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Abstract

This paper investigates a robust power allocation scheme for a cognitive radio network (CRN) with channel
uncertainty, where a large number of secondary connections (SCs) share the same frequency spectrum with a primary
user (PU). Specifically, considering the fact that the channel gain estimates from the secondary transmitters (5-Tx) to
the primary receiver (P-Rx) are typically uncertain and cannot be perfectly known in practice, this paper advocates a
robust interference constraint. Meanwhile, we take the S-Tx's transmit power limitation and interference between SCs
into account. The optimization problem is a non-convex and non-linear program (NCNLP) with an outage probability
constraint. Both the original objective function and the outage probability constraint are converted into manageable
forms via the mathematical transformation. Then, we introduce the convex optimization theory to solve the
intractable problem. Additionally, we develop an efficient algorithm to obtain the near-optimal solution based on the
interior point method, where we take advantage of the Newton algorithm to make the search of the feasible solution
simple and effective. Finally, we conduct the in-depth simulations under various parameter configurations, which
demonstrate that our proposed robust power allocation scheme can achieve higher performance in comparison to

the existing scheme in the literature.
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1 Introduction

Since wireless personal communications have been in
widespread applied to exchange information among indi-
viduals so far, not only are massive wireless devices
growing up but also requirement of ubiquitous commu-
nications among individuals drives the development of
abundant advanced wireless technologies [1]. In addition
to this, the increasing demand for scarce frequency spec-
trum brings an exciting prospect to the development of
the cognitive radio (CR) technology [2]. CR is a highly
promising wireless technology which can mitigate the
scarcity of spectral resources. In a cognitive radio network
(CRN), there is usually a primary user (PU) and massive
secondary connections (SCs) sharing the same spectrum,
i.e., they coexist with each other. There is a great deal
of coexistence modes for a CRN. In general, we classify
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the transmission modes into three types: overlay, inter-
weave, and underlay modes. In the overlay mode, it is
assumed that SCs have to acquire the perfect knowledge
of the PU’s messages. The secondary transmitters (S-Txs)
send out their own signals along with the signal received
from PU. The interference inflicted upon PU from SCs
obtains the compensation via SC relaying the PU’s sig-
nal. The interweave spectrum sharing mode is also called
“opportunistic spectrum access” [3]. There is no cooper-
ation between SCs and PU in the interweave mode. SC
is allowed to occupy the channel if and only if the trans-
mitter channels of SC and PU are mutually orthogonal. In
time domain, SC should abandon the spectrum resource
once the PU returned to utilize the channel occupied by
SC. In the underlay mode, SCs are permitted to transmit
concurrently with PU sharing the same spectrum bands,
provided that the interference experienced by PU is con-
trolled less than a certain threshold which PU can tolerate
to [3].
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This paper focuses on the underlay mode. It should be
noted that the massive SCs will interfere with the commu-
nication of PU in general. A significant design challenge
related to this network is how to maximize the throughput
capacity of SCs with the quality of service (QoS) of the PU
being guaranteed in the underlay mode. Moreover, when
we consider the uncertainty of the channel between the
S-Tx and the primary receiver (P-Rx), this problem
becomes more troublesome.

