Hsieh et al. EURASIP Journal on Wireless E U RAS| P JOU rnal on WI reless
Communications and Networking (2016) 2016:143

DOI 10.1186/513638-016-0639-8 Communications and Networking

RESEARCH Open Access

Study on using design patterns to @
implement a simulation system for WiMAX
network

Hsin-Hung Hsieh', Bih-Hwang Lee'", Huai-Kuei Wu? and Hung-Chi Chien'

Abstract

A network simulator always is an important tool to observe and evaluate the study concept for wireless networks.
Considering the restriction of the limited budget, the non-commercial open-source simulation software often becomes
the top choice of academia. Since the natures of academic study are innovation and excellence, a simulator frequently
encounters that the existing modular functions are inadequate and need to be appended or modified. If a selected
simulator inherently has poor architecture, the maintenance, recondition, and expansion of functions will become
more difficult and more time-consuming in the future, while it is difficult to understand and reuse by the successors.
Therefore, how to select a most suitable simulator is an important issue.

In order to make a simulator have flexible architecture and believable results, design patterns are proposed as
the norms to design system architecture. To realize this idea, we surveyed six most used simulators, i.e, J-Sim, NS-2,
NS-3, OMNet++, OPNET, and QualNet, to ponder their system architectures and design concepts from the source
codes and the related literatures of the modular function expansion. We propose a network simulator architecture,
named as CCGns, which is a discrete-event virtual network simulator and follows the IEEE 802.16-2009 standard. CCGns
obeys the object-oriented design principles and is coded by the Java language. CCGns comprises eight packages for
physical layer, medium access control layer, network layer, devices, topologies, events, scheduler, and reports,
respectively. The main contribution includes three aspects which propose a scalable MAC messages management and
the corresponding architecture, an applicable for multi-hop relay network topology architecture, and a two-stage
minimum variance bandwidth allocation algorithm.

To the best of our knowledge, this article is not the first one to apply the design patterns for the simulator
architectures of wireless network, but we use more design patterns and types than the others and also provide the
unified modeling language figures to explain the system architectures. We particularly focus on how the management
procedure of control messages influences the time-related performance evaluation metrics, e.g., how the amount and
processing time of different control messages affect throughput, packet delay, and packet drop ratio. By using
mathematic calculation to verify the simulation results, the proposed system architecture has been proven to possess
excellent fidelity.

Keyword: Simulator, Design pattern, WiMAX, Object-oriented design, Unified modeling language

* Correspondence: bhlee@mail.ntust.edu.tw

'Department of Electrical Engineering, National Taiwan University of Science
and Technology, Taipei, Taiwan

Full list of author information is available at the end of the article

© 2016 Lee et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International

@ Springer Open License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
— medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-016-0639-8&domain=pdf
mailto:bhlee@mail.ntust.edu.tw
http://creativecommons.org/licenses/by/4.0/

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

1 Introduction

To study wireless network, a network simulator has been
an important tool. By using software to construct a simu-
lator, there have the advantages of having more conveni-
ence to build simulation scenarios and establish
monitoring procedure. In order to quickly modify the sce-
nario and revise the study concepts, simulation software
has become the main method to fulfill the researchers’
study concepts. There are two types of network simulation
software: commercial and non-commercial. The commer-
cial simulation software generally has the advantages of
having the more complete modular architecture and
systematization and providing better consultation service,
but the cost is expansive for authorization. Conversely, the
non-commercial simulator is cheaper or even free, but it
has non-optimized codes and the poor compatibility
among modules potentially. By considering the limited
budget, the non-commercial simulation software has often
become the top choice of academia, with which provides
source codes.

Because of the natures of innovation and excellence in
academic study, simulation software frequently encounters
that the existing modular functions are inadequate and
need to be appended or modified. How to find the most
suitable simulation software always is a difficult and im-
portant issue, which may be determined by some evalu-
ation metrics, such as fidelity, suitability, extensibility,
scalability, user support, learning time, implementation-
friendly, performance, and cost. The fidelity refers to the
similarity between the real world and simulation results.
The suitability refers to the communication protocol types
that can be performed by simulator. The extensibility re-
fers to the flexibility when the architecture is needed to
append or modify the function modules. The scalability
refers to the network size that can be simulated. The user
support refers to the experience of the user-interface oper-
ation. The learning time refers to the time devoted to
learn the simulation. The implementation-friendly refers
to the convenience degree for implementation, con-
figuration, maintenance, and the observation of simulation
results. The performance includes the minimum require-
ments for CPU utilization, memory size, and storage cap-
acity, as well as the real time needed to perform
simulation. The cost means the money is spent on build-
ing a simulation.

In order to make the simulator’s architecture to have
the extensibility, we proposed to use the design patterns
as the norm of system architecture design and imple-
ment. We surveyed the six most used simulators, i.e., J-
Sim [1], network simulator-2 (NS-2) [2], network
simulator-3 (NS-3) [3], OMNeT++ [4], optimized net-
work engineering tool (OPNET) [5], and QualNet [6], to
ponder their system architectures and design concepts
from their source codes and the related literatures of the

Page 2 of 19

modular functions. We propose a network simulator
architecture, named as CCGns, based on the IEEE
802.16-2009 standard. CCGns is a discrete-event virtual
network simulator coded by Java language [7] and uses
Eclipse as develop tool, which obeys the object-oriented
design (OOD) principles to design the function modules.
CCGns uses design paradigm to design system architec-
ture and comprises of eight packages: physical (PHY)
layer, medium access control (MAC) layer, network
(NET) layer, devices (DEV), topology (TPY), events
(EVT), scheduler (SCH), and report (RPT) packages.
The main contribution of CCGns is to propose three as-
pects: a scalable MAC message management and pro-
cessing architecture (SM>PA), an applicable for multi-
hop relay network architecture (AMRNA), and a two-
stage minimum variance bandwidth allocation
(TSMVBA) algorithm. SM®PA includes three design
concepts: firstly, it contains event class, event processing
procedure, and event owners having individual architec-
ture with the independent growing scale; secondly, it
uses command flow to accomplish a series of events;
and thirdly, the event owner certainly has the ability to
handle event. In SM®PA, users can arbitrarily define the
management message types to focus on the interested
messages and save the needed real simulation time. In
AMRNA architecture, we can use a unified interface to
simulate four different network topology architectures.
TSMVBA is responsible to provide the optimal frame
structure for the uplink (UL) and downlink (DL) sub-
frame using the different subcarrier permutation mode.

To the best of our knowledge, this article is not the
first one to apply the design patterns for the simulator
architectures of wireless network, but we use more de-
sign patterns and types than the others and also provide
the unified modeling language (UML) figures to explain
the system architectures. We particularly focus on how
the management procedure of control messages influences
the time-related performance evaluation metrics, e.g., how
the amount and processing time of different control mes-
sages influence throughput, packet delay, and packet drop
ratio. By using mathematic calculation to verify the simu-
lation results, the proposed system architecture has been
proven to possess excellent fidelity.

This paper is organized as follows. Section 2 de-
scribes the related researches including the evaluation
and comparison of some simulators and the introduc-
tion to WiMAX expansion module literatures and de-
sign patterns. Section 3 describes the CCGns system
architecture and includes the design paradigms and
function explanation used in the eight packages.
Section 4 describes the simulation scenarios and dem-
onstrates the simulation results, meanwhile using
mathematic calculation to verify with each other.
Section 5 is conclusions.

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

2 Related works

2.1 Comparisons of various network simulators

Several literatures have been proposed to evaluate the
simulation software, which can be summarized into
three categories: the first category is for overview and
introduction [8, 9]. The second category is the evalu-
ation and comparison for the inner system architec-
ture, such as fidelity, suitability, scalability, and
extensibility [10-14]. The third is the evaluation and
comparison for the outer user experiences, such as
learning time, user support, interface user-friendly,
operate convenience, and performance [15-17]. In
order to obtain the most suitable simulator, we evalu-
ate the existing 22 simulators as mentioned in the
above papers according to their license ways, pro-
gramming languages, operating systems, and lifetime
as shown in Table 1. After evaluation, we finally se-
lects the six most often used simulation software as
the study items, i.e., J-Sim, NS-2, NS-3, OMNeT++,
OPNET, and QualNet. We give brief introductions
and comparisons for the abovementioned six simula-
tion software as follows.

Table 1 The comparisons of various network simulators

Page 3 of 19

A. Brief introduction to J-Sim
JavaSim is the former name of J-Sim, which is a
simulation combination environment based on the
independent autonomous component programming
model (ACPM), called autonomous component
architecture (ACA). J-Sim uses Java to code the class
program, and then, it uses Jacl interpreter to inte-
grate the other script languages, such as Perl, Tcl, or
Python. The advantages of J-Sim include lower
coupling, the real-time process-driven simulation,
the implementation of complete Internet protocol,
automatic configuration, and online monitoring. The
disadvantages include the lack of complete user
manual, the need to learn the Jacl, no graphical user
interface (GUI), and the wireless network kits only
providing 802.11 and sensor network.

