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Abstract

An indoor localization method using multiple input, multiple output orthogonal frequency division multiplexing
(MIMO-OFDM) channel state information (CSI) is proposed as a method that can be implemented on wireless local
area networks of a current standard without affecting their protocol structures and that does not require a training
process for adaptation to indoor environments. In the proposed method, the CSI obtained by the MIMO-OFDM
receivers of all access points upon successful reception of a data packet from a mobile terminal (MT) is processed in
order to determine the location of the MT. The proposed method analyzes the multipath effect that appears in the CSI
as multiple complex sinusoids by using the matrix pencil method in order to extract only terms that are contributed
by direct paths from the MT to the access points. Localization is achieved using the direct-path terms on the basis of
the maximum likelihood principle.

Keywords: Indoor localization, MIMO-OFDM, Channel state information, Multipath propagation, Matrix pencil
method, Maximum likelihood principle

1 Introduction
Indoor localization is a hot research topic in the field of
wireless communication owing to its capability to provide
a wide range of location-based services for increasingly
ubiquitous smart mobile devices. For indoor environ-
ments, wireless local area network (WLAN) technology
based on the IEEE 802.11 standards is widely employed
around the world for providing data connections to
mobile devices. Therefore, this paper focuses on indoor
localizationmethods based onWLAN technology. Specif-
ically, the purpose of this paper is to propose a localization
method that can be implemented using the infrastruc-
ture of a WLAN without affecting its protocol structure.
The proposed method will simultaneously exploit and be
constrained by WLAN characteristics whereby WLANs
are trending toward asynchronous networks of multi-
ple input, multiple output orthogonal frequency division
multiplexing (MIMO-OFDM) access points (APs) [1].
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Although many studies have investigated localization
[2–6], it is not straightforward to apply their results to the
problem of interest without requiring dedicated infras-
tructure or affecting the WLAN protocol structure. A few
localization methods based on the IEEE 802.11 standards
have been proposed in the literature [7–9] and imple-
mented commercially. However, most of these methods
use the received signal strength indicator (RSSI) as data
for location determination [7, 8]. The use of the RSSI usu-
ally requires a disincentive process of measurement-based
training for adaptation to ever-changing environments
because the RSSI is very sensitive to both large-scale
shadowing and small-scale multipath fading prevalent in
indoor environments. Recently, a method that uses chan-
nel state information (CSI) available through a network
interface card [10] has been proposed [9]. Compared
to the RSSI, the CSI is less sensitive to multipath fad-
ing. Nevertheless, the method proposed in [9], which
is based on single-antenna APs, requires a disincentive
measurement-based training process. The method pro-
posed in the present paper uses the CSI obtained by the
MIMO-OFDM receiver of each AP as data for location
determination, without any measurement-based training
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process for adaptation to ever-changing environments.
The details of the proposed method are described in
subsequent sections.

2 Proposed localizationmethod
According to the proposed method, the CSI obtained by
the MIMO-OFDM receivers of all APs upon successful
reception of a data packet from a mobile terminal (MT)
is processed in order to determine the location of the
MT. We assume that the MT uses only one antenna,
i.e., one spatial stream, for transmitting the data packet
for localization. Therefore, the packet’s preamble part for
estimating the CSI by the OFDM receiver of each AP will
consist of only one VHT-LTF (see [1], Fig. 22–4). It may be
noted that, while the standard [1] defines four OFDM sig-
nal models, classified according to the bandwidth as the
20-, 40-, 80-, and 160-MHz models, the duration of the
VHT-LTF symbol equals 4 μs including the 800-ns guard
interval for all the models.
The localization method involves removing multipath

reflection components in the CSI and searching for the
best location on the basis of a likelihood metric. Because
removing multipath reflection components in the CSI is
an important step, the characteristics of indoor multi-
path propagation and the CSI are discussed first; then, the
algorithm of the proposed method is described in detail.

2.1 CSI fromMIMO-OFDM receivers as location
information

The CSI is always required for data demodulation in an
OFDM receiver. Therefore, a receiver can provide the CSI
at no overhead [10]. The CSI is represented by the chan-
nel frequency response (CFR) for the set of used OFDM
subcarriers. As radio wave propagation in indoor environ-
ments is subjected to multipath characteristics, we may
characterize the CFR as follows. Assuming that the anten-
nas of an AP are closely located, the CFR estimated by
the receiver of the q-th AP for the m-th antenna and k-th
subcarrier can be expressed by

Hk,m,q =
NP−1∑
n=0

hn,qe−j2π(f0+kB/N)(tq+tn,m,q) + wk,m,q, (1)

whereNP is the number of paths in the channelmodel, hn,q
is the complex amplitude of the n-th path for the q-th AP,
f0 is the carrier frequency, tn,m,q is the propagation delay
associated with the n-th path between the MT antenna
and the m-th antenna of the q-th AP, B is the OFDM sig-
nal bandwidth, B/N is the OFDM subcarrier spacing, tq
is the time shift introduced by the OFDM time synchro-
nizer of the receiver, and wk,m,q is the estimation error
that is assumed to behave as additive white Gaussian noise
(AWGN). Note that a perfect OFDM time synchronizer

only needs to force the time shift tq to be well within a
tolerance supported by the OFDM guard interval [11]. In
other words, with a guard interval length of tg, the time
shift is required to ensure that the effective delay of the
shortest path is non-negative (tq + minn,m (tn,m,q) ≥ 0)
while the effective delay of the longest path does not ex-
ceed the guard interval length (tq + maxn,m (tn,m,q) ≤ tg).
Therefore,