The optimal or suboptimal power allocation policies
in the underlay mode have been already investigated
widely [4-20]. A heuristic algorithm in CR systems under
OFDMA has been reported in [4]. Ghasemi and Sousa
[4] do not take the transmit power constraint of SCs into
account. However, the transmit power constraint of SCs
cannot be ignored due to the hardware of the S-Tx. In [5],
ergodic and outage capacity of SCs over Rayleigh faded
channel based on MMSE estimation is evaluated. The
transmit power of the P-Rx is under the constraint of peak
received power. In [6], transmission capacity of SCs is
evaluated under the interference constraint of the PU. The
SCs serve as cooperative relays in spectrum sharing envi-
ronment. It is notable that perfect channel state informa-
tion (CSI) is assumed in these works [4—11]. However, the
CSI between SC and PU is usually difficult to be estimated
accurately in actual situations mainly due to the lack of
signaling cooperation between them. Therefore, power
allocation with channel uncertainty should be considered
in CRN [12-20]. A worst-case formulation is utilized in
[12] for beamforming design, in which an ellipsoidal chan-
nel uncertainty region is assumed. Dall’Anese et al. [13]
considers the probabilistic interference constraints for a
CR power control problem, where uncertainty in compos-
ite fading channels comprising shadowing and Nakagami
fading is accounted for. Power allocation problems for
generic OFDMA systems with channel uncertainty have
also been investigated extensively [14—16]. Ma et al. [17]
shows the availability of imperfect CSI that includes prob-
abilistic uncertainty and considers its worst effect when
performing resource allocation. Different small cell net-
works is considered in [18], and there are tight inter-
ference constraints on PU. Power allocation along with
relay selection schemes is optimized especially consid-
ering different channel uncertainty models in [18]. It is
worth noting that [12-19] consider the channel uncer-
tainty without the interference between massive SCs. Son
et al. [20] study the power allocation problem via the
water-filling algorithm. Furthermore, Son et al. [20] con-
sider neither a great deal of SCs nor the interference con-
straints between SCs in the system. However, to the best of
our knowledge, power allocation involving both channel
uncertainty and mutual interference between massive SCs
has not been addressed in the existing literature, which is
the motivation of this work.
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Differently, this paper investigates the problem of the
robust power allocation for massive connections under-
laying CRNs, where channel uncertainty and interference
constraints are jointly considered. It is noted that the
problem of interest is a non-convex and non-linear pro-
gram (NCNLP), which is very difficult to solve. Specif-
ically, to tackle with the practical problem inherent in
power control with massive SCs, this paper makes the
following contributions:

e Formulate an optimization problem which takes the
SC’s mutual interference constraints and channel
uncertainty between the S-Tx and P-Rx into account,
analyze the control of S-Tx’s peak transmit-power
constraints and adopt average interference to the
probabilistic model for the QoS of the PU.

e Convert the original objective function and the
outage probability constraint into a form which is
easy to handle by some mathematical transformation
and derive the analytical expressions via the convex
optimization.

e Develop an efficient algorithm to obtain the
near-optimal solution based on the interior point
method under the strict interference constraint of the
PU. Furthermore, the Newton algorithm is set for
searching viable power value because it uses the
second derivative information in the calculation of
lowering direction and has a faster rate of decline.

e Conduct the in-depth simulations under various
parameter configurations, such as outage probability
and the number of SCs, which demonstrate that our
proposed robust power allocation scheme can
achieve higher performance in comparison to the
state-of-the-art work in the literature.

The remainder of this paper is organized as follows.
Section 2 presents our system model, and the optimiza-
tion problem is formulated in Section 3, along with
formulation analysis as well as problem transformation.
The proposed power allocation algorithm is derived in
Section 4. The results of extensive numerical simula-
tions and the performance evaluation are presented in
Section 5, followed by conclusions in Section 6.

2 System model

Consider a CRN as shown in Fig. 1. There is a PU and
massive SCs which utilize the same spectrum as the PU in
the underlay mode. We denote ' = {1,2,---,N} as the
set of all SCs. A connection consists of a S-Tx and a sec-
ondary receiver (S-Rx) and so does the PU. The SCs are
supposed to be randomly distributed around the PU in the
CRN. In addition, let ppy and p; represent the transmit
power of the PU and the ith SC, respectively. Also, let pmax
denote the maximum transmit power of the S-Tx, Inax
the maximum interference allowed by the SC, and 7
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Fig. 1 A system model with the primary user and secondary connections sharing the same frequency spectrum

Interference

the maximum interference allowed by the PU. Moreover,
vector p collects { pi}.

The model of the channel propagation is made up of
two main factors, i.e., large scale path loss and small scale
multi-path fading. First and foremost, the power received
by the receiver is described as follows:

¢ * h%x,tx (1)

PR:PT*mrx,tx

where PR and Pt are the power of receiver and transmit-
ter, respectively. m,y sy is the large scale path loss from a
transmitter to its receiver and B is constant. /.y is the
small scale multi-path fading. Since we consider the spa-
tial location distribution of SCs, so the large scale path
loss is applied. Due to the multi-path effect, so we take the
small scale multi-path fading into account. Then, we for-
mulate the following expression to describe the large scale
path loss from a transmitter to its receiver and it is the dB
model of 1, [21]:

My ix[ dB] = 10 * o log(4wd) + 10 * « log(f)

