 and λ2 are constrained by the
equations below:{

θ
(
1 − Pd1

) = θPm1 = Pf1
θ
(
1 − Pd2

) = θPm2 = Pf2
, (11)

where Pm1 is the probability of miss-detection in hypoth-
esis H1 while Pm2 is the probability of miss-detection in
hypothesis H3. θ is a factor which is used to describe
the relationship between the miss-detection and the
false alarm. It is called control factor. If θ is greater
than 1, it means the probability of miss-detection is
selected to be lower than the probability of false alarm.
If θ is less than 1, it means the probability of miss-
detection is selected to be greater than the probabil-
ity of false alarm. If θ = 1, it means the probability
of false alarm and the probability of miss-detection are
selected to be the same. According to [14] and [17], we
assume θ = 1 and substitute Eqs. (7)–(10) into (11).
Then, we have⎧⎨
⎩

λ1 = σ 2
(
1 + γ1

1+√
1+2γ1

)
λ2 = σ 2

(√
1+2γ3(1+γ2)+√

1+2γ2(1+γ3)√
1+2γ2+√

1+2γ3

) . (12)

From Eq. (12), it is concluded that the threshold values
λ1 and λ2 depend on σ 2 and on the SNRs: γ1, γ2 and γ3,
but not on the length of the sensing windowW.

4.2 Discussion of power attenuation between PU and TSU
In this section, we discuss the power attenuation between
PU and TSU according to the channel gain α between
them. As previously discussed, we have known that p(n)

denotes the amplitude of the PU signal at PU while αp(n)

represents the amplitude of the PU signal at the detection
end (TSU). Thus, we can derive the transmitting power at
the PU transmitter and its received power at TSU, i.e.,
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ρpu � 1
W

W−1∑
n=0

|p(n)|2, (13)

ρsu � 1
W

W−1∑
n=0

|αp(n)|2, (14)

where ρpu represents the transmitting power at PU while
ρsu represents the received power at TSU. The relation-
ship between ρpu and ρsu is as follows:

ρsu = α2ρpu, (15)

where α depends on the transmission channel which can
include path-loss and shadow fading. According to a tra-
ditional radio channel model, the equation to describe the
fading of a radio signal can be expressed in a log scale
(dB) as:

ρsu(dB) = ρpu(dB) − g1 − g2 log10
(∥∥zpu − zsu

∥∥) , (16)
where zpu and zsu represents the position of PU and TSU,
respectively; ‖zpu − zsu‖ is the Euclidean distance which
represents the relative distance, d ,between PU and TSU
while ρsu(dB) and ρpu(dB) represents ρsu and ρpu in dB
g1/10 is called the fading constant, which is related to
shadow fading such as the position of obstructions in the
transmission while g2/10 is a factor which depends on
the transmission environment and is referred to as path
loss exponent. From Eq. (16), the channel gain α can be
expressed as:

α2 = 10−g1/10d−g2/10, (17)

From Eqs. (15) and (17), one can express α2 as:

α2 = PL−1 (∥∥zpu − zsu
∥∥) · ϕ = PL−1(d) · ϕ, (18)

where PL (d) = dg2/10 and ϕ = 10−g1/10. When the
distance d becomes large, the value of α2decreases. For
Case I in Fig. 2, the path loss PL (d) is large when TSU
is out of the transmission range of PU transmitter. Thus,
the power gain α2 decreases to the point that TSU can-
not detect the presence of PU. In Fig. 3, the value of ϕ

is small because of obstructions between PU and TSU.
Thus, the power gain α2 is too small for PU signal to be
detected.

4.3 Antenna cancellation technique in duplex TSU at P2P
cognitive radio

In the P2P cognitive radio, because of the power atten-
uation over the radio channel between PU and TSU, the
power of the transmitted signal s(n) at TSU, i.e., from its
own transmit antenna, is much larger than the received
signal at TSU from PU αp(n). This makes it difficult to
realize a full duplex operation at TSU because of this large
power difference. It is highly possible that TSU cannot

detect the energy of the weak received PU signal unless
special care is undertaken. One way is to decrease such a
power difference by making αp(n) and s(n) of the same
order of magnitude.
According to [18], a technique called antenna cancel-

lation can be used for full-duplex operation. It com-
bines the existing RF interference cancellation with
digital baseband cancellation to reduce self-interference.
Self-interference cancellation aims at decreasing the
power difference between αp(n) and s(n). In Fig. 7,
the value of s(n) is decreased to the same energy level
as αp(n) using antenna cancellation technique. Thus,
a full-duplex operation is enabled and TSU is able to
detect the presence of PU while it is transmitting sig-
nals. In other words, once the energy αp(n) is close to
that of s(n), transmitting will not affect the detection
of PU.

4.4 Spectrum sensing with adaptive window
In this section, we introduce the concept of an adaptive
sensing window as applied to spectrum sensing based on
energy detection, where the length of the sensing window,
W, varies fromWmax toWmin. Denote asWmax the maxi-
mum allowed length of the sensing window. IfW > Wmax,
there is no performance improvement. Denote as Wmin
the minimum allowed length of the sensing window. If
W < Wmin, TSU cannot detect the PU signal due to an
insufficient energy collection. In order to obtain a bet-
ter sensing performance, the adaptive sensing algorithm is
designed as follows:

• Step I: initialization - LetW = Wmax so that TSU
can detect a real spectrum hole with high probability.

• Step II: active PU - IfW > Wmin, assign
W = W − Wmin to reduce the possibility of missing
spectrum holes with a small duration; ifW ≤ Wmin,
assignW = Wmin.

• Step III: inactive PU - AssignW = Wmax to enhance
the probability of detecting the coming PU.

The state transition diagram in Fig. 8 can be used to
represent the change in the value ofW with the state tran-
sition as a function of hypothesis H0 to H3. The flowchart
of the adaptive sensing algorithm is shown in Algorithm 1.
In this algorithm, we denotewcounter as a counter to keep
track of the number of consecutive windowswith an active
PU and denote C as the number of consecutive windows
after which the length of the sensing window is decreased
byWmin.

5 BER assisting detection at RSU
5.1 Novel TSU and RSUmodules
In order to accomplish the proposed BER-assisted spec-
trum detection scheme, a new TSU architecture as well as
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Fig. 8 State transition diagram among four hypothesis. The length of sensing windowW changes betweenWmax andWmin with the state transition
among hypothesis H0 to H3

a new receiver architecture is proposed based on using a
dedicated control channel.

5.1.1 Proposed architecture for TSU
The proposed TSU architecture consists of three com-
ponents as shown in Fig. 9. As previously discussed, one

component is used to sense PU’s activities, the second
is used to transmit data by using the idle PU chan-
nel while the last is used to exchange control informa-
tion via a dedicated channel. The first component is
used to estimate the energy of the received signal and
to decide whether the PU channel is occupied or idle.