0 ≤ tq + tn,m,q ≤ tg,∀(n,m). (2)

This uncertainty of tq is another source of variation of
the CSI, which must be properly treated when the CSI is
used for localization.
In this study, the AP antennas are closely located as an

array with spacing between elements of the order of half
wavelength. Therefore, the differences between the prop-
agation times to the AP antennas for the same path man-
ifest themselves as approximately frequency flat phase
difference terms, i.e., (1) can be approximately expressed
by

Hk,m,q =
NP−1∑
n=0

hn,qe−j(2π(f0+kB/N)tn,q+φn,m,q) + wk,m,q,

(3)

where tn,q = tq + (∑
∀m tn,m,q

)
/Mq with Mq is the num-

ber of antennas in the antenna array for the q-th AP, and
φn,m,q = 2π f0(tq + tn,m,q − tn,q). Note that the phase terms
φn,m,q, 1 ≤ m ≤ Mq, obey∑

∀m
φn,m,q = 0 (4)

and share a relationship that depends on the antenna array
geometry for the q-th AP and the angle of arrival (AOA)
to the array from the n-th path. In what follows, we shall
assume that the terms in (3) have been sorted according
to time delays such that tn1,q ≤ tn2,q if n1 ≤ n2. Further, it
may be noted that (2) becomes

0 ≤ tn,q ≤ tg,∀n. (5)

We may then rearrange (3) as

Hk,m,q =
NP−1∑
n=0

gn,qe−j(2πBtn,qk/N+φn,m,q) + wk,m,q, (6)

where gn,q = hn,qe−j2π f0tn,q . We may note from (6) that for
an AP antenna, the estimated CFR as a function of k is the
sum of multiple sinusoids plus noise. In addition, it is the
relationship between φ0,m,q, 1 ≤ m ≤ Mq, characterizing
the sinusoids of the shortest paths to the array elements,
that will contain the location information of the MT, if the
shortest paths are the direct paths.
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2.2 Proposed algorithm
The proposed algorithm consists of two major steps. The
first step is to obtain CFRs that are effective for local-
ization by minimizing irrelevant contributions from mul-
tipath reflection and the uncertainty of the OFDM time
synchronizer. The second step is to search for the best
location on the basis of a likelihood metric.

2.2.1 Obtaining an effective CFR
To minimize irrelevant contributions from multipath
reflection and the uncertainty of the OFDM time synchro-
nizer in the CFR for the m-th antenna of the q-th AP, we
aim to obtain an effective CFR modeled by

Gm,q = g0,qe−jφ0,m,q + wm,q, (7)

where wm,q denotes the average of wk,m,q across k. Note
that the effective CFR consists of the contribution from
the shortest path and additive noise. Therefore, the effec-
tive CFR will carry information of the MT location if
the shortest path is actually the direct path. Hence, the
main assumption of the proposed algorithm is that direct
paths between the MT and the APs exist with consider-
able amplitudes compared to the amplitude of the additive
noise.
In the proposed algorithm, the effective CFRs for an

AP are obtained by first obtaining reflection-rich CFRs
for contiguous subcarriers from the CSI, then obtain-
ing parameters of the sinusoids in the reflection-rich
CFRs, and finally transforming the reflection-rich CFRs to
obtain the result.

Obtaining a reflection-rich CFR for contiguous sub-
carriers According to the underlying standards [1], a
CFR can be obtained from the CSI only for used OFDM
subcarriers that are discontiguous. The proposed algo-
rithm obtains the CFR for contiguous subcarriers by sim-
ply using linear interpolation to compute the CFR for
unused subcarriers whenever they are between two used
subcarriers. The linear interpolation method is clearly
simple, but we consider whether it can effectively preserve
the slow-oscillation characteristics of the shortest-path
sinusoid. Hence, according to the standard signal models
[1], the resulting CFR is contiguous for −K ≤ k ≤ K ,
where the values of K for the 20-, 40-, 80-, and 160-MHz
signal models are 28, 58, 122, and 250, respectively.