2)
—20log(l7 * Ip),

where o denotes the link loss coefficient which depends
on the specific environment, d is the distance in meters
between the transmitter and the receiver, f is the center
frequency of transmitted signal and its unit is MHz, /1
and [ represent the height of the S-Tx and the S-Rx in
meters, respectively. It is hard to establish the model of

the small scale multi-path fading by rule and line. Gener-
ally speaking, we can obtain the similar effect qualitatively
via certain probability distribution, such as Rayleigh dis-
tribution and Rice distribution [21]. It is assumed that the
channel multi-path fading follows Rayleigh distribution,
so it is modeled as

hrx,tx =y h% + hz’ (3)

where /; and /i are two independent Gaussian variables
which follow the distribution of N ~ (0, §2).

The channel gain gpy > 0 between the primary trans-
mitter (P-Tx) and P-Rx is assumed to have been easily
acquired by some conventional channel estimation tech-
niques [22]. Similarly, the channel gain g;; between the ith
S-Tx and the jth S-Rx is also known accurately, i.e., the S-
Tx has perfect channel state information [20]. Because SC
and PU rarely have any cooperation during the process of
their transmissions, the channel gain glP U between them
can be hardly estimated precisely unlike the channel gain
between SCs.

As mentioned above, the signal-to-noise ratio (SNR) of
the SC-Rx without any interference is

Digii

Vi= 2 7 (4)
=)

where 002 is the power of the noise. Since we consider all
the SCs sharing the same channel with the PU in the paper,
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hence, we can get the signal-to-interference-plus-noise
ratio (SINR) of the S-Rx as follows:

Digii
Zj:l,j#ipjg/vi + ‘7(%

SINR; = (5)

where p;g;; is the received signal power of the SC-Rx and
Z/:l,/ 4 Pjg,i represents the mutual interference of SCs.
The network throughput capacity of all SCs is described
as the following:

N
Toum = Y _ log, (1 + SINR)). 6)
i=1
As to the constraints, there are basically three types on
the power allocation. One of them is that any transmit
power of the S-Tx is limited to the power budget [20]:

Pi < Pmax> Vi (7)

Due to the mutual interference, the secondary ones are
the interference constraints with respect to the SCs, which
are formulated as follows:

N
> pigij =1 < Ina, Vi. (8)
i=1,j#i

The final constraint concentrates on the protection for
the PU. We assume that the PU has an average interfer-
ence power tolerable capability. In other words, the SCs
can coexist with the PU as long as the average interference
power from all the S-Txs is limited below than a cer-
tain threshold [20]. It is necessary to explain the “average”.
Because the interference from SCs is time-varying, we
cannot guarantee that there will be always weak interfer-
ence. If so, it is likely that there is some strong interference
from several certain S-Txs. Thus, the weak one can make
compensation for the PU’s performance in average. We
define Pr[.] as the outage probability that the interference
to the PU is more than a threshold value. We can write it
as the following expression:

N
Pr [Zp,-g}’” < If:ax:| >1—c¢, )
i=1

where the channel gain giP U is an independent and identi-
cally distributed exponential random variable with mean
0 and ¢ is the outage probability.

Besides, in this CRN system, there is the interference
from the P-Tx to S-Rx. Set gf,U as the channel gain
between the P-Tx and S-Rx, which is perfectly known.
Figure 2 reflects the system performance including the
interference from the P-Tx to S-Rx. In the scenario of
this paper, we assume that the P-Tx is far away from SCs
and there is massive mutual interference between massive
SCs which is much more than the interference from P-
Tx. Based on the above phenomenon and explanations, we
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Fig. 2 The system performance including the interference from the
P-Tx to S-Rx in comparison with that excluding it

ignore the interference from the P-Tx when focusing on
the optimization of the SCs’ capacity.