Fig. 9 The proposed architecture of TSU. The TSU has three functions: energy detection, transmit training sequence and transmit signal
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Algorithm 1 Spectrum sensing with adaptive window
algorithm
1: W ← Wmax
2: wcounter ← 0
3: Initialize energy detection threshold λ ← λ1
4: if T(y) < λ then
5: if Last window find the spectrum hole then
6: Go to step 12;
7: else
8: W ← Wmax;
9: wcounter ← 0;

10: SU starts to transmit signal;
11: end if
12: λ ← λ2;
13: Go to step 4;
14: else
15: if Last window find PU then
16: if wcounter >= C then
17: ifW − Wmin < Wmin then
18: W ← Wmin;
19: else
20: W ← W − Wmin;
21: wcounter ← 0;
22: end if
23: else
24: wcounter ← wcounter + 1;
25: end if
26: else
27: SU stops transmitting;
28: W ← Wmax;
29: wcounter ← 0;
30: end if
31: Go to step 3
32: end if

This decision, as indicated by the dotted line in Fig. 9
controls a key “K1”; if the PU channel is idle, TSU
starts to transmit data using the PU channel; otherwise,
TSU does not transmit. The dedicated control chan-
nel is used for transmitting the training sequence and
for receiving the probability of detection based on BER
estimation.

5.1.2 Proposed architecture for RSU
The corresponding RSU architecture consists of two
components as shown in Fig. 10. The first compo-
nent is used to receive the signal transmitted from
TSU via the PU channel. The second component is
the dedicated control channel which is used for receiv-
ing the training sequence and for transmitting the esti-
mated BER via a dedicated control channel. The BER
is estimated using data sequences transmitted over the
PU channel. These data sequences consist of useful
information.

5.2 Modulation assumption
Without loss of generality, BPSK is assumed to be the
modulation scheme for both TSU and PU. For analysis
simplification, a perfect receiving process is considered
and thus the continuous-time RF-received signal can be
expressed as

y(t) = AP1(t)cos(2π fct) + v(t), (19)

where AP1(t) =
{−A Sending a bit “0”
A Sending a bit “1” for TSU signal,

while AP1(t) =
{−B Sending a bit “0”
B Sending a bit “1” for PU signal,

where A and B are determined by their own transmit
power and their propagation attenuation, fc is the carrier
frequency and v(t) is the continuous-time white Gaussian
noise with its discrete form v(n) in Eq. (1), with a zero

Fig. 10 The proposed architecture of RSU. RSU contains three functions: signal receiving from TSU through the PU channel, data sequence
receiving from a dedicated channel and the transmission of the detection result through a dedicated channel
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mean and a variance σ 2. It is also assumed that the proba-
bility of transmitting a bit “0” or “1” is equal for both TSU
and PU, and that coherent detection is used at RSU.

5.3 BER with/without a PU signal
Without a PU signal, the BER is the well known BPSK
expression given in [19], which is re-written here for
convenience

Pe = Q
(
A
σ

)
, (20)

where the optimal decision threshold T = 0 is used.
On the other hand, when PU is active, the received

signal at RSU can be expressed as

y(t) = AP2(t)cos(2π fct) + v(t), (21)

where AP2(t) =
{−A ± B when TSU sends a “0”
A ± B when TSU sends a “1” .

The received signal after coherent detection is

ŷ(t) = (AP2(t)cos(2π fct) + v(t)
)
2cos(2π fct)

= ((AP2(t) + vc(t)) cos(2π fct) − vs(t)sin(2π fct)
)

·2cos(2π fct)
= (AP2(t) + vc(t)) + (AP2(t) + vc(t)) cos(4π fct)

−vs(t)sin(4π fct), (22)

where vc(t) and vs(t) are, respectively, the in-phase com-
ponent and quadrature component of v(t), a random
process with a variance of σ 2. After the low-pass filter, the
received signal can be obtained as

ỹ(t) = AP2(t) + v(t)

=
{−A ± B + v(t) when TSU sends a “0”
A ± B + v(t) when TSU sends a “1” .

(23)

The probability of error is derived below based on the
probabilities in Eqs. (24) and (25). By choosing the deci-
sion threshold value as T = 0, the probability of error
decision when transmitting a bit “0”, P̂e0, is given by

P̂e0 = 1
2

1√
2πσ 2

∫ +∞

0
e−

(x−(−A−B))2
2σ2 dx

+ 1
2

1√
2πσ 2

∫ +∞

0
e−

(x−(−A+B))2
2σ2 dx, (24)

and the probability of error decision when transmitting a
bit ‘1’, P̂e1, is given by

P̂e1 = 1
2

1√
2πσ 2

∫ 0

−∞
e−

(x−(A−B))2
2σ2 dx

+ 1
2

1√
2πσ 2

∫ 0

−∞
e−

(x−(A+B))2
2σ2 dx. (25)

Therefore, the overall BER can be obtained as

P̂e = 1
2
P̂e0 + 1

2
P̂e1

= 1
2

[
Q
(
A + B

σ

)
+ Q
(
A − B

σ

)]
. (26)

5.4 Detection algorithm and probability of detection at
RSU

Usually, a reliable communication system has a relatively
low BER, e.g., lower than 10−3 level, [19], so Q

(
A
σ

)
in

Eq. (20) must be small. By looking at the Q-function table,
1
2

[
Q
(
A+B

σ

)
+ Q
(
A−B

σ

)]
in Eq. (26) is much higher than

Q
(
A
σ

)
in Eq. (20). So, intuitively, the change of BER could

be used for detecting the spectrum hole.

5.4.1 Method I
From Eqs. (20) and (26), one can conclude that BER
estimation follows a nonnegative distribution with mean
of Q

(
A
σ

)
for the case when PU is inactive and

1
2

[
Q
(
A+B

σ

)
+ Q
(
A−B

σ

)]
for the case when PU is active.

However, the variance is unknown and is represented
by σ 2

b for both cases. Denote T as the threshold: if
the BER measurement is greater than T, it says that
PU is active; otherwise, it says that PU is inactive.
The optimal threshold, T, must be selected in such a
way that the minimum probability of decision error is
reached. The probability of decision error PfT can be
represented by

PfT = 1√
2πσ 2

b

∫ +∞

T
e
− (x−Pe)2

2σ2b dx + 1√
2πσ 2

b

∫ T

0
e
− (x−P̂e)

2

2σ2b dx.