B. Brief introduction to NS-2
NS-2 is the most widely used network simulator
currently, which is an object-oriented based
discrete-event simulator. The simulation steps in-
clude four stages: (1) using C++ to write function
modules; (2) using OTcl to describe the simulate

No. Simulator License Language Platform Publications
1. AKAROA [32] Free for academic use C++ Solaris 2/SunQS 4/Linux 1990~

2. DIANEmu [33] Free Java Based on JDK and Eclipse 1992~2002
3. SSFNet [34] Free for academic use C++ and Java Linux/Solaris/WinNT 1997~2003
4. GloMoSim [35] Open source Parsec Win/Linux/Solaris 1998~

5. GTNetS [36] Open source C++ Linux/OSX/Solaris/Win 2003~2008
6. J-Sim Open source Java/Jacl Linux/Unix/Win 2004~2008
7. JANE [37] Free Java Based on JVM 2003~2007
8. JiST/SWANS [38] Free for academic use Java Based on JVYM 2002~2005
9. NAB Open source Object-Caml Win/Linux/Unix/OSX for OCaml| 2004

10. NCTUns 6.0 [39] Free C/C++ Fedora 12 1999~2010
1. NetSim [40] Commercial free for C/C++/Java Windows 2002~

academic use

12. NS-2 Open source C++/0Tcl Cross-platform 1996~

13. NS-3 Open source C++/Python Windows/Unix/Linux 2006~

14. OMNeT++ Free for academic use C++ Cross-platform 1999~

15. OPNET Commercial free for C(C++) Windows/Linux 1986

academic use

16. P2P Realm [41] Open source Java Based on JVM 2006

17. QualNet Commercial Parsec Cross-platform 2007~

18. REAL [42] Free C FreeBSD (for i386) 1997~

19. Shunra VE [43] Commercial Hardware Windows 1998~

20. ShoX [44] Open source Java Based on JVM & Eclipse 2008~

21. SimPy [45] Open source (MIT) Python Cross-platform 2002~

22. TOTEM [46] Open source (GPL) C/C++ Linux 2003~2007

scripts, such as parameter definition, object behavior,
traffic model, and network topology; (3) using a
trace file to save simulation results, then using
parser to analyze the original data, such as AWK or
Perl; and (4) using plotter software to display the
parsed data, such as Xgraph or Gnuplot. The reason
of using two languages to construct simulation is
that the simulation scripts and parameters definition
can quickly be changed under different scenarios
and without the need to recomplier the kernel
programs. The advantages are having a large
amount of free open-source code and more
complete documentations [18]. The disadvantages
are having a steep learning curve, less user-friendly for
operation interface, not intuitive for using OTcl, and
the heavy loading caused by the one-to-one architec-
ture between C++ and OTcl.

. Brief introduction to NS-3
The concepts of NS-3 architecture come from
GTNetS, which also is a discrete-event network
simulator using C++ and Python two languages to
construct simulation primarily for research and
educational use. The NS-3 simulation core supports
for network study in both IP and non-IP networks.
However, the large amount of users focuses on the
wireless network simulation, which involves
models for Wi-Fi, WiMAX, and LTE. NS-3 is not
a successor of NS-2 but a substituent. In terms of
overall performance, NS-3 is the best one among
all present simulators. The latest version is the
NS-3.24 released in September 2015. The advan-
tage is to entirely refer the true definitions to design
packet format, good extensibility, producing the pcap
trace file which can be read and analyzed by tcpdump
or Wireshark. The disadvantage is that NS-3 has less
available modules than NS-2 and needs to convert
NS-2 modules for NS-3 use.

. Brief introduction to OMNeT++
OMNeT++ has a discrete-event simulation environ-
ment mainly to simulate communication networks,
which has four primary simulation frameworks and
two types of module. The simulation frameworks are
INET Framework, INETMANET, MiXiM modeling
framework, and Castalia simulator, while the two
module types are the simple module and the
compound module. The simple module is the basic
active module in the model, while the compound
module groups other modules into a larger module
and has no active behavior. At the beginning of the
simulation, the network description (NED) language
is first used to describe the model structure, then
the simple modules are grouped into the compound
module by connection or combination, and, finally,
the largest compound module performs the

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143 Page 4 of 19

simulation. The advantages include having detail
documentations and enormous module library, the
only simulator having online visual interface, and
more convenience to use than NS-2 and NS-3. The
disadvantages include the need to install extra
program package, the longer simulation time, high
memory demand, the efforts of learning just less
than NS-2, and the performance a little bit less
than NS-3.

E. Brief introduction to OPNET
OPNET is one of the reputable commercial
simulation software, which has three main module
suites including basic ITDG, advanced Modeler, and a
professional Modeler/Radio. OPNET uses object-
oriented to construct data model and build its simula-
tion environment layer by layer, having the most quick
discrete-event simulation engine, hundreds of com-
munication protocols and vendor equipment modules,
and a complete parallel processing simulation core.
The advantages include having a comprehensive
model library, a fine model details, a user-friendly
interface, and a customized output for simulation
results. The disadvantages include expensive licensing
fees, difficult to learn and needed professional training,
lower performance for large-scale network, and non-
transparent for the parameter definition.

F. Brief introduction to QualNet
QualNet uses GloMoSim as core and is
commercialized visualization simulation software for
mobile network, which can use different simulation
protocols on several parallel architectures and can
be one part of real network to perform simulation.
QualNet has five main components: simulator,
animator, scenario designer, real-time analyze, and
tracer tools. The advantages include suitable for a
large-scale network simulation, fast execution,
providing accurate communication protocols and
module models, allowing to modify or append cus-
tomized codes, and a user-friendly GUI The disad-
vantage is expensive and unaffordable for individuals.

2.2 Related literatures on WiMAX expansion module

In the previous studies, many researchers provide their
contribution on how to add or modify the WiMAX
module, e.g., some NS-2 WiMAX modules are proposed
by Networks and Distributed System Laboratory (NDSL)
[19, 20], National Institute of Standards and Technology
(NIST) [21, 22], LRC [23], and Light WiMAX (LWX)
[24], respectively. In addition, Freitag et al. propose NS-
2 WiMAX service flow module [25]; Guo et al. propose
NS-2 WiMAX path propagation module [26]; Farooq et
al. propose NS-3 WiMAX module [27]; Ismail et al.
propose NS-3 WiMAX module [28]; and Furlong et al.
propose NS-3 WiMAX OFDMA expansion module [29].

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

In [30], the authors propose to use a strategy pattern to
implement the scheduling module.

In those papers, all authors have referred to their
customize simulators and code by using object-oriented
language for expansion modules, which follow object-
oriented design rules; therefore, those system architec-
tures posses the convenience for modification and the
flexibility for expansion. However, those properties are
difficult to quantify and have a consistent assessment
metric. Moreover, some papers have mentioned that
none of simulation software is able to reproduce all of
MAC layer control messages and processing procedures,
as well as we found that any two simulation software do
not implement the same control message types and pro-
cessing procedure. Hence, it would be different for the
performance expression of time-related evaluation met-
rics in different simulation software, e.g., the influence of
packet delay time. In order to investigate how the man-
agement message processing procedure affects the time-
related evaluation metrics, a system architecture should
allow users to arbitrarily define his management message
types and processing procedure, and then, we can obtain
a more objective system performance evaluation results.
Finally, to our knowledge, it often is incompatible for
the operation interface of scheduling modules due to in-
corporation for the different scheduling factors and algo-
rithms, which leads the studies inconvenience to
evaluate the performance of various scheduling algo-
rithms. Therefore, it would be helpful for the study of
the scheduling algorithm selection, if the system archi-
tectures of schedule algorithm and operation interface
can be independently developed.

2.3 Introduction to design patterns

A programming is a series of thinking process to convert
an abstract problem description into a realistic code en-
tity. Compare with the program-oriented design manner
that based on the functions capability and executions
order, the object-oriented design manner has capability
to receive, process, and deliver independent data unit as
design foundation, i.e., object; hence, the system archi-
tecture has more flexible and easier to maintain. The de-
sign patterns are exactly in the basis of object-oriented
design manner to get rid of bad one and keep good one
from the frequent occurrence solutions. The purpose of
design patterns is to organize these solutions in a simple
and easy way, and they make our programming more
flexible, more modularized, more reusable, and easier to
understand. Design patterns do not teach us how to
code, but they are the discussion schemes to solve the
problems under different situations. The pattern in de-
sign patterns means a useful solution has been proven
that can be used to solve the recurring problems under a
special scenario. Based on the Gof literatures [31], there

Page 5 of 19

are 23 types of design patterns and are divided into three
categories, which are creational, structural, and behav-
ioral introduced as follows.