As we noted above, the optimization objective is to
maximize the capacity of the SCs via determining the
allocation of the optimal transmit power vector p =
{p1,p2,p3, - - pn} of S-Txs , namely:

(P) max Tgum
p={pi

s.t. Cl:p; < Pmax, Vi

N
C2: Y pigi=1"" <Ina Vi
j=1j#i

N
C3:Pr [Zpigf” < Ifjm} >1-e¢
i=1

(10)

In (10), the goal of the optimal problem (P) is to find
the optimal power allocation method to maximize the
total throughput capacity of the system. For the sake of
the description convenience, we regard (P) as the origi-
nal problem. Among the three constraints, the first one
is to restrict the transmit power of S-Tx, the second one
ensures the coexistence of the communication between
the SCs, and the final one focuses on the protection for the
PU. However, since the objective function is non-linear
and it is not even convex, it will become very complicated
if we directly solve the optimization problem of the above
form. Additionally, the mutual influence actually exists
between multiple variables. Therefore, not only does the
problem become tricky but also the complexity will rise
steeply as the number of the variables increases. Paper [23,
24] suggest that a large number of iterations is needed in
order to tackle with this problem. Because of the struc-
ture of the function, this problem cannot directly use the
methods proposed by [25, 26]. As a result, intractability
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and unavailability of the uncertain channel gain along with
SCs’ interference make the non-linear and non-convex
expression mathematically difficult to handle. In addition,
there is not yet any satisfactory solution to the open issue
so far. In the following part, we try to introduce a feasible
way to tackle with the difficulty, which takes advantage of
the convex optimization theory.

3 Problem transformation

We can see that the problem (10) is an optimization prob-
lem with some constraints. The convex optimization is a
powerful tool to solve these kinds of problems. A stan-
dard form of convex optimization problems is formulated
as follows:

min fy(x)
st. fix) <0,i=1,---,q

aij:b,',jzl,-n P

where all of fo, - - - , f; are convex functions, f; (x) is the con-
straint of inequality, and /;(x) = alx— bj is the constraint
of equality [27]. But as it is shown in problem (10), neither
optimization objective nor the constraints is convex func-
tion. The convex optimization cannot be used straightly.
So, we first investigate the primal objective function and
approximate it with a series of convex ones.

The objective function can be rewritten as the difference
of two concave functions, # and w:

(11)

N
> "log, (1 + DR 2>=u(p) — w(p),
i=1 j=1,#iPj&i T 00
(12)
where both u(p) and w(p) are concave functions:
N N
u(p) =y logy | Y _pigi+ o4
i=1 j=1
N N
w(p) = log, | D pigii+0; (13)
i=1 J#i
Then, we work out the derivation of w(p) about p;:
N
wp) _ o~ 1 8i
T N
Ipi i In2 > i g + 9
N
1
=) > (14)

N
=1 2 Pigi T 9

0,j=1i . .
where ¢j; = { g}{ ., . . The equation above is repre-
a2/ 71

ow(p)
W } . We

can approximately denote w(p) by the first-order Taylor

sented as a column vector Vw(p) = {7;} = {
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series expansion w(p(k)) + <Vw(p(k)),p—p(k)) of w(p)
around the given any viable solution {pi‘ } It is impor-

tant to note that the superscript k represents the number
of iterations. As a result, a conservative surrogate for the
objective function is formulated as follows:

~o®) = u(p) = wp®) - (Vw®),p — p®). (15)

Since w(p) is concave function as mentioned previously, it
can be easily captured as follows:

wp) = wp®) + (Vwp®),p - p®). (16)
If {p;} is feasible and —fop*tD) > —f(p®), the follow-
ing formulation can be acquired:

@) —w@*) = —H ) = ue®) - wp™).
(17)

It is can be seen that —fo(p(k)) provides a lower bound.
Maximizing function (12) is equivalent to maximizing the
initial function. Through the above analysis, the original
problem is non-convex, but we can approximate it with
convex functions.

Here, we analyze the characteristics of the constraints.
Considering the fact that CSI can be robustly estimated
between SCs, C1 is a simple linear constraint, so is C2.
They can be equivalently written as:

fl,i (P) =pi — Pmax <0, Vi

N
i® = Y pgi—Imax <0, Vi (18)
j=Lj#

Nevertheless, for constraint C3, the uncertainty of the
channel between S-Tx and P-Rx makes C3 intractable, i.e.,
C3 has no idea to satisfy the requirement of a convex func-
tion. As a result, we take different attitudes towards the
three constraints. For the first two, we can acquire the goal
through above steps (17). As to C3, we have to study its
transformation as the following description.

Let X; = pigip U, which are independently exponential
distributed with mean p;0. Denote X = ), X; as the sum
of all the random variables. Therefore, we can change the
original constraint into the following probability form:

Pr [X:ZXiglﬁax} >1—e¢.