(27)

By calculating dPfT
dT = 0, one can solve for the opti-

mal threshold value Top, which corresponds to the min-
imum probability of decision error. A good approxima-
tion of the optimal threshold value is Top = Pe+P̂e

2 ,
due to the low variance for this kind of measurements.
As such, the probability of detection and the proba-
bility of false alarm as defined in Section II can be
represented by

Pd3 = P
{
BER > Top|Active PU

}
= 1√

2πσ 2
b

∫ +∞
P̂e+Pe

2

e
− (x−P̂e)

2

2σ2b dx = Q
(

− P̂e + Pe
2σb

)
,

(28)
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Pf3 = P
{
BER > Top|Inactive PU

}
= 1√

2πσ 2
b

∫ +∞
P̂e+Pe

2

e
− (x− Pe)2

2σ2b dx = Q
(
P̂e − Pe
2σb

)
,

(29)

One must note that a higher P̂e leads to a larger
probability of detection Pd3 and a smaller probability
of false alarm Pf3 .This makes sense because a higher
P̂e results in a bigger difference with Pe. It should be
noted that when P̂e >> Pe, the optimal threshold value
T ≈ P̂e

2 .

5.4.2 Method II
This algorithm is proposed by considering the ratio
between the BER in Eq. (20) and the BER in Eq. (26), as
a way to provide an obvious distinction between the two
cases: inactive PU and active PU. The ratio of the real
measurements of BER on Pe also follows a nonnegative
distribution. The mean is obviously 1 for the case when

PU is inactive and
Q
(
A+B

σ

)
+Q
(
A−B

σ

)
2Q
(
A
σ

) for the case when PU

is active. The variance can be represented by σ̂ 2
b = σ 2

b
P2e

for both cases. The optimal threshold corresponding to
the minimum probability of decision error, which can be
calculated as

P̂fT = 1√
2πσ̂ 2

b

∫ +∞

T
e
− (x−1)2

2σ̂2b dx + 1√
2πσ̂ 2

b

∫ T

0
e
−
(
x− P̂e

Pe

)2
2σ̂2b dx.

(30)

Once again, by calculating dP̂fT
dT = 0, the optimal

threshold value can be found, which can be approxi-
mated as T = Pe+P̂e

2Pe due to the low variance for this
kind of measurements. As such, the probability of detec-
tion and false alarm as defined in Section II can be
represented by

Pd3 = P
{
BER
Pe

> T |Active PU
}

= 1√
2πσ̂ 2

b

∫ +∞
P̂e+Pe
2Pe

e
−
(
x− P̂e

Pe

)2
2σ̂2b dx = Q

(
− P̂e + Pe

2σb

)
,

(31)

Pf3 = P
{
BER
Pe

> T |Inactive PU
}

= 1√
2πσ̂ 2

b

∫ +∞
P̂e+Pe
2Pe

e
− (x−1)2

2σ̂2b dx = Q
(
P̂e − Pe
2σb

)
,

(32)

which show the same performance as Method I.

5.5 Probability of detection based on a cooperative
scheme between TSU and RSU

When TSU receives the BER which is estimated at RSU,
it will make the final decision of whether PU is active or
not based on a threshold. Here, we can obtain the prob-
ability of detection based on such a cooperation between
TSU and RSU. The condition for cooperative detection
is that the spectrum hole is firstly detected at TSU. If
PU is sensed by TSU, the training sequence will not be
transmitted to RSU.
In hypothesis H1 and hypothesis H3, the probability of

cooperative detection is the combination of two proba-
bilities. The first is the probability of detection at TSU
which we have already discussed in the previous section.
The second is the probability when PU is detected at RSU
though not at TSU. Thus, the probability of cooperative
detection in hypothesis H1 and H3 can be expressed as
follows:

Pcoopd1 = P (T (y) > λ1 |H1 )

+ P
(
T (y) < λ1

∣∣H1, BER > Top
∣∣H1
)
.

(33)

Pcoopd2 = P (T (y) > λ2 |H3 )

+ P
(
T (y) < λ2

∣∣H3, BER > Top
∣∣H3
)
.

(34)

Here, Pcoopd1 denotes the probability of cooperative
detection in hypothesis H1 while Pcoopd2 represents the
probability of cooperative detection in hypothesis H2.
Because the probability of detection at TSU and the
probability of detection at RSU are relatively inde-
pendent, Eqs. (33) and (34) can be expressed as
follows:

Pcoopd1 = P (T (y) > λ1|H1)

+ P (T (y) < λ1|H1)P
(
BER > Top

∣∣H1)

= Pd1 + (1 − Pd1)Pd3 , (35)

Pcoopd2 = P (T (y) > λ2|H3)

+ P (T (y) < λ2|H3)P
(
BER > Top

∣∣H3)

= Pd2 + (1 − Pd2)Pd3 , (36)

In Eqs. (35) and (36), Pd1 represents the probability of
detection in hypothesis H1 at TSU while Pd2 is the prob-
ability of detection in hypothesis H3 at TSU. Pd3 denotes
the probability of detection based on BER estimation at
RSU. All of these parameters have been discussed in the
previous sections.
By the same principle, we can obtain the probabilities of

false alarm Pcoopf1 and Pcoopf2 under hypothesis H0 and H2
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which are the probabilities that PU is detected though it is
actually inactive.

Pcoopf1 = P (T (y) > λ1|H0)

+ P (T (y) < λ1|H0)P
(
BER > Top

∣∣H0)

= Pf1 + (1 − Pf1)Pf3 , (37)

Pcoopf2 = P (T (y) > λ2|H2)

+ P (T (y) < λ2|H2)P
(
BER > Top

∣∣H2)

= Pf2 + (1 − Pf2)Pf3 , (38)

According to the derivation from Eqs. (33)–(38), we can
show that the new spectrum sensing scheme improves
the probability of detection. It decreases the interference
from SU. However, it also brings an increase in the prob-
ability of false alarm which might decrease the spectrum
utilization.

6 Spectrum utilization
6.1 Case I: ideally no noise or negligible noise
In order to measure spectrum utilization, and compare it
to the traditional periodical sensing, it is necessary firstly
to figure out how much time the “sensing” stage occupies
and howmuch time the “transmitting” stage occupies dur-
ing transmission. In our new full duplex TSU, it is also
necessary to estimate the durations of the “sensing” stage
“transmitting and sensing”. Assuming that DH is the total
duration of the spectrum holes in an observation interval,
such as in Fig. 4, it can be written as DH = ∑NH−1

i=0 Di,
where NH denotes the number of holes in the observa-
tion interval, and Di, indicates the time duration of the
ith spectrum hole hi. Denoting Td

H as the total duration of
the data transmission (i.e., the“transmitting ” stage in peri-
odical sensing and the “transmitting and sensing” stage
both at TSU) of all detected spectrum holes in an obser-
vation interval, it can be written as Td

H = ∑Nd
H−1

i=0 Ti,
where Nd

H denotes the total number of spectrum holes
detected by SU during the observation interval, while Ti,
indicates the duration of the real data transmitting stage
for the ith spectrum hole hi. Denote η as the utilization of
the spectrum holes. Spectrum utilization, η, can thus be
calculated as

η = Td
H

DH
=
∑Nd

H−1
i=0 Ti∑NH−1
i=0 Di

. (39)

6.1.1 Ideally no noise or negligible noise in periodical
spectrum sensing

In the traditional periodical spectrum sensing, the dura-
tion of a spectrum hole, Di, which can be regarded as

a random variable, as in [16], follows an exponential
distribution with an assumed mean μ. Its cumulative
distribution function (CDF) can therefore be given as

FDi(D) = 1 − exp
(

−D
μ

)
, (40)

and its probability density function (PDF) can be
described as

fDi(D) = 1
μ
exp
(

−D
μ

)
. (41)

In addition, Ti can also be regarded as a random vari-
able, since:

Ti = Di−NiW = Di−DifsensW = Di(1−fsensW ), (42)

where fsens is the frequency of periodical spectrum sens-
ing. It is a fixed value for a CR spectrum sensing system.
Ni is the sensing instants in the ith spectrum hole.
In order to compute the CDF of Ti, for an arbitrary T,

we have

P (Ti ≤ T) = P
(
Di ≤ T

1 − fsensW

)
= FD

(
T

1 − fsensW

)
.