Creational design patterns mainly abstract the instanti-
ation process, which help us to make a system inde-
pendent of how its objects are created, composed, and
represented. A class creational pattern uses inheritance
to vary the class instantiated, whereas an object crea-
tional pattern will delegate instantiation to another ob-
ject. Creational patterns include abstract factory, builder,
factory method, prototype, and singleton pattern. Struc-
tural patterns are concerned with how classes and ob-
jects are composed to form larger structures. Structural
class patterns use inheritance to compose interfaces or
implementations. Structural patterns include adapter,
bridge, composite, decorator, fagade, flyweight, and
proxy pattern. Behavioral patterns are concerned with
algorithms and the assignment of responsibilities be-
tween objects. Behavioral patterns describe not only just
patterns of objects or classes but also the patterns of
communication between them. These patterns
characterize complex control flow that is difficult to fol-
low at run-time. They shift your focus away from flow of
control to let you concentrate just on the way that
objects are interconnected. Behavioral patterns include a
chain of responsibility, command, interpreter, iterator,
mediator, memento, observe, state, strategy, and
template method.

3 CCG network simulator

It is difficult to quantify and has a consistent assessment
metric for the system architecture flexibility and expan-
sion convenience; hence, we propose to use design
patterns as the criteria of system architecture design. In
this section, we introduce how CCGns applies design
patterns in the system architecture of network simula-
tion software. CCGns follows IEEE 802.16-2009 standard
and consists of eight packages, namely PHY, MAC, NET,
DEV, TPY, EVT, SCH, and RPT packages, whose func-
tions, design ideas, and the used patterns are described
as follows.

3.1 PHY package

PHY package is a program collection which is respon-
sible for the physical layer functions corresponding to
the real world, the main capability is using the frame
structure form to provide link capacity, and the modular
function includes the various wireless technical frame
structures, such as orthogonal frequency division mul-
tiple access (OFDMA), and subcarrier permutation
mechanism. There are three main modules in this pack-
age, i.e., slot factory module, frame builder module, and
resource allocation module. In slot factory module, fac-
tory pattern is used to produce the simple structure

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

object, such as basic slot structure, slot, and frame, be-
cause these objects use only one substructure type. In
frame builder module, builder pattern is used to produce
more complex objects, such as subframe, because the
area types and amount on the inside of the subframe are
dependent on the network topology and the device
node-type. In resource allocation module, the order of
nodes to obtain link resource is in first-come first-served
(FCFS) manner. The system architecture will be imple-
mented by the use of singleton if the real object only has
one object entity to exist, such as subcarrier permutation
mode or basic slot structure. Meanwhile, in order to
simplify the needed parameters of frame production, we
enumerate the original parameters in advance, such as
system bandwidth and fast Fourier transform (FFT)
sizes, and then, we calculate the derived parameters by
using the original parameters, such as symbol time, use-
ful transmission time, and the amount of symbol time of
frame. According to the selected parameters, such as the
ratio of bandwidth allocation and permutation mode for
DL and UL, user can calculate the duration and sub-
channel amount of subframe finally to create the in-
stance of frame object. There exist three conditions to
have the best solution of the subframe duration alloca-
tion, i.e., to completely use the frame duration, to exactly
be the integer multiple of slot time for the subframe
duration, and to be identical for both the subframe dur-
ation ratio and the bandwidth allocation ratio; therefore,
we proposed a two-stage minimum variance bandwidth
allocation algorithm (TSMVBA) to deal with the band-
width allocation problem for DL and UL subframes. The
UML diagrams for slot factory and frame factory have
been shown in Appendix 1: Figs. 8 and 9, respectively.

3.2 MAC package

MAC package is a program collection which is respon-
sible for the MAC functions corresponding to the real
world, whose main capability is to process and execute
the management messages. Some specific purposes can
be accomplished by the management messages, such as
CDMA connection contention mechanism, bandwidth
requirement and allocation mechanism, and the packet
transmission and reception procedures. We proposed
SM?PA to let users arbitrarily define their management
messages for their interested manage procedure, and the
definitions and process procedures of management mes-
sages can be independently developed. SM>PA have
three main concepts: firstly, the system architecture of
event types, event processing procedure, and event
owner can be independently developed; secondly, the
concept of command flow (CF) is used, where CF refers
to a chain of events getting together to accomplish a
specific purpose; thirdly, the event owner certainly has
the ability to handle the event.

Page 6 of 19

In the virtual simulation world, time is advanced in a
non-continuous way, and the advanced interval preci-
sion determines the required reality time. For saving
reality time, we focus on the occurrence time of the spe-
cific event, called monitor time. We list all the event
types that possibly occur at monitor time, which are
enumerated in the event package. The processing proce-
dures of all event types define a common execution
interface, which consist of many sub-procedures, while
the operating interface of these sub-procedures is de-
fined in the event processing procedure package. The
different types of devices may have the same type of
events, but their processing procedure may be different;
therefore, the execution details and steps of the sub-
procedures are provided by the device class, i.e., the con-
cept that “the event owner certainly has the ability to
handle event.” We establish a chain of event types to ac-
complish a specific purpose to facilitate the management
of the relationship among events and to mitigate the
management problem caused by increasing the number
of sub-procedures because the system quickly grows up,
where the codes are independently in various sub-
packages, that is how we implement the command flow
way.

When the simulation starts to execute, system core
will ask for the execution time of the next nearest event
of all device instances, and then, the system time will ad-
vance to the next nearest event time and to notify all de-
vice instance sequentially to process events. Since the
needed processing time of each event is different, the
next system time of each device instance will be differ-
ent. When the event execution finishes, the original
event owner will create new event instance and store in
the event queue of new event owner. A current event
may trigger several new events if multiple events occur
simultaneously, where the new events will comply with
the event priority order to execute. If all events at this
monitor time have been processed, the above procedure
will be repeated until no new event creates or reaches
the predefined simulation stop time.

MAC package and event package are complementary.
An event package is responsible to define event types,
while an MAC package uses various event types to cre-
ate command flow and sequentially to execute the
events in command flow. In order to prove practicable,
we define three command flows, i.e., connection conten-
tion mechanism, bandwidth request and grant mechan-
ism, and data transmit and receive mechanism. The
design of command flow is based on hybrid multi-hop
relay network (HMRN), and HMRN is described in top-
ology package.

In Fig. 1, the red and green blocks represent DL and
UL subframes, respectively, while Arv, Req, Gnt, Trs,
Rev, Rly, Dpt, and Ack denote packet arrival, bandwidth

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

Page 7 of 19

2nd hop
delay

<—Frame,,+2—>|<—Frame,,+3—><—Framen+4—>|<—Frame,,+5—>

A 4

Delay time

3rd hop
delay

»le »
L »

11

Arv| Arv ReV gs, tRs & ntRs

Sch gs & ntrs

Arv Trsss

Redss T

Gnt gs & ntrs

DL Subframe
UL Subframe

RIY trs & ntrs

T Req trs & ntrs
Dpt ss(s)

\

Schgs TT'S tRs & ntRs

T AcK ss(ntrs)
,]

GntBs

Fig. 1 MAC management message command flow—the view of system time

TTTTTT

Ack s & ntrs Schgs TS tRs

Rev gs & trs T T Rev es
T Reqws GNies T
RlyTtRS t Dpt ss(ntrs)
Dpt ss(irs)

request, bandwidth grant, packet transmit, packet re-
ceive, packet relay, packet departure, and packet ac-
knowledge, respectively, where the subscripts represent
the device types of event owner. About the event rela-
tions in command flow, the relation of one-to-one is
the simplest, e.g., a subscriber station (SS) bandwidth
request event Req, triggers the scheduling event of
base station (BS) and transparent relay station (tRS)
Schps & ,uzs and further triggers the bandwidth grant
event Gntgs & ,zs. The relation of one-to-many is
more complex, e.g., the packet receive events Rcvgszs
& ,rs occurred on the relay station (RS) triggers the
packet relay event Rly,rs & ,.rs, but the packet depart-
ure event Dptgs will be triggered if it occurs on BS, i.e.,
the identical type event occurred on the different device
types may have different processing procedures. In
Fig. 1, a packet needs about two frame time duration
from entering system to departing system.

3.3 NET package

NET package is a program collection which is re-
sponsible for the network and upper layer functions
corresponding to the real world, whose main capabil-
ity is to implement the traffic generator (TG) and
probability distribution model (PDM). PDM is based
on linear congruential generator (LCG), which may
have uniform, exponential, normal, lognormal, ex-
treme, and geometric distributions for implementa-
tions. After a most suitable distribution model has
been selected, the random number generator is used
to generate random variant, e.g., traffic or service
time, where the UML diagram for random number
generator is shown in Appendix 1: Fig. 10.