14

(19)

How to test and verify the constraint (19)? The key lies
in the distribution of X. To determine the distribution
explicitly, we use Gaussian approximation based on the
following Lemma 1 [28].

Lemma 1. The Lyapunov’s central limit theorem (CLT):
If X1,Xo,...,X, are independent of each other with mean
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E (Xy) = i and variance D (Xy) = crk2 > 0,we can obtain
that

n X _ n
7, = Hh= X Ty 0,1 (20)
B,
and
n n
D> Xi~N (Z ko Bi) , (21)
k=1 k=1

where B2

Zak

Due to the above Lemma 1, the Lyapunov condition
should be satisfied as follows to apply the Lyapunov’s

(CLT):
1
1
o (Z7) @
A (Zﬁl Ui3> ’

where r; is the third-order center distance of Xj, i.e.,
E[(Xi — mi)3] and m; and aiz are the mean and vari-
ance of the exponential distributed random variable X,
respectively. We can easily check this condition [20].

In general, for massive connections, we can regard X as
a normally distributed random variable whose mean is m
and variance is o2 approximately

m ~ Zpik
i

o? ~ Z(pik)z.
i

Therefore, the following constraint is a conservative
surrogate for (19):

(23)

P(P) =1 _FN(If‘IJ'laX)
1 max —m

—erf
er( NG

where Fx (+) is the cumulative distribution function (CDF)
of a normal distributlon w1th mean m and variance o2
and erfc(z) = f > e~ dt. For (24), we assume that

P = %erfc(lmy‘i;m) — &. It is obvious that it is not
a standard convex function at all which needs separate
treatment. Inspired by the scheme proposed in [20], once
a power allocation is given from the first two constraints,
we can check whether it satisfies the outage constraint
(24) or not.

In a word, we can easily confirm that (P) is equivalent
to

) <e. (24)
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(P1) minfy(p)
st. C1:f1;(p) = pi

Z pigi — 1,

J=1j#i

_pmax <0, Vi

C2:foi(p) =

max < 0, Vi

7o
c3 fg(p)_lerfc< \/_Um) —e<0. (25

Since C3 is not a standard convex function at all as
abovementioned, it does not satisfy the standard form of
convex optimization problems (11). So we could not deal
with the problem (P1) directly. In order to obtain a feasi-
ble solution, we divide the original problem (1) into two
parts to solve in this paper:

(SP1) : minfy (p) (26)
s.t.C1,C2
and
1 rP;lax —m
(SP2) fg(p)—ferfc ( NG ) —&e=<0. (27)
20

If we acquire an optimal solution p from (SP1), we
will examine whether it meets or not by substituting into
(S§P2). In another word, the input of (SP2) is the output
of (SP1).

For the first part (SP1), it is suitable to use the above
convex optimization to deal with. The Lagrangian func-
tion of the problem (SP1) is given by

N
L(p, 2 v) =fo () + D 4i (i — Pmax)
= (28)

N
+ Z Vi Z Pj&i — Imax |,
=1 \j=1,#i
where A and v are the non-negative dual variables asso-
ciated with the corresponding constraints C1 and C2,
respectively. The Lagrangian dual function is defined as
follows:

G(A,v) = inf L(p,A,v)

P=wi

= 1r{1f (fo (p) + Z)“ Pi = Pmax) (29)

PPt i=1

N
+Zvi Z Pjgji — Imax
i=1 j=1,j#i
If there is no lower bound of the Lagrangian, the dual
function value is —o0.
Next, we carry on the feasibility analysis of the part.
Problem (26) is feasible if and only if the following linear
programming (LP) is feasible:
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(SP1): find p
s.t. Cl:f1 (p) =pi — Pmax <0, Vi

N
c2 :f2 (p) = Z Pi&ji —Inax <0, Vi

j=Lj#i
(30)
The corresponding dual function is given by
N
L'p, ) =Y Vi (pi = pmax)
i=1
N N (31)
+ Z Vi Z 2j&i — Imax |
i=1 j=1,i
where ' = [)\/1,~~ ,)L/N] > 0and v = [1/1,~~ ,V/N] >

0 consist of the Lagrange multipliers associated with the
N connections constraints. The dual function of problem
(SP1') is then given by
G (M,v)= inf L'(p,\,v). (32)
p={pri}
Theorem 1. For a given Imax > 0,pmax > 0, problem
(SPY) is infeasible if and only if there exists A’ > 0,v' > 0
such that G (A’, v’) > 0; otherwise, (SP1) is feasible.