(43)

Therefore, its CDF and PDF can be obtained, respec-
tively, as⎧⎨
⎩
FTi(T) = 1 − exp

(
− T

μ(1−fsensW)

)
fTi(T) = 1

μ(1−fsensW)
exp
(
− T

μ(1−fsensW)

) . (44)

Furthermore, we have the expectation of Ti:

T̄ = E{Ti}

=
∫ +∞

0
T

1
μ
(
1 − fsensW

)exp
(

− T
μ
(
1 − fsensW

)
)
dT

= μ
(
1 − fsensW

)
(45)

One must note that fsensW ≤ 1 because the sensing
period 1

fsens is always greater or equal to the lengthW of the
sensing window. It is therefore reasonable to assume that
when the sensing frequency fsens increases, the duration of
data transmission decreases.
If there is no noise or negligible noise, each valid spec-

trum hole is assumed to be detected. So, Eq. (39) can be
written as

ηideal = Td
H

DH
=
∑NH−1

i=0 Ti∑NH−1
i=0 Di

= T̄d
H

D̄H
, (46)

where T̄d
H = T̄ and D̄H = μ. So spectrum utilization

ηperiod in an ideal periodical spectrum sensing system is
obtained as:

η
period
ideal = T̄d

H
D̄H

= 1 − fsensW , (47)
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where W is a fixed value when the licensed channel
is sensed by a sensing window with a fixed sized. In
Eq. (47), one can conclude that the utilization of the
spectrum decreases when the size of the sensing win-
dow becomes larger. This result makes sense because
the wasted time when the spectrum is not used is equal
to the size of the sensing window during the sensing
stage.

6.1.2 Ideally no noise or negligible noise when sensing and
transmitting at the same time

Similar to traditional periodical spectrum sensing, the
duration Di of a spectrum hole, at a full duplex TSU,
can be regarded as a random variable foll an exponential
distribution with an assumed mean μ whose cumula-
tive distribution function (CDF) and probability density
function (PDF) are shown in Eqs. (40) and (41).
Similarly, Ti can also be regarded as a random vari-

able, indicating the duration of the “sensing and trans-
mitting ” stage. In each spectrum hole, data transmission
always happens except during the first spectrum sens-
ing window. Thus, the transmission duration can be
described as:

Ti = Di − W . (48)

In order to compute the CDF of Ti, for an arbitrary T,
we have

P (Ti ≤ T) = P (Di ≤ T + W ) = FD (T + W ) . (49)

Therefore, its CDF and PDF can be obtained, respec-
tively, as⎧⎨
⎩
FTi(T) = 1 − exp

(
−T+W

μ

)
fTi(T) = 1

μ
exp
(
−T+W

μ

) . (50)

Furthermore, we have the expectation of Ti as

T̄ = E{Ti} =
∫ +∞

0
T
1
μ
exp
(

−T + W
μ

)
dT

= μexp
(

−W
μ

)
(51)

If there is no noise or negligible noise, each valid spec-
trum hole is assumed to be detected. So, Eq. (39) can be
written as

η
duplex
ideal = Td

H
DH

=
∑NH−1

i=0 Ti∑NH−1
i=0 Di

= T̄d
H

D̄H
= exp

(
−W

μ

)
,

(52)

where T̄d
H = T̄ and D̄H = μ. In Eq. (52), W repre-

sents the size of the first sensing window in one spectrum
hole. The utilization of the spectrum also decreases when
the size of the sensing window W becomes larger. The
size of the first sensing window is adaptive and change-
able. Its range, Wadaptive should be Wmin < Wadaptive <

Wmax. The aim of having an adaptive window is to
decreaseW and improve spectrum utilization. It regulates
the trade-off between the probability of detection and
spectrum utilization because the probability of detection
increases with W, while spectrum utilization decreases
withW.

6.2 Case II: noisy environment
In general, there is non-negligible noise which increases
the probability of false alarms. False alarms cause spec-
trum holes not to be used. Thus, spectrum utilization is
affected by the probability of false alarm.
First, when spectrum sensing is carried out only at TSU,

spectrum utilization in Eq. (39) can be expressed as

ηnoise = Td
H

DH
=
∑NH−1

i=0

(
Ti − Tloss

i

)
∑NH−1

i=0 Di
= T̄d

H
D̄H

= T̄ − T̄ loss

D̄H
,

(53)

where Tloss
i denotes the wasted durations in the ith spec-

trum hole hi which are caused by false alarms while D̄H =
μ, T̄d

H = T̄ − T̄ loss, T̄ loss is defined as the expected value
of the wasted spectrum duration E{Tloss

i } in ith spectrum
hole.

6.2.1 Noisy environment in periodical spectrum sensing

In a periodical spectrum sensing scheme, E
{
Tloss
i

}
comes entirely from false-alarms during the “sens-
ing” stage. It can be expressed as the expected value
E
{
Tloss
i
∣∣sensing stage} of all wasted durations in one

period of spectrum sensing which denotes as W̄loss:

E
{
Tloss
i

}
= N̄E

{
Tloss
i
∣∣sensing stage} = N̄W̄loss, (54)

where N̄ is the expected value of the number of spec-
trum sensing times in each spectrum hole. According to
Eq. (42), we can obtain the expression below:

D̄H = μ = N̄
(
W + W̄loss

)+ T̄ = N̄
(

1
fsens

+ W̄loss

)
,

(55)

Thus, the expected value of the number of spectrum
sensing times in each spectrum hole N̄ is:

N̄ = μ
1

fsens + W̄loss
, (56)

When spectrum sensing is only based on energy
detection at TSU, E{Tloss

i |sensing stage} depends on the
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probability of false alarm Pf1 . at TSU. It can be derived as
follows:

E
{
Tloss
i
∣∣sensing stage} = W̄loss

= WPf1
+∞∑
r=0

(
(r + 1)Prf1

)

= WPf1
(
1 + 2Pf1 + 3P2f1 + . . . . . . . . . nPn−1

f1

)