3.4 Event package

Event package is a program collection which is re-
sponsible for the MAC layer management message
corresponding to the real world, whose main capabil-
ity is to define the event types and the sub-procedure
operation interfaces inside the event process proce-
dures, and the code entity of execution detail is pro-
vided by the device instance. The system architecture
of event package includes interface class, abstract
class, and object class program, and the use of pat-
terns has factory, bridge, chain of responsibility, and
command pattern, where the UML diagram for event
package is shown in Appendix 1: Fig. 11.

This package uses the interface class as super class
and defines five basic operate interfaces, namely event
identity code (EID), event owner (EO), event type (ET),
trigger time (TT), and execution method (EM). EID is
used to facilitate tracing the footprints of a specific event
instance and convenience to monitor and debug. EO is
responsible to provide the code entity of the event pro-
cessing sub-procedure. ET is used to define event prior-
ity and the relationship among events. TT is used to
sequentially perform event on time. EM is used to make all
event types have a common interface method to perform
their processing procedure. Under the different types of
network topology, the same type events may trigger the
same new events but having different owners, e.g,, in trans-
parent relay network, the users send the bandwidth request
information to BS. After BS finishes the scheduling proced-
ure, it informs the users to send data to tRS. However, in
non-transparent relay network, the ntRS is responsible for
the user all the request, scheduling, and grant procedures.
In order to let the same type event have the different pro-
cessing procedures with the different owners, we proposed

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

a system architecture to allow that event type, processing
procedure, and event owner can be developed and grow up
independently to increase flexibility.

In this package, we use factory pattern to create event
instance. The use of bridge pattern is to separate execu-
tion sub-procedures defined by the device package role
category from execution procedures defined by the event
package processing procedure class, so they can evolve
independently. The chain of responsibility pattern is to
let all device categories have an opportunity to process
event instances on behalf of management messages and
lower the coupling relationship between the sender and
the receiver. Finally, the design concepts of event class
come from command pattern, i.e., event instance, to
control system operation.

3.5 Device package

Device package is a program collection which is respon-
sible for network device corresponding to the real world,
whose main capability is to facilitate the definition and
implementation of the network devices. This package di-
vides simulation system network devices into two cat-
egories. The first category is responsible for describing
the basic ability of real-world network devices, called
basic device, e.g., UE, RS, and BS. The second category
is responsible for describing the event process ability of
virtual world network device, called role device, i.e., a
temporary name of basic device during the process
period of a specific event, e.g., packet arrival role and
bandwidth request role. In basic device, we define and
implement the basic function of real network device,
such as PHY layer, MAC layer, packets manage, and
events manage functions. In role device, we define the
needs of sub-procedure operation interface of the event
execution and use the one-to-one mapping manner to
corresponding with event types. The identical type
events in different type of basic devices possibly have
different processing sub-procedure, e.g., packet receive
event. After receiving packet, BS lets the packet depart;
tRS forwards it to BS; non-transparent relay station
(ntRS) adds it to the next bandwidth requirement; there-
fore, the details of sub-procedure execution, i.e., code
entity, are provided by basic device. This design concept
is inspired by the different individuals that the same
work item should have the same execution procedure,
but the execution details can be adapted according to
the reality conditions. Moreover, to simplify the operation
of event processing, we defined a common execution
interface for all of event types. During the simulation,
basic device will trigger the various type events along with
simulation progress. When it is necessary to execute the
event processing procedure, the basic device transforms
into the corresponding role device according to the trigger
event type and obtains the event processing ability, and

Page 8 of 19

the role device will transform back into basic device after
event execution finished. The UML diagrams for basic de-
vice class and role device class have been shown in Ap-
pendix 1: Figs. 12 and 13, respectively.

3.6 Topology package

Topology package is a program collection which is re-
sponsible for network topology corresponding to the real
world, whose main capability is conveniently to manage
and use the network topology. A modular function in-
cludes two parts, namely topology establishment and
user deployment. In order to establish the network top-
ology in a simulation architecture, we proposed an ap-
plicable for multi-hop relay network topology
architecture (AMRNTA). In AMRNTA, we use tree
structure to establish the network topology, in which all
nodes have two types of links, i.e., control link and data
link. Control link and data link are responsible for deliv-
ering the management messages and data, respectively,
and each link has both uplink and downlink directions.
Before establishing network topology, each son node
needs to define a parent node, and then, the son node
first establishes a UL data link to his parent node, mean-
while the parent node adds this son node to his DL data
link queue. Next, the son node sets his parent node as a
control link target node (CLTN). If the CLTN has the
wireless resource allocation ability, the son node estab-
lishes a UL control link to this CLTN, meanwhile the
CLTN adds the son node to his DL control link queue;
otherwise, the son node sets the CLTN parent node as a
new CLTN if it does not have the wireless resource allo-
cation ability and repeat the foregoing procedure until
the new CTLN has the ability to allocate wireless re-
source. The establishment of network topology is in a
point-to-multipoint (PMP) manner and has broadcast
function, because a son node only has a parent node but
the parent node may possibly have many son nodes.
With this architecture, the procedure of establishing net-
work topology can be simplified.

In order to avoid interference, each serving station
needs to have independent resource, and its available re-
source is to satisfy the maximum user requirement and
be proportionally allocated to the serviced users. We
propose three slot allocation rules as follows. Firstly,
based on the maximum number of hops in the network
topology, a subframe is divided into the same number of
zones. Secondly, the available slot amount of each zone
is proportionally allocated to the serviced users. Thirdly,
the number of serviced users should be the maximum
amount if several zones reuse the same resource area.

About the user deployment modular functions, we design
three user deploy mechanisms, i.e., sequence, random, and
proportional modes. The sequence mode refers to the users
which will be sequentially assigned to the serving station,

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

which is suitable for system debug. The random mode re-
fers to the user will be assigned to the serving station ac-
cording to uniform distribution in random manner, which
is most approximate to real situation. The proportional
mode refers to the users which will be assigned to the serv-
ing station according to the ratio of their serviced users,
which is suitable to evaluate the system performance under
different loads.

3.7 Scheduler package

Scheduler package is a program collection which is re-
sponsible for scheduling mechanism corresponding to
the real world, whose main capability is the implementa-
tion of scheduler algorithm, and the goal is to make the
reuse of system scheduler codes to maximize. In order
to let all scheduling algorithms share a common operat-
ing interface, to combine multiple parameters into a
schedule metric to implement the more complex sched-
ule concept, and to replace the schedule module more
easily to evaluate the performance of various scheduling
algorithms, we propose four design concepts; the first is
the input of schedule module which is scheduling units
having the ability to generate the schedule comparison
unit; the second is schedule comparison unit having the
abilities to compare with identical class and combine
many parameters to form a comparison item; the third is
the core of schedule module which is scheduling algo-
rithm concentrating on the schedule mechanism; the
fourth is the output of schedule module which is an or-
dered set of scheduling units. In the aspect of pattern use,
we use a strategy pattern to encapsulate the schedule
module to make them interchangeable, and the system
architecture and the exchange of schedule algorithms are
independent. The factory pattern simplifies the generate
procedure of schedule unit. In this package, we implement
uniform, random, and round robin scheduling algorithm
to demonstrate the feasibility. The UML diagram for
scheduler package is shown in Appendix 1: Fig. 14.

3.8 Report package

Report package is a program collection which is respon-
sible for the output of system information and perform-
ance evaluation metrics, whose main capability is to make
the system information output module independent of
other packages. The output format of information can be
arbitrarily changed under the premise of not affecting the
other packages. The design idea of this package comes from
the concept of the observation point in queueing theory,
and a chain of responsibility patterns is used to design sys-
tem architecture. The modular functions have two parts,
namely system monitor and performance evaluation met-
rics. The former one includes system scenario and simula-
tion parameters, as well as the important information at
the time of system status changed. The latter one includes

Page 9 of 19

throughput, packet delay time, packet queue length, packet
waiting time, and packet drop ratio. The UML diagram for
report package is shown in Appendix 1: Fig. 15.

4 Simulation experiments
In order to demonstrate the abovementioned design pat-
terns for simulation, we propose a scenario as shown in
Fig. 2, which shows a BS surrounded by three tRSs and
six ntRSs located at the corresponding positions as
shown in the figure. In the hexagonal cell structure, the
system service range is the inscribed circle of radius R,
which is divided into the center region and the periph-
eral region. The center region is a circular area of radius
2/3R; the users located in the center area are served by
BS. The peripheral region is an annular area of width 1/
3R; every 120 degrees deploys one RS; the users located
in the annular area are served by the RS. In hybrid relay
network architecture, we deploy tRS and ntRS on the
annular area and the vertex of hexagonal cell, respect-
ively, where ntRS needs tRS’s help to forward data to BS.
The relevant system parameters are listed in Table 2.
Among them, the proportional user distribution type
means the serviced user amount of a serving station is de-
cided by the ration between its service area and overall ser-
vice area. The uniform scheduling mechanism means the
serving station assigns resources to a user according to this
user’s total amount of the assigned resource (TAAR) in the
past, where smaller TAAR has higher priority, which is to
let all users fairly use the bandwidth resource. The partial
usage of subcarriers (PUSC) permutation mode is also used
in both UL and DL directions.