Proof. See Appendix for details.

For the second part (SP2), we can check whether the
optimal value pt* obtained by (SP1) satisfies the out-
age constraint (27) or not. If it does, we think it is the
optimal solution to P1; otherwise, all the transmit power
decreases by a step y and we search for the optimal one
again.

Since the original complex problem is transformed
into a more tractable form, we obtain the near-optimal
solution along with acceptable computational complex-
ity. Detailed algorithm design will be provided in the
following section. O

4 Power allocation algorithm

In the above section, we transfer the constraint C3 into a
tractable form and approximate the original problem with
convex functions. As is mentioned, once a power alloca-
tion is given, we can check whether it satisfies the outage
constraint C3 or not. So our power allocation algorithm
consists of two steps. Firstly, we apply the convex opti-
mization to getting over the problem (SP1) based on the
interior method. Note that the optimal solution must sat-
isfy the constraints C1 and C2. Then, we should check the
optimal solution whether satisfies the outage constraint
C3 or not. If it does, the optimal solution of problem
(SP1) is also the optimal solution of the original prob-
lem; otherwise, all the transmit power decreases by a step
y until the constraint C3 is satisfied.
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The duality properties should be analyzed first of all,
which can demonstrate the existence of the optimum
solution. We formulate the optimal value of the Lagrange
dual problem as follows:

d* = maximize G(},v). (33)

Av=>0

It is assumed that opt™ is the optimal value of the prob-
lem (SP1). We denote the optimal duality gap of the
primal problem by the difference opt™ — d*. If the strong
duality is established, the optimal duality gap will hold
zero [29]. In particular, (S§P1) is convex and satisfies
Slater’s condition [27]: there exists any valid p and this can
make the following expressions hold,

Pi < Pmax> Vi

N

Z pigji < Inax, Vi,
J=1j#i

(34)

where the inequality constraints must meet the condition
strictly. Since (SP1) is convex as is mentioned above and
we can learn from Slater’s theorem that the Lagrangian
dual function (29) satisfies the strong duality, so it also sat-
isfies the following important theorem [27] which is its
sufficient and necessary condition.

Lemma 2. If both an objective function and its con-
straints of a convex optimization problem are differen-
tiable and satisfy Slater’s condition, we can capture that
the Karush-Kuhn-Tucker (KKT) [27] conditions are the
sufficient and necessary conditions for obtaining the opti-
mality of the solution:

N
o (6%) 4V (z o —pm>)
i=1 (35)

N N
+V Z V;'k Z p;‘kgj,i —Imax | = 0.
i=1 Jj=1,j#i

The above formulation is only one of the KKT condi-
tions. According to the Lemma 2 mentioned above, we can
ensure that the optimal duality gap is zero. So when p* is
optimal, we can attain the dual optimum as well as 1*, v*.
Nevertheless, we can hardly tackle with the KKT condi-
tions analytically of the intractable problem in this paper.
As aresult, we introduce the interior point method to deal
with the problem together with the KKT conditions.

It can be seen that the non-convex optimization prob-
lem (P) has already been approximated by (P1) in which
only the third constraint is not convex. Then, we research
for the existence of an optimal solution. Moreover, the
optimality conditions (KKT conditions) are captured. In
this section, we attempt to develop a quick and effective
iterative algorithm. The barrier method is introduced to
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search for the global optimal solution throughout the pre-
vious analysis. As is well known, the barrier method is
a representative technique of the class of interior point
methods. It usually contains a logarithmic barrier func-
tion and the Newton method for minimization without
constraints [21]. The advantage of the barrier method is
that it is simple to implement and it can surely outperform
other methods in performance.

Newton algorithm is a universal descent method, where
the iteration consists of damping Newton stage and
quadratic convergence stage, i.e., pure Newton stage. The
trail of steps is the direction of searching in Newton algo-
rithm. The backtracking line search is applied to the itera-
tion, which is a kind of non-accurate line search approach.
Newton algorithm plays a role as the internal iteration
of the interior point method. In terms of searching the
feasible solution, it works simply and effectively [27].