= lim
n→+∞WPf1

[ 1 − Pnf1
(1 − Pf1 )

2 −
nPnf1

1 − Pf1

]

≈ WPf1
(1 − Pf1 )

2

(57)

Here,W is the size of the spectrum sensing window. Its
value isW = Wmax. This is because, in our adaptive win-
dow algorithm the size of the sensing window does not
change when PU is inactive.
According to Eqs. (55) and (56), E{Tloss

i } is expressed as:

T̄ = μ − N̄(W + W̄loss) = μ − μ(W + W̄loss)
1

fsens + W̄loss
, (58)

Then, according to Eqs. (57) and (58), we can derive the
utilization of the spectrum η

period
noise in a periodical spectrum

sensing system in a noisy environment as:

η
period
noise = T̄

D̄H
=

1
fsensW − 1

1
fsensW + Pf1

(1−Pf1 )2

. (59)

From Eq. (59), one can conclude that spectrum uti-
lization η

period
noise decreases when the probability of false-

alarm Pf1 increases. On the other hand, the utilization
η
period
noise becomes lower when the size of the sensing win-

dow W becomes larger which implies that Eq. (59)
makes sense.

6.2.2 Noisy environment when sensing and transmitting at
the same time

When sensing and transmitting at the same time in
a full duplex TSU, the expected value of the wasted
durations T̄ loss

duplex in each spectrum hole consists of two
components. The first is the expected value of the
wasted spectrum durations during the sensing stage.
The other one is the wasted spectrum durations dur-
ing the transmitting and sensing stage. In other words,
we have

T̄ loss
duplex = E

{
Tloss
i

}
= E
{
Tloss
i
∣∣sensing stage}

+ NduplexE
{
Tloss
i
∣∣sensing and transmitting stage

}
,

(60)

where Nduplex represents the number of sensing
times in transmitting and sensing stage. In Eq. (60) ,
E{Tloss

i |sensing stage} is the expected value of the wasted
spectrum durations during the spectrum sensing in
the sensing stage. Its expression is shown in Eq. (57).
The sensing stage occurs once at the beginning of the
spectrum hole.
In Eq. (60), E

{
Tloss
i
∣∣sensing and transmitting stage

}
denotes the expected value of the wasted spectrum dura-
tions during the transmitting and sensing stage.
Similar to Eq. (57), we can obtain the expected value

of the wasted spectrum durations during the transmitting
and sensing stage as:

E
{
Tloss
i
∣∣sensing stage and transmitting stage

}
=WPf2

+∞∑
r=0

(
(r + 1)Prf1

)

=WPf2
(
1 + 2Pf1 + 3P2f1

+ . . . . . . . . . nPn−1
f1

)

= lim
n→+∞WPf2

[
1−Pnf1

(1−Pf1 )2
−

nPnf1
1−Pf1

]

≈ WPf2
(1 − Pf1 )2

(61)

By comparing Eq. (57) with Eq. (61), one can see that
the only difference between E

{
Tloss
i
∣∣sensing stage} and

E{Tloss
i |transmitting and sensing stage} is that the proba-

bility of false alarm in hypothesis H0 is different from the
corresponding false alarm in H2.
In addition, in order to derive the utilization of a spec-

trum hole, we need to know nduplex since the average
duration of the “transmitting and sensing” stage T̄ is

T̄ = WPf1
(1 − Pf1)2

+ N̄duplex

[ WPf2
(1 − Pf1)2

+ W
]
, (62)

Thus, N̄duplex can be expressed as:

N̄duplex =
T̄ − WPf1(

1−Pf1
)2

WPf2(
1−Pf1

)2 + W
, (63)

In Eq. (62), the duration of the “transmitting and sens-
ing” stage includes the wasted durations in both the sens-
ing stage and the transmitting and sensing’ stage as well
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as the used spectrum in hypothesis H2. From Eq. (63), we
can obtain the following:

T̄ − T̄ loss = T̄ − WPf1(
1 − Pf1

)2 − N̄duplex
WPf2(

1 − Pf1
)2

= N̄duplexW

=
T̄ − WPf1(

1−Pf1
)2

Pf2(
1−Pf1

)2 + 1
(64)

We substitute Eqs. (51) and (64) into Eq. (53), to obtain
an expression for the spectrum utilization η

duplex
noise :

η
duplex
noise = Td

H
DH

= T̄ − T̄ loss

D̄H

=
μexp

(
−W

μ

)
− WPf1(

1−Pf1
)2

μ

(
Pf2(

1−Pf1
)2 + 1

) (65)

In Eq. (65), when the probabilities of false alarm Pf1 and
Pf2 increase, the utilization η

duplex
noise becomes smaller. On

the other hand, the utilization η also becomes lower when
the size of the sensing window W becomes larger. Thus,
we can conclude that Eq. (65) makes senses.

6.3 Spectrum utilization in cooperative spectrum sensing
between TSU and RSU

Next, we introduce the utilization of a spectrum hole
when we use our new spectrum sensing scheme, i.e., when
we combine BER estimation with energy detection to real-
ize spectrum sensing. When we use the new spectrum
sensing method, all relevant expressions are the same
as Eqs. (60)–(65) except that we use Pcoopf1 and Pcoopf2 to
replace the original Pf1 and Pf2 . Moreover, the duration
of the “transmitting and sensing” stage not only includes
the wasted duration as well as the used spectrum in
hypothesis H2, but also includes the length of the training
sequence which is used in BER estimation. So Eq. (62) can
be rewritten as:

T̄ =
(W + W̄ts)P

coop
f1(

1 − Pcoopf1

)2 + W̄ts + N̄coop

⎡
⎢⎣ (W + W̄ts)P

coop
f2(

1 − Pcoopf1

)2 + W + W̄ts

⎤
⎥⎦

=
[
W + (1 − Pf1 )Wts

]
Pcoopf1(

1 − Pcoopf1

)2 + (1 − Pf1 )Wts

+ N̄coop

⎡
⎢⎣
(
W + (1 − Pf1

)
Wts
)
Pcoopf2(

1 − Pcoopf1

)2
+ W + (1 − Pf2

)
Wts
]

(66)

Here, W̄ts is the expected value of the length of the train-
ing sequence and Wts is the length of training sequence
in each estimation of BER. Thus, the number of sensing
times N̄coop can be expressed as:

N̄coop =

T̄ −
(W+(1−Pf1 )Wts)P

coop
f1(

1−Pcoopf1

)2 −
(
1 − Pf1

)
Wts

(
W+
(
1−Pf1

)
Wts
)
Pcoopf2(

1−Pcoopf1

)2 + W +
(
1 − Pf2

)
Wts

=
T̄
(
1 − Pcoopf1

)2
−
(
W +

(
1 − Pf1

)
Wts
)
Pcoopf1

−
(
1 − Pcoopf1

)2 (
1 − Pf1

)
Wts

(
W +

(
1 − Pf1

)
Wts
)
Pcoopf2

+
(
W +

(
1 − Pf2

)
Wts
)(

1 − Pcoopf1

)2

(67)