4.1 System output data

Figure 3 shows the uplink subframe output data for various
device types, in kilobit (kb), where the abscissa and Y-axis
represent system time and output data, respectively. The
uplink subframe output data of BS SS (bSS), tRS SS (tSS),
ntRS SS (ntSS), RS, and BS have been shown by the curves
in different colors of red, blue, green, pink, and orange, re-
spectively. In Fig. 3, the uplink subframe output data of BS
is 30.96 kb, which is composed of the BS user data 10.8 kb
and the forwarded user data by RS 20.16 kb, while the latter
part are from tSS and ntSS with the forwarded user data
12.96 and 7.2 kb, respectively. Because that the access zone
(AZ) size for 1 hop users is 105 slots (3T x 35CHs), of
which 75 slots are allocated to the BS to receive user data,
the BS AZ output data is 10.8 kb (75x48 x4 x 3/4=
10.8 kb). The size of transparent relay zone (tRZ) is 140
slots (4730t x 35CHSs). BS uses all slots to receive the data
forwarded by tRS, so the output data is 20.16 kb. As to
non-transparent relay zone (ntRZ), because it merely sup-
plies forwarded data from ntRS to tRS, so the output data
is 0 kb. It is worth mentioning that, in order to guarantee
an RS can forward data to its destination as soon as

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

Page 10 of 19

Fig. 2 Single cell simulation environment

RS

Y\\ (é))

(RS

Table 2 System parameters for simulation

Parameters Values

Topology type Hybrid

Node distribution type Proportional

Schedule type Uniform

PHY specification SOFDMA 10 MHz

CP ratio 1/8

Permutation DL PUSC and UL PUSC

Frame duration

Modulation and coding scheme
Bandwidth resource ratio
Packet size

Packet mean interarrival time
Monitor interval

Length of packet queue
Number of BS

Number of tRS

Number of ntRS

Total number of SS

5ms
16-QAM 3/4
DLUL=11
5 slots

1.0 ms
5ms

50 packages
1

3

6

20

possible, we adopted the relay first resource allocation strat-
egy (RFRAS). RFRAS gives RS packets having higher prior-
ity when the service object includes RS and SS packets, and
then, resources will be assigned according to their priority
order. In the meantime, to prevent service objects with
lower priority from being starved, each service object can
only be assigned with one resource at a time.

4.2 Average delay time

Figure 4a shows the average packet delay times for vari-
ous device types, where the abscissa and Y-axis represent
system time and delay time, respectively. The delay
times of bSS, tSS, ntSS, RS, and BS have been shown
by the curves in different colors of red, blue, green,
pink, and orange, respectively, i.e., the delay times of
1 hop, 2 hops, 3 hops, 1&2 hops, 1&2&3 hops with
the values of 2.5, 7.5, 127, 49.1, and 32.8 ms, respect-
ively. Meanwhile, Fig. 4b shows the detail delay times
from tSS to BS (the blue line in Fig. 4a), including
the delay times of the first hop (tSS=>tRS) and the
second hop (tRS=>»BS), while Fig. 4c shows the detail
delay times from ntSS to BS. In Fig. 4a, the value of
red line is 2.5 ms, because BS users can upload data
to the BS directly. The packet transmitted during the
uplink subframe will certainly be received before the

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

Page 11 of 19

3s

30
5 25
[+9
5 —bSs->BS
o

20 ——tSS->BS
g ——ntSS->BS
a —RS
.% 15 | B

YWY vy v LI LA J LI wy LI L L] "'

E 10
—~
g‘ A A A AL I'l AL AL AN A A h‘

5

o H

0 250 500 750 1000 1250 1500 1750

Simulation Time (ms)

Fig. 3 The uplink subframe output data of various device types

uplink subframe is terminated; therefore, the max-
imum delay time is one uplink subframe duration. In
addition, if the packet arrival rate is faster than the
upload rate, the packets will be stored in queue or
dropped. Since the packet queuing waiting time does
not belong to the delay time, the delay time of 1 hop
users will always be a fixed value of 2.5 ms.

4.3 Average packet queue length

Figure 5 shows the average packet queue lengths for all
device types. In Fig. 5, we first see the growing up
trends of bSS and tSS are similar, and both reach
full-load at about 110 ms. In light of Section 4.1, AZ
has 105 slots, of which 8 bSS shared 75 slots. Every
bSS can be allocated with about 9.375 slots in aver-
age; the remaining 30 slots were shared by 3 tSS; and
every tSS obtains 10 slots. Since they have identical
packet arrival rate and approximately the same packet
upload rate, their growing curves are similar. Sec-
ondly, we can see that at the initial stage, the number
of ntSS queue packets maintained at about 10
packets. When system time is 190 ms, it starts to
climb and then reached full loading at 400 ms. At the
initial stage, because the tRS queue is under light
loading, tRS has the maximum capability to receive
serving user packets. However, the queue length of
tRS will gradually increase, because the ability of BS
receiving packets is lower than the ability of the
whole tRSs transmitting packets. When the tRS queue
is full, ntRS also gets slow because of the uploading
speed, which causes the packet queue length to grad-
ually increase until full.

4.4 Average waiting time

Figure 6 shows the average packet waiting times for vari-
ous device types. The waiting times of bSS, tSS, and
ntSS have been shown by the curves in different colors
of red, blue, and green, respectively, i.e., with the values
of 126, 120, and 68 ms, respectively. The waiting times
can also be obtained by estimation as follows. In AZ,
each bSS has 9.375 slots, i.e., 1.875 packets, usable in
average; because bSS queue often keeps at 48 packets,
the average waiting time of the last packet is 25.6 frame
duration, i.e., 128 ms. Similarly, for the waiting times
of tSS, since each tSS has 10 slots, i.e., 2 packets, us-
able in average, the average waiting time of the 48th
packet is 24 frame duration, i.e., 120 ms. For the wait-
ing times of tSS, every ntSS can upload 3.5 packets in
average, and the queue length often keeps at 47
packets; therefore, the last packet needs to wait for
13.4 frame duration, i.e., 67 ms. Therefore, the esti-
mated results are close to the simulation results.

4.5 Average drop ratio

Figure 7 shows the average packet drop ratios for all
device types. In Fig. 7, in terms of bSS, the packet
drop ratio is 58 % by simulation, and it is lower
than 62.5 % by calculation with average manner, i.e.,
when the simulator calculates the drop ratio, the ar-
riving and the dropping packets are accumulative
from the beginning to the end of the simulation.
However, when we calculate the average drop ratio,
we only use average packet arrival rate and uplink
subframe capacity. At the initial stage of simulation,
there are plenty bandwidth resources, so the drop
ratio is small. The smaller drop ratio dilutes the late

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

Page 12 of 19

Q
.
o

0 250 500 750 1000

)
E
g
[—bSS-3BS
By —t55->BS
o
] ——ntS5->BS
a —RS
) BS
]
M
g
<
0 250 500 750 1000 1250 1500 1750
Simulation Time (ms)

b 14

12
-g- 10
g '
E 8 \ —— £S5->BS
5 \ s . t5S->tRS
o \ - - -tRS->BS
a ¢ \
g ------------ I - L b L T
]
§ 4
L1

2

0 <

0 250 500 750 1000 1250 1500 1750
Simulation Time (ms)

Cc 140
:
]
E ntSs->BS
5y ntS5->ntRS
o
] -----ntRS->tRS
a — .. tRS->BS
&
H
g
<

Simulation Time (ms)

Fig. 4 a The delay time of all device types. b The delay time of tSS device types. ¢ The delay time of ntSS device types
.

1250 1500 1750

stage’s larger drop ratio; therefore, the simulation
drop ratio is lower than the average drop ratio. Simi-
lar situation also happens in tSS and ntSS. In terms
of tSS, the simulation and average drop ratios are
55.4 and 60 %, respectively, and the ntSS simulation
and average drop ratios are 22.5 and 30 %,
respectively.