Next, we have formulated the following approximation
of the inequality:

1
minfy (p) + ;qb (p),t >0, (36)

N
where ¢ (p) = — > log (—fl,,- (p) — fo,i (p)) is called the
i=1

logarithmic barrier function of problem (SP1). Because
— (1/t)log (—u) is convex, differentiable, and increasing
when u < 0, Newton algorithm can be applied to search-
ing for the minimum of (35) within p; € [0, pmax]. Why
do we select Newton algorithm? As is mentioned above, it
uses the second derivation information when computing
the descent direction. It exhibits the quite quick conver-
gence rates. As [29] suggests, the approximation quality
will improve apparently as the parameter ¢ grows.

Finally, the overall procedure for solving the optimiza-
tion problem is presented in the following algorithm.

Algorithm 1 Algorithm for power allocation under channel
uncertainty

1. Initialization: Set the parameters k = 0, p©@ =
{p?},t = t©9 > 0,0 > 1and fo(p) =
— (u @ —we®) — (vw (p®),p - p®)).

2. fork=1,2,..do
Set p*) as an initial point, minimize fy(p) + %qb(p)
via Newton algorithm and get the solution p*(¢).
Update p® = p*(¢) and ¢t = ut.
Until (N 4+ 1)/t© < ¢.
Update pl(kﬂ) = max (0, min (p}, Pmax))-

end for Until [fo(p(k)) —fo(p(k’l))| <e.

If P(p) < &, end;otherwise step into 9.

form=1,2,..,M do

1. Set p® = p*(¢).

11: p(m+1) — p(m) —y.

12: end for Until P(p) < e.

w
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In order to verify its effectiveness, the proposed algo-
rithm is compared with the algorithm in paper [20] and
this will be discussed further with the simulation results.

5 Performance evaluation

The proposed power allocation algorithm is verified via
the following numerical tests. In Table 1, we list the system
parameters used in the simulations.

The presented results are obtained by simulating 1000
independent trials and then taking the expected value.
To benchmark performance of the proposed near-optimal
scheme, a simple suboptimal algorithm in paper [20] is
considered. In paper [20], Son et al. investigate power
allocation algorithms for OFDM-based cognitive radio
systems, where the intra-system channel state information
(CSI) of the SC is perfectly known and the inter-system
CSI is only partially available to the S-Tx. They develop
a suboptimal power allocation algorithm, which repeat-
edly solves a sub-problem having only a transmit-power
constraint and then adjusts the available transmit power
until the desired outage probability is achieved. In this
paper, we regard this algorithm as a comparison with our
proposed algorithm. More information can be referred to
paper [20].

Figure 3 illustrates the simulation scenario for the sum
throughput under the different algorithms where y =
0.2, ¢ = 0.05. It is assumed that there are 50 SCs. We
can see that the proposed algorithm can acquire higher
throughput than the algorithm proposed in [20]. When
each S-Tx uses the maximum transmit power, the sum
throughput is highest, but the strong interference on the
PU limits the transmit power. On the other hand, from the
tendency of the curve in Fig. 3, it can be observed that the
sum throughput derived from our proposed scheme has
always outperformed the other one derived from paper
[20]. This is due to the algorithm proposed in [20], which
is based on the binary search, causes great waste of power
resource. Hence, the proposed algorithm can perform bet-
ter. In our paper, when the number of SUs becomes large,
the corresponding iteration will be more. Additionally,
—fo(p) as the approximate lower bound of the best solu-
tion updates itself after each iteration. In this case, —fo(p)
will become more and more close to the optimal solution.

Table 1 System parameters used in simulations

Parameter Value Comments

f 700 MHz Center frequency of transmitted signal
0'02 —130dBm Noise power

o 4 Path loss exponent

I, Ip 2m Antenna height of the S-Tx, S-Rx

Drnax 25dBm The maximum power of the S-Tx

Imaxs Phax —120dBm The interference threshold value of SC,PU
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Fig. 3 The sum throughput comparison of the proposed and
suboptimal algorithms

Therefore, our proposed algorithm is able to obtain the
better effect of the system performance.