Then T̄ loss can be expressed according to Eqs. (66) and
(67) as

T̄ loss =
WPcoopf1(

1 − Pcoopf1

)2 + N̄coop
WPcoopf2(

1 − Pcoopf1

)2

=
WPcoopf1(

1 − Pcoopf1

)2 + W

T̄ −
(
W+
(
1−Pf1

)
Wts
)
Pcoopf1(

1−Pcoopf1

)2 −
(
1 − Pf1

)
Wts

W +
(
1 − Pf1

)
Wts +

(
W+
(
1−Pf2

)
Wts
)(

1−Pcoopf1

)2
Pcoopf2

=
WPcoopf1(

1 − Pcoopf1

)2 +
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(68)

Finally, it is easy to derive the utilization of the spectrum
η
coop
noise as

η
coop
noise = Td

H
DH

= T̄ − T̄ loss

D̄H

= exp
(

−W
μ

)
−

WPcoopf1

μ
(
1 − Pcoopf1

)2

−
exp
(
−W

μ

)
−
(
W+
(
1−Pf1

)
Wts
)
Pcoopf1

μ(1−Pcoopf1
)2

−
(
1−Pf1

)
Wts

μ

1 + (1 − Pf1
) Wts

W +
(
1+
(
1−Pf2

)
Wts
W

)(
1−Pcoopf1

)2
Pcoopf2

(69)

From Eqs. (68) and (69), we can conclude that the
utilization of the spectrum depends on the probability
of cooperative false-alarm Pcoopf2 . The loss of spectrum
T̄ loss becomes larger when the cooperative probability of
false-alarm at the “transmitting and sensing” stage Pcoopf2
increases. This is reasonable because the “transmitting
and sensing” stage occupies most of the spectrum hole
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for a CR full duplex system. If Pcoopf2 increases, it implies
that the CR transmitter will spend more time on spec-
trum sensing instead of sensing and transmitting. In other
words, some of the spectrum hole is missed without trans-
mitting data at TSU. Thus, it is reasonable to assume that
the utilization of the spectrum η

coop
noise decreases with the

increase in Pcoopf2 in Eq. (69).
In addition, according to Eqs. (68) and (69), we can also

conclude that spectrum utilization η
coop
noise is larger when the

training sequence Wts that is used in BER estimation has
a larger duration. However, it is possible that the longer
length of the training sequence causes interference to PU
especially at the end of a spectrum hole when PU might
become active.

7 Numerical analysis and simulation results
7.1 Parameters
7.1.1 Basic parameters for the simulation
In this section, the proposed spectrum sensing at TSU
is simulated using Matlab 2014b in a 64 bit computer
with a core i7 and 8 GB RAM in order to demonstrate
our proposed theory. The duration of a spectrum hole,
which is also called appearance duration, follows an expo-
nential distribution with a mean of μ = 30000 samples.
The arrival rate of a spectrum hole follows a Poisson
distribution with an average arrival rate ε = 20000 sam-
ples intervals. From [14], the maximum allowed length
of the sensing window Wmax is 1000 samples. The min-
imum allowed length of sensing window Wmin is 100
samples. The number of consecutive windows after which
the length,C, of the sensing window is decreased byWmin,
is set as 1, 2, or 5. In BER detection, the size of training
sequence Wts is also 1000 samples. The RF parameters
which include the bandwidth of the channel B, the ther-
mal noise spectrum density V (f ), the noise factor of the
receiver NF and the variance of AWGN σ 2 are all shown
in Table 1.

7.1.2 Parameters for performance evaluation
The probability of detection Pd of a spectrum hole is an
important factor when evaluating the performance of the
proposed spectrum sensing algorithm. It is used to weigh
the ability for TSU to avoid interfering with PUwhen PU is
active. It is necessary to measure Pd at TSU and RSU. That

Table 1 RF simulation parameters

RF parameters Value

Bandwidth B 5MHz

Noise spectrum density V(f ) −174dBm/Hz

Noise factor NF 7dB

Noise power σ 2 −100dBm

SNR of PU signal at detector γ1 −20 ∼10dB

is why we need to obtain the probability of cooperative
detection as well.
On the other hand, the probability of false alarm detec-

tion Pf is another important factor when PU is inactive. It
affects the utilization of the spectrum η, which is another
parameter when evaluating the performance of the pro-
posed system. The utilization of the spectrum is also
another parameter that plays a fundamental role in a CR
system.

7.2 Probability of detection
In the simulations, we examine the probability of detec-
tion at TSU first. As previously discussed, there exist two
kinds of probabilities of detection and probabilities of false
alarm: Pd1 , Pf1 at “sensing" stage and Pd2 , Pf2 at “sens-
ing and transmitting” stage. Because the selection of the
detection thresholds λ1 and λ2 is based on Eq. (12), the
value of Pd1 and of Pd2 increase while the value of Pf1
and Pf2 decrease. Thus, when we evaluate the detection
performance at TSU, we must examine the probability of
detection Pd1 and Pd2 instead of Pd1 , Pd2 , Pf1 , and Pf2 .
According to Eq. (7), Pd1 depends on the SNR γ1, the

variance of the AWGN σ 2 and the length of the sens-
ing window W. σ 2 is a constant in Table 1. The SNR γ1
depends on the PU transmitting power σ 2

p and factors
which affect the channel gain α such as the transmission
distance d, and shadow fading ϕ in Eqs. (17) and (18). In
our simulations, we evaluate the performance of CR for an
SNR range from −20 to 10 dB. The length of the sensing
window W is regarded as a constant when the spectrum
sensing work has a fixed window. The length of a fixed
window is between Wmin and Wmax. If spectrum sens-
ing with an adaptive window as in Algorithm 1 is applied,
the length of the sensing window will be a variable chang-
ing from Wmax to Wmin. The simulation results on the
probability of detection, Pd1 , in Eq. (7) vs. SNR, γ1, are
shown in Fig. 11. It makes sense that the probability of
detection, Pd1 , is always larger when W = Wmax than
when W = Wmin. The reason is obvious: more energy
is collected with a larger window, which has a higher
probability to be greater than the preset threshold. When
spectrum sensing uses an adaptive window, the average
length of the sensing window for each sensing interval is
between Wmax and Wmin. It depends on the value of C
in Algorithm 1. The average W for each sensing inter-
val becomes smaller as C becomes larger. Thus, when C
increases, it is reasonable to assume that the probability
of detection Pd1 decreases. There is a gap between the
simulation result and the corresponding theoretical result.
Based on our analysis, the number of iteration should
be the reason for this gap. Especially when the SNR is
low, it requires a large iteration to precisely find out the
exact probability of detection. When the SNR is high, it
shows a better consistence between the simulation and the
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Fig. 11 The probability of detection Pd1 vs. SNR γ1. The probability of
detection under hypothesis H1, Pd1 , changes with different SNR γ1

theoretical result. Overall speaking, the simulation result
approximately matches the derived theory (similar issue
occurs again for the following simulation results).
Because a larger window leads to a better detection, for

hypotheses H2/H3, the largest window W = Wmax is
used to attain the best detection. Under this condition,
the probability of detection, Pd1 , in Eq. (7) for hypothe-
ses H0/H1 is compared with the probability of detection,
Pd2 , in Eq. (9) for hypotheses H2/H3. Four cases are con-
sidered: γ2

γ1
= 0.5, 1, 2, 4 with various transmitting power.