5 Conclusions

In the study domain of wireless network, the network
simulator always is an important tool to observe and
evaluate the study concept. In order to make the simulator
architecture to have the flexibility and the simulation re-
sults are believable, we proposed to use the design pat-
terns as the norms of system architecture design and the

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

Page 13 of 19

——bSS->BS
—tSS->BS
—ntS55->BS
—RS

—BS

60
_. 50
)
+
»
o
=~ 40
e
P
o
=4
2 30
]
=
[}
& 20
o
o
B
g 10 h
< rI
0 i
0 250 500 750 1000 1250
Simulation Time (ms)
Fig. 5 The average queue length for all device types

1500 1750

creative ideas inspired by the most used simulator design
ideas and related module expansion literatures to con-
struct our system architecture. We proposed the CCGns,
which follows the IEEE 802.16-2009 standard, coded by
the Java language and using Eclipse as develop tool, fol-
lows the OOD principles, and refers to the design patterns
paradigms. CCGns is a discrete-event virtual network
simulator, totally consisting of PHY, MAC, NET, DEV,
TPY, EVT, SCH, and RPT packages, whose main contri-
bution is to propose SM?PA, AMRNTA, and TSMVBA.
In the architecture description, we provide the design
concepts and the UML figures. In the simulation

results, we use the most complex hybrid relay network
topology as an example and also use the mutual verify-
ing manner for the average calculated values and the
simulation results to prove excellent fidelity for the sys-
tem throughput, average packet delay time, average
packet wait time, average packet queue length, and
average packet drop ratio. Although we are not the first
to propose the design patterns on the wireless network
simulator architectures, both the amount and types of
using design patterns are the most. In the future, we
will also implement the LTE protocol simulation system
by using this architecture.

120 A o

g

Queuing Time (ms)

40

20 +-f

1000

0 250 500 750

Fig. 6 The average waiting time

Simulation Time (ms)

——b55->BS
—(55->85
—ntS5->B5
— RS

-BS

1250 1500 1750

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

Page 14 of 19

0.7
0.6
0.5
3
.: 0.4 ——bSS5->BS
H —tS5S->BS
2 ;
g 0.3 —ntSS5->BS
a —RS
0.2 BS
0.1
0
0 250 500 750 1250 1500 1750
Simulation Time (ms)
Fig. 7 The average packet drop ratio
A
6 Appendix 1
6.1 UML diagrams
<<create>>
<<interface>>
ISlot <<interface>>
ISymbolContainer SlotFactory

+Name(): String
+getMCS(): MCScheme

+State(): SlotState

+NumSCs(): int
+NumSTs(): int

+createProduct(perm: PermutationType): ISlot

<<enumeration>>

<<enumeration>>
SlotSubsetType

PermutationType

+AMC1(Bin, 1, 6)
+AMC2(Bin, 2, 3)

+getBits_Capacity(): int |<<extends>> | , NimbataSymbols(): int
+getBits_Bear(): int +NumPilotSymbols(): int
+getUtilization(): double +Size(): int
+clone(): ISlot
SlotImpl SymbolContainerImpl|

#Type: String #NumSCs: int

#MCS: MCScheme #NumSTs: int

#isUsed: boolean | <<extends>> | #NymDataSblis: int

+Bin(9, 1, 8)
+Cluster(14, 1, 12)
+NoPilot(48, 1, 48)
+0Tile(3, 3, 8)
+Tile(4, 3, 8)

+AMC3(Bin, 3, 2)
+AMC6(Bin, 6, 1)
+DL_FUSC(NoPilot, 1, 1)
+DL_OFUSC(NoPilot, 1, 1)
+DL_PUSC(Cluster, 2, 2)

+UL_OPUSC(OTile, 6, 1)

Slot

SymbolContainer

+Slot(rows: int, cols: int, dataSbls: int)

+SymbolContainer(rows: int, cols: int, dataSbls: int)

Fig. 8 Slot factory UML diagram

+UL_PUSC(Tile, 6, 1)

return Instance D

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

Page 15 of 19

FrameFactory

+createProduct(bw: ChannelBandwidth, fft: FFTSize, G: CPRatio, FD: FrameDuration, permDL: Permutation, permUL: Permutation, ratioDL: int, ratioUL, int, t1: TopologyType, t2: NodeType, rowsP1: int, colsPx: int[])

<<create>>
<<interface>>
ISlotContainer IFrame
P — +Size(): int <I<;nt§;face>>
Interface .l ubframe +ID(): int
Tone | <<estende>> | TS e Scertends> Ny i
" . +PermiType(): PermutationType
+getElement(row: int, col: : ISlot N +NumSTTs(): int
+Type() | ! o +addZoen(): 1Zone e
+setElement(elem: ISlot, row: int, col: int): ISLot +getZone(type: ZoneType): IZone +Size(): int
+setMCS(row: int, col: int) 9 (=B ype): +getSubframeDL(): ISubframe
+getMCS(row: int, col : MCS +getSubframeUL(): ISubframe
. +getSubContainer(top: int, left: int, bottom: int, right: int): List<List<ISlot>>
<<implements>>
ZoneImpl Z} <<implements>> <<implements>>
fr Impl
SlotContainerImpl Subfiamelny, FrameImpl
| <<extends>> < > N - P!
P #Perm: PermutationType
#matrix: List<List<ISlot>> #ZoneMap: HashMap<ZoneType, IZone> #SysTime: int
#NumSCHs: int
#NumSTTs: int
<<enumeration>>
Zone (reference) ZoneType 4
+AZ
+Zone(t: ZoneType, m: List<List<ISlot>>) +U:§Z Subframe (clone) Frame
+nt
+Subframe(e: ISlot, rows: int, cols: int) +Frame(time: int, schs: int, stts: int)
ZoneBuilderTypel
+ZoneBuilderTypel(colsP1: int)
ZoneBuilderTypelIl
Product 5 -
+ZoneBuilderTypelII(colsP1: int, rowsP1: int)
<<interface>> e <<enumeration>>
ZoneBuilderCoexist ZoneBuilderImpl 1ZoneBuilder buid NodeType
ullaer
Product 5 - ——D #e: ISubframe —{> +setSubframe(e: ISubframe) +setBuilder(builder: IZoneBuilder) > +BS
+ZoneBuilderCoexist(colsPx: int[], rowsP1: int) +): ISubframe +getSubframe(): ISubframe +RS
+builderAllZones(t: NodeType) +constructZones(e: ISubframe, t: NodeType) +ntRS

ZoneBuilderHybrid

Product 5 -

+ZoneBuilderHybirs(colsPx: int[], rowsP1: int)

Fig. 9 Frame factory UML diagram

DistributionFactory

<<interface>>
IDistribution

UniformDist

+createProduct(type: DistributionType)

+DistributionType(): DistributionType
+rand(): double

rand = xMin+(xMax - xMin) * LCGRand. lcgrand(stream) H

+UnifromDist(xMin: double, xMax: double)

Z} <<implements>>

GeometricDist

<<enumeration>>

DistributionImpl

DistributionType

+_Rand = new Random(System.currentTimeMillis());

+ icDist(prob: double)
+intValue(): int

s =1+ _Rand.nextInt(LCGRand. MAX_STREAMS);
U = LCGRand. kegrand(s);
rand = (int) (Math.log(U) / Math.log(1.0 - prob));

<H

+Uniform

+Exponential
+Normal
+Lognormal
+Geometric

ExponDist

s =1+ _Rand.nextInt(LCGRand.MAX_STREAMS);

+ExponDist(location: double, scale: double)

u = LCGRand. B
rand = location - scale * Math.log(u);

+ExtremeValue

LCGRand

+lcgrand(stream: int)
+lcgrandst(zset: int, stream: int)
+lcgrandgt(stream: int)

LognormalDist

-_Gussian: NormalDist

return instance |

+LognormalDist(location: double, scale: double, shape: double)

sigma = shape;
assert(sigma > 0);
rand = location + Math.exp(_Gaussian.rand());

ExtremeValueDist

+ExtremeValueDist(location: double, scale: double)

s = 1 + _Rand.nextInt(LCGRand.MAX_STREAMS);
u = LCGRand. legrand(s);
rand = _Location + _Scale * Math.log(-Math.log(u));

NormalDist

-_SecondValue: double
-_SecondValid: boolean

+NormalDist(location: double, scale: double)

Fig. 10 The random number generator UML diagram

if (_SecondValid) { _SecondValid = false; return _SecondRand; } A

double mu = Icoation, sigma = scale;
assert(sigma > 0);

mx = LCGRand. MAX_STREAMS;
int s1 = 1 + _Rand.nextInt(mx), s2 = 1 + _Rand.nextInt(mx);

double v1, v2, w;

.0 * LCGRand. lcgrand(s1) - 1.0;
.0 * LCGRand. lcgrand(s2) - 1.0;

w=v1*vl +v2*v2;
} while (w > 1.0);
double y1 = v1 * Math.sqrt(-2.0 * Math.log(w) / w);
double y2 = v2 * Math.sqrt(-2.0 * Math.log(w) / w);
double x1 = mu + y1 * sigma, x2 = mu + y2 * sigma;