Figure 4 compares the spectral efficiency in the cases of
different step values, where the number of SCs is assumed
50. A few interesting observations can be obtained. It
is shown that the rapidity of the convergence correlates
closely with the value of y. That is to say, the convergence
of the sum throughput turns faster as y becomes larger.
Moreover, the faster the convergence is, the lower the
accuracy is and the deviation increases when the accuracy
of the transmit power becomes lower. Therefore, the value
of y is better to the optimal transmit-power if it is smaller.
Notably, y should be set within [ 0.05,0.25] through a lot
of tests and trials. In Fig. 5, y is set as 0.1. We examine
the sum throughput by varying the outage probability ¢.
The number of SCs still remains 50. There are some con-
clusions that can be drawn from Fig. 5 including that the
throughput improves as ¢ grows larger, and the outage

320

- = =1=0.05

v=0.1
7=0.2

300

2801

260

240+

220

The sum throughput/(bit/s/Hz)

200

180 i i i i i i
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Iteration/(k)

Fig. 4 Performance comparison of different values of y
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F

g.5 The sum throughput versus &

probability and the interference threshold have the same
impact on the sum throughput.

Figure 6 discloses the average throughput of each SC
and the sum throughput in terms of different numbers of
SCs. In this figure, the left vertical axis represents the aver-
age throughput of each SC and the right one is the sum
throughput. As can be seen obviously, with the number
of SCs increasing, the average throughput is decreasing
and the sum throughput rises first and then gradually
falls. When there are about 160 SCs, the up trend of the
sum throughput becomes gentle since the interference
constraints between SCs has offset the rise in through-
put. When there are about 210 SCs, the sum throughput
declines sharply. This is because when the number of SCs
increases seriously, the interference between SCs is also
increasing seriously, even more than the throughput. It is

o

500
e=0.1, average
throughput
e=0.01, average
throughput 400
£=0.1, sum
throughput
£=0.01, sum
throughput 300

1200

The sum throughput/(bit/s/Hz)

1100

N

0 50 100 150 200 250 300 350 400
The number of secondary users

The average throughput per secondary connection/(bit/s/Hz)

Fig. 6 Performance comparison under different values of &
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also observed that both of the average throughput of each
SC and the sum throughput under ¢ = 0.01 are extremely
close to those under ¢ = 0.2. In a word, the constraint of
the PU becomes more and more relaxed with the number
of the users increasing. On the one hand, if the number
of SCs is large, the interference constraints of SCs play a
dominant role in the problem. On the other hand, when
there are a small number of SCs, however, the interference
limitation of PU would become principal.

6 Conclusions

In this paper, the robust power allocation scheme solved
the problem on how to maximize the throughput capac-
ity of SCs on the condition that the quality of service
of the PU would be ensured. This problem was formu-
lated for a CRN with massive connections. Due to the
uncertainty present in the channel between the S-Tx and
the P-Rx, a robust interference constraint with probability
was imposed to protect the PU system, which utilized the
convex optimization theory. In this paper, we also intro-
duced the iterated algorithm including Newton algorithm
based on the interior point method and compared it with
the algorithm proposed in [20]. We evaluated the spectral
efficiency through extensive simulations and showed that
the SCs can achieve higher performance in the proposed
algorithm than that in the algorithm showed in [20]. As
future work, a subject of extension to more general chan-
nel models including correlation or feedback delay might
be researched further.

Appendix

The proof of Theorem 1

We first prove the “if” part. If p is a feasible solution given
Inax > 0,pmax > 0, then for any A’ > 0,v" > 0 it follows
that

G W) =L'pr,v)=<0 (37)

and thus n;ax G ()J vV ) < 0, which contradicts with the
,V

given assumption that there exists an A’ > 0,v" > 0 such
that G’ (1',1’) > 0. The part is thus proved.

Then, we prove the “only if” part of Theorem 1 by show-
ing that its transposition is true. Suppose that problem
(SP1) is feasible and there exists A’ > 0,1’ > 0 such that
G ()J, v/) > 0. However, since (SP1’) is assumed to be
feasible and A’ > 0,1’ > 0, there exists a solution such
that it can satisfy all the constraints:

A (pi — pmax) <0 Vie N

N
v/ Z Pjgji — Imax | <0 VieN. (38)
J=Lj#i

We thus have G’ (V',v') < L'(p,A',v) < 0.

(2016) 2016:145 Page 10 of 11

This contradicts G’ (1,1') > 0, and thus, problem
(SP1) is feasible if G’ (A',v’) < 0. The “only if” part is
thus proved.

Combining the above proofs of both “if” and “only if”
parts, Theorem 1 thus follows.
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