When γ2
γ1

is greater than 1, it implies that the power of the
SU signal is larger than the power of the PU signal. Fig. 12
shows the probability of detection versus SNR γ1. As seen,
Pd1 is always larger than the corresponding Pd2 especially

Fig. 12 The probability of detection Pd1 and Pd2 vs. SNR γ1 and γ2.
The comparison of Pd1 and Pd2 vs. SNR γ1 are shown when the ratio of
γ2 to γ1 are 0.5, 1, 2, 4

when the TSU signal is larger than the PU signal. It is rea-
sonable to assume that the PU signal is difficult to detect
when the TSU signal is too large to exceed the PU signal.
It also explains why we need to apply antenna cancella-
tion techniques as previously discussed. It is reasonable to
regard Pd1 as an approximation of Pd2 when the PU signal
αp(n) and the SU signal s(n) are within the same or close
order of magnitude. However, because both are based on
energy detection, Pd1 and Pd2 are both imperfect when
the SNR is relatively low. Thus, our proposed coopera-
tive detection model provides a more precise detection. It
requires detection at RSU which assists TSU in spectrum
sensing.
From Section 4.4, the detection results at TSU depend

on BER estimation using training sequences at RSU as
well as using the optimal threshold which is a func-
tion of the difference between the theoretical BER Pe
when PU is inactive and P̂e when PU is active. When
the difference between Pe and P̂e is large, it is easier
to judge whether PU is active or not. From Eqs. (20)
and (26), Pe and P̂e are related to A

σ
and B

σ
. Because

the variance of the AWGN σ 2 is a fixed value, Pe and
P̂e depend on the relationship between the two signal
amplitudes A and B. Here, we denote n = B

A as the
ratio between the PU signal amplitude B and the SU sig-
nal amplitude A. The difference between Pe and P̂e vs.
SNR are shown in Fig. 13. The difference between Pe
and P̂e increases with the increase in n. This is reason-
able because in this case PU adds more interference to
the training sequence which causes bit errors when its
transmitting power is large. In addition, when n is fixed,
the difference between Pe and P̂e also increases with the
increase in SNR because the interference from the PU sig-
nal is much larger than the effect of the AWGN. From
Fig. 13, Pe and P̂e are always very close if n = 0.25. In
order to obtain a better detection based on BER estima-
tion, we select n = 0.5, 1, 2 by transmitting power control
signals.
According to our simulations, the probability of detec-

tion Pd3 based on BER estimation vs. SNR with different
values of n = 0.5, 1, 2 is shown in Fig. 14.
In Fig. 14, increasing n implies that the power of the PU

signal becomes larger relative to that of the TSU signal.
In this case, PU is easier to be detected which causes Pd3
to increase. Actually, the ratio n between the PU signal
power and the SU signal power can influence the exper-
iment substantially. From Fig. 14, the simulation results
are better than theory. This is reasonable because the the-
oretical results are based on statistical assumptions while
each instant of BER detection is carried out in a dis-
crete and independent fashion in the simulations. When n
decreases from 2 to 0.5. The difference between the sim-
ulation results and the theory becomes smaller. Regular
power control technology can force A = B. In the next
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Fig. 13 The Bit error rate Pe and P̂e vs. SNR γ1 when n = 0.25, 0.5, 1, 2. The comparison of Pe and P̂e vs. SNR γ1 when the ratio of amplitude B to A are
0.25, 0.5, 1, and 2

simulation, we assume that the power of the SU signal is
the same as the power of the PU signal. By comparing Pd3
in Fig. 14 with Pd1 and Pd2 in Fig. 12, one can see that
the detection Pd3 at RSU is greater than the detection at
TSU in theory when A ≥ B It is helpful when a missed
detection occurs at TSU such as in case I and case II in
section 1.2.
So far, we have discussed the values of Pd1 , Pd2 , and Pd3

vs. SNR. The probability of cooperative detection under
hypothesis H1, P

coop
d1 and the probability of cooperative

detection under hypothesis H3, P
coop
d2 are presented in

Fig. 14 The probability of detection Pd3 and vs. SNR γ1 when
n = 0.5, 1, 2

Fig. 15 using theoretical analysis from Eq. (35), Eq. (36),
and practical simulation. They are to be compared with
the probability of detection Pd1 and Pd2 . From Fig. 15, it
is obvious that the performance of detection is improved
using cooperative spectrum sensing between TSU and
RSU, especially when the SNR is low. For instance, at
an SNR = −20 dB, cooperative detection increases the
probability of detection to around 77 from around 55 %.
The probability of detection can be increased because a

Fig. 15 The probability of detection Pd1 , Pd2 , P
coop
d1

, and Pcoopd2
vs. SNR

γ1. The probability of detection Pd1 and Pd2 are compared with
probability of cooperative detection Pcoopd1

and Pcoopd2
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missed detection at TSU is compensated by the detec-
tion at RSU. When PU is not detected at TSU, there still
exists a good probability for TSU to detect PU at RSU.
Thus, the proposed cooperative detection at both ends of
SU overcomes the shortcoming of energy detection and
improves the performance of detection when the SNR
is low. In addition, experimental results are better than
the results obtained from theory because the theoreti-
cal result are based on statistical assumptions while each
instant of spectrum sensing is carried out in a discrete
and independent fashion in the simulations. The exper-
imental results can not be fully described by theoretical
analysis.

7.3 Probability of false alarm
False alarm happens when hypotheses H0 or H3 are
selected even though PU is inactive. It directly affects the
utilization of the spectrum. When the probability of false
alarm is high, a number of spectrum holes are missed by
TSU. For this reason, we discuss the probability of false
alarm before discussing the utilization of the spectrum.
As in previous sections, the selection of the detection
thresholds λ1 and λ2 is based on Eq. (12). According to
Eqs. (37) and (38), the probabilities of false alarm Pcoopf1 and
Pcoopf2 cannot be expressed by Pcoopd1 and Pcoopd2 directly even
though they depend on Pf1 and Pf2 . In Fig. 16, we com-
pare Pcoopf1 and Pcoopf2 , with Pf1 and Pf2 which shows that
the probability of false alarm increases when the coop-
erative spectrum sensing is applied, especially when the
SNR is low. Compared with Pf1 and Pf2 , the total proba-
bility of false alarm Pcoopf1 and Pcoopf2 are greater because of
the additional probability of false alarm Pf3 at RSU. The
simulation results are better than the theory because the

Fig. 16 The probability of false alarm Pf1 , Pf2 , P
coop
f1

, and Pcoopf2
vs. SNR

γ1. The probability of false alarm Pf1 and Pf2 are compared with
probability of cooperative false alarm Pcoopf1

and Pcoopf2

simulation results for Pd1 , Pd2 and Pd3 are relatively higher
than theory while Pf1 , Pf2 , and Pf3 are relatively lower.