_SecondRand = x2; _SecondValid = true;

rand = x1;

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

Page 16 of 19

<<interface>>

<<interface>> ArrivalEvent Execute(sysTime) AN
IEvent <<implements>> -Type = ArrivalEvent: EventT

-Type = ArrivalEvent: EventType : . . X
+Execute(sysTime: double): List<IEvent> List<IEvent> nxtEvents = new LinkedList<IEvent>();
+ID(): long
+Owner(): INode <<extends>> IArrivalNode arvNode = (IArrivalNode) this.Owner();
+Time(): double IPacket new_pkt = arvNode.getArrivalPkt(systime);
+Type(): EventType ContentionEvent if (!arvNode.QueuingPkt(new_pkt)) arvNode.dropPkt(new_pkt);
+clone(): IEvent Type = ConmtentionEvent: EventType double nxtArvTime = arvNode.getNextArrivalTime(systime);

nxtEvents.add(this.createArrivalEvent(nxtArvTime));
}_; return nxtEvents;
<<enumeration>> EventImpl
EventType N
+ID: long Execute(sysTiem)

+ArrivalEvent +Owner: INode
+ContentionEvent +Time: double List<IEvent> nxtEvents = new LinkedList<IEvent>();
+RequestEvent
+TransmissionEvent
+AcknowledgeEvent : IContentionNode ctnNode = (IContentionNode) this.Owner();
+AllocationEvent ——B if (!ctnNode.isContention()) return null;
+SchedulerEvent Type() { IRangelE rnglE = ctnNode. createRangelE(systime);
+GrantEvent return Type
+ReceiveEvent ¥ if (ctnNode.addRangeIEtoAlcNode(rnglE))
+RelayEvent " . .
+DepartureEvent MonitorEvent nxtEvents.add(this. createAllocationEvent(systime));
+MonitorEvent < - i 3

Type = MonitorEvent: EventType retum nxtEvents;

¥
Fig. 11 The event package UML diagram
A
<<enumeration>> <<interface>> NodeImpl
NodeType INode -
#ID: int Node_sSS
+BS +ID(): int i #UpNode: IStation -
() . <<implements>> e | +sSID: int
+tRS +Type(): NodeType #PktQ: IPktQueue +PktGen: IPktGenerator
+ntRS +Name(): String #EventQ: IEventQueue :
+SS +PktQ(): IPktQueue #UpSF: IServiceFlow
+EventQ(): IEventQueue

IStation <} <<implements>> StationImpl
+getZone(t: ZoneType): IZone
<<interface>> <<interface>> <<interface>>
IBaseStation IRelayStationTypeIl IRelayStationTypel
BSImpl ntRSImpl tRSImpl <<extends>>
Node_BS Node_ntRS Node_tRS
<<extends>> <<extends>>

Fig. 12 The basic device class UML diagram

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143 Page 17 of 19

<<interface>>

IArrivalNode <<inter_face>>
IAllocationNode

+setPktGenerator(pktGen: IPktGenerator) N .
+getPktGenerator(): IPktGenerator Node_SS +addRangingIE(e: IrangelE)

+getNextArrivalTime(sysTime: double): double +chkRangingCode(): void .
+getArriva|Pkt(); IPa(cIZet) +getAllCollisionFreeRanges(): List<IRangelE>

s . . +getAliCollisionRanges(): List<IRange>
+ B B
+dQ::)il;nktg(';ﬁs.(Fpk;Cé:SCKet) e +createDownServiceFlow(e: IRangelE): IServiceFlow
+NumPkt5_Ar.rivaI(): int +getAllDownServiceFlow(): List<IServiceFlow>

+NumPkts_Drop(): int 4 X

<<interface>> -
IGrantNode Node_ntRS

<<interface>>
IContentionNode

+clearAllRequestIEs(): void

+clearRangelIE(): void \
+getAllGrantIEs(): List<IGrantIE>

+createRangelE(sysTime: doubl

Node_BS

<<interface>>

IRequestNode <<interface>>
+clearGrantIE(): void N ISchedulerNode
+clearRequestIE(): void +setScheduler(sch: Ischeduler) <<interface>>
+createRequestIE(): IRequestIE +getScheduler(): IScheduler IRelayNode

+addRequestIE(e: IRequestIE)

k. +getAllRequestIEs(): List<IRequest>
<<interface>>) +clearAllGrantIEs(): void
ITransmitNode) +addAllGrantIEs(gntlist: List<IGrantIE>)
+getAllGrantIEs(): List<IGrantIE>

+clearAllRcvPkts()

+NumTrsPkts(): int

+clearAckPkts(): void N
+generateAllTrsPkts(sysTime: dotible): List<IPacket> Il;e<p";t|ir|.f|iceeN>o:e :
g <<interface>>
L +clearAlRcvPkts(): void IReceiveNode
<<interface>> +departAllPkts(sysTime: double) - - Node_tRS
AcknowledgeNode +NumDepartPkts(): long +addAlRcvPkts(pkts: List<IPacket>): void =
+NumDepartBits(): long +generateAllAckPkts(sysTime: double): List<IPacket>
+getAckPkts(ackPkts: List<IPackets>): void +NurmDepartDelay Time(): double +getAllRcvPkts(): List<IPacket>
+NumPkts_Acks(): int +NumQueuingTime(): double +addAckPktsToQ(pkts: List<IPacket>): void
Fig. 13 The role device class UML diagram
N
<<interface>> -
Context IScheduler <<interface>>
— InformationElement
+Scheduling(List<IResuestIE>, schNode: INode): List<IGrantIE>

o

QY
<<enumeration>>

SchedulerRR SchedulerType <<interface>> <<interface>>
+RR IRequestIE IGrantIE
+Scheduling(List<IResuestIE>, schNode: INode): List<IGrantIE> +Random
+Uniform
SchedulerRandom
+Scheduling(List<IResuestIE>, schNode: INode): List<IGrantIE> <<create>>aQ V-<<create>>
; <<implements>> <<interface>>
SchedulerUniform <<interface>> | =5 IScheduleUnit
Comparable -
+compareTo(elem: IScheduleUnit)
+Scheduling(List<IResuestIE>, schNode: INode): List<IGrantIE>

Fig. 14 The scheduler package UML diagram

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

Page 18 of 19

<<interface>> BasicReport
IReport
+Open : +printScenario()
+Clzse8 <}: <implements> > +printParameters()
+Append() +printTopology ()
+SetDisplay(v: boolean) <<extends>> +printSysTim()
+setWrite(v: boolean) o] e 0
+print(outstr: String)
ThroughputReport
L5 e DelayReport

ReportImpl S e
#isWrite: boolean <
#isDisplay: boolean <

Fig. 15 The report package UML diagram

DropRatioReport

Acknowledgments
This work was supported in part by the Ministry of Science and Technology
(MOST) of Taiwan under Grant No.. MOST 102-2221-E-011-069.

Competing interests
The authors declare that they have no competing interests.

Author details

'Department of Electrical Engineering, National Taiwan University of Science
and Technology, Taipei, Taiwan. “Oriental Institute of Technology, New Taipei
City, Taiwan.

Received: 25 August 2015 Accepted: 14 May 2016
Published online: 02 June 2016

References

1.

w

J-Sim, [Online] Available: https://sites.google.com/site/jsimofficial/. Accessed
26 May 2016

NS-2, [Online] Available: http.//www.isiedu/nsnam/ns/. Accessed 26 May 2016
NS-3, [Online] Available: http://www.nsnam.org/. Accessed 26 May 2016

N Bagoria, A Garhwal, A Sharma, Simulation of Physical layer of WiMAX
Network using OPNETModeller, International Journal of P2P Network Trends
and Technology (IJPTT), 2013, 3(4).

OPNET WiMAX, [Online] Available: http://www.opnet.com/WiMAX/index.html
QualNet [Online] Available: http://web.scalable-networks.com/content/
qualnet. Accessed 26 May 2016

TIOBE [Online] Available: http://www.tiobe.com/tiobe_index?page=index.
Accessed 26 May 2016

L Hogie, P Bouvry, F Guinand, An overview of MANETs simulation, in
Electronic Notes in Theoretical Computer Science, Proc. of Ist International
Workshop on Methods and Tools for Coordinating Concurrent, Distributed
and Mobile Systems (MTCoord05), LNCS (Elsevier, Namur, Belgium, 2005),
pp. 81-101

S Siraj, AK Gupta, R Badgujar, Network simulation tools survey. International
Journal of Advanced Research in Computer and Communication
Engineering (IJARCCE) 1(4), 201-210 (2012)

S Duflos, GL Grand, AA Diallo, C Chaudet, A Hecker, C Balducelli, F Flentge,
C Schwaegerl, O Seifert, List of available and suitable simulation

20.

21.

components, in Technical report, Ecole Nationale Superieure des
Telecommunications (ENST), 2006

L Begg, W Liu, L Pawlikowski, S Perera, H Sirisena, Survey of simulators
of next generation networks for studying service availability and
resilience, in Technical Report TR-COSC 05/06, Department of Computer
Science & Software Engineering (University of Canterbury, Christchurch,
New Zealand, 2006)

NI Sarkar, SA Halim, A review of simulation of telecommunication networks:
simulators, classification, comparison, methodologies, and
recommendations. Cyber Journals: Multidisciplinary Journals in Science and
Technology. Special Issue, Journal of Selected Areas in Telecommunications
(JSAT) 2(3), 10-17 (2011)

A Kumar, SK Kaushik, R Sharma, P Raj, Simulators for wireless networks: a
comparative study, in International Conference on Computing Sciences (ICCS),
2012, pp. 338-342

S-M Huang, Y-C Sung, S-Y Wang, Y-B Lin, NCTUns simulation tool for
WiIMAX modeling, in Third Annual International Wireless Internet Conference,
2007, pp. 22-24

J Lessmann, P Janacik, L Lachev, D Orfanus, Comparative study of wireless
network simulators, in Seventh International Conference on Networking, 2008,
pp. 517-523

E Weingartner, H Vom Lehn, K Wehrle, A performance comparison of recent
network simulators, in IEEE International Conference on Communications
(ICC), 2009, pp. 1-5

AR Khan, SM Bilal, M Othman, A performance comparison of open
source network simulators for wireless networks, in IEEE International
Conference on Control System, Computing and Engineering (ICCSCE),
2012, pp. 34-38

M. Greis, NS tutorial, [Online] Available: http.//www.isiedu/nsnam/ns/
tutorial/. Accessed 26 May 2016

FC-D Tsai, J Chen, C-W Chang, W-J Lien, C-H Hung, J-H Sum, The design and
implementation of WiMAX module for NS-2 simulator, in Proc. of the
Workshop on Ns-2: the IP Network Simulator, 2006, pp. 1-8

J Chen, C Wang, F Tsai, C Chang, S Liu, J Guo, JSW Lien, C Hung, "Design
and implementation of wimax module for ns-2 simulator," in st
International Conference on Performance EvaluationMethodologies and Tools
(VALUETOOLS06) (ACM), 2006.

N. I. of Standards and Technology, The network simulator NS-2 NIST add-
on—IEEE 802.16 model (PHY + MAC), Technical Report, 2009

https://sites.google.com/site/jsimofficial/
http://www.isi.edu/nsnam/ns/
http://www.nsnam.org/
http://www.opnet.com/WiMAX/index.html
http://web.scalable-networks.com/content/qualnet
http://web.scalable-networks.com/content/qualnet
http://www.tiobe.com/tiobe_index?page=index
http://www.isi.edu/nsnam/ns/tutorial/
http://www.isi.edu/nsnam/ns/tutorial/

Hsieh et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:143

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.
34.
35.
36.
37.

38.

39.

40.

41.

42.
43.

44,
45,

46.

NIST (National Institute of Standards and technology), [Online]
Available: http://www.nist.gov/itl/antd/emntg/ssm_tools.cfm.
Accessed 26 May 2016

LRC (Computer Networks Laboratory), [Online] Available: http://www.Irc.ic.
unicamp.br/wimax_ns2/. Accessed 26 May 2016

Y-C Lai, Y-H Chen, Designing and implementing an IEEE 802.16 network
simulator for performance evaluation of bandwidth allocation algorithms,
2009 11th IEEE International Conference on High Performance Computing
and Communications (HPCC'09), 2009, pp. 432-437

J Freitag, NLS Da Fonseca, WiMAX module for the ns-2 simulator, in IEEE
18th International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), 2007, pp. 1-6

X Guo, R Rouil, C Soin, S Parekh, B Sikdar, S Kalyanaraman, WiMAX
system design and evaluation methodology using the NS-2 simulator,
in Communication Systems and Networks and Workshops (COMSNETS),
2009, pp. 1-10

J Farooq, T Turlett, An IEEE 802.16 WiIMAX module for the NS-3
simulator, in Proc. of the 2nd International Conference on Simulation
tools and Techniques, 2009, pp. 1-11

MA Ismail, G Piro, LA Grieco, T Turletti, An improved IEEE 802.16 WiMAX
module for the NS-3 simulator. Proc. SIMUTools 63, 1-63 (2010)

WP Furlong, R Guha, OFDMA extension of NS-3 WiMAX module, in UKSim
Fourth European Modeling Symposium on Computer Modeling and
Simulation, 2010, pp. 426-431

G Pedreno, JJ Alcaraz, F Cerdan, Using design patterns in a HSDPA system
simulator, in 3rd International Symposium on Wireless Communication
Systems (ISWCS), 2006, pp. 679-683

E Gamma, R Helm, R Johnson, J Vissides, Design patterns: elements of
reusable object-oriented software, 1995

K Pawlikowski, V Yau, AKAROA: a Package for Automatic Generation and
Process Control of ParallelStochastic Simulation, Australian Computer
Science Communications, 15(1), 71-82 (1993)

Wiki, Project DIANE, [Online] Available: http://en.wikipedia.org/wiki/
Project_DIANE. Accessed 26 May 2016

SSFNet, [Online] Available: http://www.ssfnet.org/homePage.html. Accessed
26 May 2016

Wiki, GloMoSim, [Online] Available: http://en.wikipedia.org/wiki/GloMoSim.
Accessed 26 May 2016

GTNetS, [Online] Available: http://www2.ece.gatech.edu/research/labs/
MANIACS/GTNetS/. Accessed 26 May 2016

D Gorgen, H Frey, C Hiedels, JANE—the Java ad hoc network development
environment, in 40th Annual Simulation Symposium (ANSS), 2007, pp. 163-176
E Schoch, M Feiri, F Kargl, M Weber, Simulation of ad hoc networks: ns-2
compared to JiST/SWANS, in Simutools 08 Proceedings of the 1st
international conference on Simulation tools and techniques for
communications, networks and systems & workshops, Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering (ICST),
2008

S-M Huang, Y-C Sung, S-Y Wang, Y-B Lin, Nctuns simulation tool for wimax
modeling, in WICON ‘07: Proceedings of the 3rd international conference on
Wireless internet, Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering (ICST), 2007, pp. 1-6

BOSON NetSim, [Online] Available: http://www.tetcos.com/netsim_gen.html.
Accessed 26 May 2016

N Kotilainen, M Vapa, T Keltanen, A Auvinen, J Vuori, P2PRealm—peer-to-
peer network simulator, in IEEE International Workshop on Computer-Aided
Modeling, Analysis, and Design of Communication Links and Networks
(CAMAD), 2006, pp. 93-99

REAL, [Online] Available: http://www.cs.cornell.edu/skeshav/real/overview.html.
Accessed 26 May 2016

Shunra, Shunra Virtual Enterprise (VE), [Online] Available: https://en.
wikipedia.org/wiki/Shunra. Accessed 26 May 2016

ShoX, [Online] Available: http://shox.sourceforge.net/. Accessed 26 May 2016
SimPy, [Online] Available: http://simpy.readthedocs.org/en/latest/. Accessed
26 May 2016

TOTEM, [Online] Available: http://totem.info.uclac.be/. Accessed 26 May
2016

Page 19 of 19

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://www.nist.gov/itl/antd/emntg/ssm_tools.cfm
http://www.lrc.ic.unicamp.br/wimax_ns2/
http://www.lrc.ic.unicamp.br/wimax_ns2/
http://en.wikipedia.org/wiki/Project_DIANE
http://en.wikipedia.org/wiki/Project_DIANE
http://www.ssfnet.org/homePage.html
http://en.wikipedia.org/wiki/GloMoSim
http://www2.ece.gatech.edu/research/labs/MANIACS/GTNetS/
http://www2.ece.gatech.edu/research/labs/MANIACS/GTNetS/
http://www.tetcos.com/netsim_gen.html
http://www.cs.cornell.edu/skeshav/real/overview.html
https://en.wikipedia.org/wiki/Shunra
https://en.wikipedia.org/wiki/Shunra
http://shox.sourceforge.net/
http://simpy.readthedocs.org/en/latest/
http://totem.info.ucl.ac.be/

	Abstract
	Introduction
	Related works
	Comparisons of various network simulators
	Related literatures on WiMAX expansion module
	Introduction to design patterns

	CCG network simulator
	PHY package
	MAC package
	NET package
	Event package
	Device package
	Topology package
	Scheduler package
	Report package

	Simulation experiments
	System output data
	Average delay time
	Average packet queue length
	Average waiting time
	Average drop ratio

	Conclusions
	Appendix 1
	UML diagrams

	Competing interests
	Author details
	References