7.4 Spectrum utilization
In this section, we discuss the spectrum utilization by
periodical spectrum sensing at TSU, simultaneously sens-
ing/transmitting, and cooperative spectrum between TSU
and RSU.

7.4.1 Simulation results for periodical sensing and
simultaneous sensing

We first compare our proposed simultaneous sens-
ing/transmitting with the traditional periodical sensing.
For both cases, the sensing window is fixed. Its value
is either Wmax or Wmin. In periodical sensing, the ratio
of the sensing window size W to the sensing period
can be represented as fsensW . The value of fsensW is
selected to be 2

3 . Figure 17 indicates that the utilization
of the spectrum η

duplex
noise is always higher than η

period
noise in

both simulation and theory. This is reasonable because
the spectrum hole is not used to transmit data in each
instance of periodical spectrum sensing while our pro-
posed model can sense and transmit data at the same
time. The duration of the wasted spectrum hole are
shown as the blue blocks in Fig. 1. One can show that
the simultaneous sensing/transmitting algorithm wastes
less spectrum hole durations than periodical spectrum
sensing.
When the SNR is relatively low (e.g., the SNR is from

−20 to−5 dB), in either of the two spectrum sensing algo-
rithms, the utilization of spectrum becomes higher with
the increase ofW fromWmin toWmax. This is reasonable
because the probability of false alarm decreases and the
probability of detection increases whenW increases.

Fig. 17 The utilization of spectrum η vs. SNR γ1 when periodical and
simultaneous spectrum sensing are implemented
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When the SNR is greater than 0 dB, the spectrum uti-
lization of periodical sensing η

period
noise becomes a constant

value equal to 60 % regardless whether W is Wmax or
Wmin. In this case, the probability of false alarm is always
0 and the probability of detection is always 1 no matter
how large the sensing window W is. η

period
noise depends on

the ratio of sensing window size to sensing period fsensW
which is a constant.
For a fixed SNR greater than 0 dB, the spectrum utiliza-

tion of simultaneous sensing/transmitting η
duplex
noise depends

on the duration of the only sensing stage. Figure 18 shows
the spectrum holes before TSU senses and uses them in
the simulation, and the usage of this spectrum after TSU
senses and utilizes the spectrum holes. In each spectrum
hole, the tiny white space shown in Fig. 18b is the only
sensing stage which is at the beginning of each spectrum
hole. The value of its duration depends on the correspond-
ing size of the sensing window W. When W is larger,
the spectrum utilization becomes lower. Thus, the energy
detection with W = Wmax has the lowest utilization. Its
bigger step causes more missing usage of the spectrum
holes. Therefore, its spectrum utilization with high SNR
cannot come close to 100 % (96.72 % from simulation).
Conversely, energy detection with W = Wmin leads to an
approximate 100 % (99.67 % from simulation) hole utiliza-
tion. It shortens the sensing duration. Hence, in order to
obtain a high spectrum utilization at high SNR, we use the
adaptive window algorithm to assist with simultaneous
sensing at TSU.

7.4.2 Simulation on simultaneous sensingwith adaptive
window

Figure 19 indicates the comparison of spectrum utiliza-
tion between sensing with a fixed window and sens-
ing with an adaptive window. When C is reduced from
5 to 1, the sensing duration becomes smaller and the
spectrum utilization becomes larger at high SNR. The
best performance is obtained when C=1. In this case,
the spectrum utilization improves from 96.72 % to
99.6 %.
Once again, the simulation results are better than the-

ory because the expected value of the wasted dura-
tion Tloss

i in Eqs. (57) and (61) is larger than the one
we obtain in the simulations. This is because it is
less possible for false alarm to occur twice or more.
The wasted duration in the simulations is mostly W
or 2W which is less than E

{
Tloss
i
∣∣sensing stage} and

E
{
Tloss
i
∣∣sensing stage and transmitting stage

}
.

7.4.3 Simulation on cooperative spectrum sensing
Figure 19, indicates that the spectrum utilization is
improved by using an adaptive window. In this case,
spectrum utilization approaches 100 % when the SNR is
between −5 and 10 dB. However, the spectrum utilization
is still low when the SNR is between−20 and −10 dB. It is
because we use energy detection to implement spectrum
sensing at TSU. Energy detection has a poor detection per-
formance when the SNR is low(i.e., it causes the increase
of the probability of false alarm and the decrease of the

Fig. 18 a The spectrum holes before SU senses and uses them in the simulation. b The usage of the spectrum holes after SU senses and utilizes them
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Fig. 19 The utilization of the spectrum η vs. SNR γ1 when simultaneous
spectrum sensing with fixed window and adaptive window are
implemented

probability of detection). In order to improve the proba-
bility of detection and consequently spectrum utilization,
cooperative spectrum with BER estimation is introduced.
In the simulations, Fig. 20 indicates that spectrum uti-

lization at low SNR is improved when the BER is con-
sidered as part of spectrum detection. For instance, at an
SNR = −20dB, the proposed “adaptive sensing + BER”
algorithm increases spectrum utilization from around
44 % to around 48 % using either a fixed or an adaptive
sensing window in the simulations and increases spec-
trum utilization from around 37 % to around 43 % in
theory. Its spectrum utilization is greater than the peri-
odical spectrum sensing.This is reasonable because, at
low SNR, the BER detection uses the PU channel to
transmit a training sequence. On one hand, the training
sequence is used for PU detection in order to improve

Fig. 20 The utilization of spectrum η vs. SNR γ1 when sensing at TSU
with cooperative sensing between TSU and RSU

the probability of detection and decrease the probability
of false alarm. On the other hand, the training sequence
occupies the spectrum hole, which increases the spectrum
utilization.

8 Conclusions
In this paper, a cooperative spectrum sensing between
TSU and RSU is implemented in CR. Our novel adap-
tive spectrum sensing scheme improves the spectrum
utilization. Both the theoretical analysis and simulations
show that the usage of an adaptive window improves the
spectrum utilization from 96.72 to 99.6 %. Furthermore,
BER-assisted detection greatly helps the adaptive spec-
trum sensing. Simulation results demonstrate that coop-
erative spectrum sensing can offer a better performance. It
increases the utilization of the spectrum from around 44%
to around 48 % in the simulations and increases spectrum
utilization from around 37 % to around 43 % in theory
when SNR is −20dB.
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