Obtaining parameters of sinusoids A sinusoid as a
function of k, expressed by aejωk , is characterized by its
frequency ω and its complex amplitude a. To estimate the
frequencies of all the sinusoids in the CFRs of the q-th
AP, we adopt the matrix pencil method (MPM) [12, 13]
because this constant amplitude multiple-sinusoid esti-
mation problem is equivalent to the direction-of-arrival
estimation problem with fully coherent sources, which

is directly addressed by the MPM . Moreover, the MPM
method has been shown to be the most suitable method
among various super-resolution methods [13].
Following [13] with our own notations, we may detail

the estimation procedure as follows. According to [13], a
snapshot of data is a sequence of limited samples of the
observation. Therefore, from the CFR data of the q-th AP,
we have Mq snapshots of data, with each snapshot con-
taining 2K+1 samples. Accordingly, the input data matrix
is formed as

Y = [Y1 Y2 · · · YMq ] , (8)

where Ym denotes the Hankel matrix for the m-th snap-
shot. Thus,

Ym =

⎡
⎢⎢⎢⎣

H−K ,m,q H−K+1,m,q · · · H−K+L−1,m,q
H−K+1,m,q H−K+2,m,q · · · H−K+L,m,q

...
...

. . .
...

HK−L+1,m,q HK−L+2,m,q · · · HK ,m,q

⎤
⎥⎥⎥⎦ (9)

is a matrix of size (2K − L + 2) × L, where L is called
the pencil parameter. In [13], it is stated that if the value
of L is selected from a certain range, the variance of the
estimation results will be minimal. Such a range depends
on the snapshot size, which is then translated to our case
as

(2K + 1)/3 ≤ L ≤ (2K + 1)/2. (10)

Here, the value of L will be selected on the basis of the
simulation results for this range.
Then, YR is obtained by reducing the rank of Y to NU,

which is the number of significant sinusoids in the data.
This is based on singular-value decomposition as follows.
Suppose that Y can be expressed as

Y = USVH, (11)

where (·)H denotes the matrix conjugate and transpose,U
and V are unitary matrices, composed of the eigenvectors
of YYH and YHY, respectively, and S is a diagonal matrix
containing the singular values of Y. Then,

YR = USRVH, (12)

where SR is obtained from S by setting all the singular val-
ues in S that are smaller than ρsmax to zero, where ρ is a
small positive parameter (0 < ρ < 1), and smax is the max-
imum singular value in S. Hence,NU equals the rank of the
resulting SR. A suitable value of ρ depends on how often
and by how much the direct-path amplitude is lower than
the strongest-path amplitude. It also depends on theMPM
performance in separating the paths from others. In addi-
tion, it can depend on the additive noise level. However,
the noise-level effect may be minimal in practice because
the algorithm always obtains the CSI from a detected data
packet for which the signal must be of a detectable qual-
ity. As the effect of ρ on the algorithm performance is so
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complex analytically, the value selected in this paper will
be based on a simulation study.
Then, the frequency values of the NU sinusoids are

obtained from YR as follows. First, the eigenvalues of
Y+
1 Y2 are evaluated, where (·)+ denotes the Moore-

Penrose pseudoinverse, and Y1 and Y2 are matrices of size
(2K −L+1)×MqL, obtained by deleting the last and first
rows of YR, respectively. Then, the NU frequency values
ω0,ω1, . .,ωNU−1 are obtained as the angles of the obtained
NU eigenvalues.
Suppose that the NU frequency values ω0, ω1, . ., ωNU−1

just obtained have been already sorted in descending
order. In addition, consider for simplicity that all the NP
paths in (6) have clearly distinctive delays and consider-
able amplitudes compared to the amplitude of the noise.
Then, NU is an estimate of NP. In addition, the NU fre-
quency values can be considered as they are related with
the effective path delays tn,q by ωn = −2πBtn,q/N . Then,
the corresponding complex amplitudes an,m, 0 ≤ n <

NU, that estimate gn,qe−jφn,m,q are obtained by applying
the conventional linear least-squares method [14] to the
problem:⎡
⎢⎢⎢⎣

e−Kω0 e−Kω1 · · · e−KωNU−1

e(1−K)ω0 e(1−K)ω1 · · · e(1−K)ωNU−1

...
...

. . .
...

eKω0 eKω1 · · · eKωNU−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a0,m
a1,m
...

aNU−1,m

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

H−K ,m,q
H1−K ,m,q

...
HK ,m,q

⎤
⎥⎥⎥⎦ . (13)

Transforming a reflection-rich CFR Recall that NU
denotes the number of significant sinusoids for the fre-
quency estimation. Then,

∑NU−1
n=1 an,mejωnk approximates

(6), where the terms of the shortest path and the AWGN
are ignored, i.e.,

NU−1∑
n=1

an,mejωnk ≈ Hk,m,q−g0,qe−j(2πBt0,qk/N+φ0,m,q)−wk,m,q,

(14)

or

Hk,m,q−
NU−1∑
n=1

an,mejωnk ≈ g0,qe−j(2πBt0,qk/N+φ0,m,q) +wk,m,q.

(15)

Therefore, the effective CFR for the m-th antenna is
obtained by first computing the left-hand side of (15),
then translating the frequency of the remaining shortest-
path term to zero, and finally averaging the result over the
frequency domain, i.e.,

Gm,q =
K∑

k=−K
Gk,m,q/(2K + 1), (16)

where Gk,m,q is obtained by

Gk,m,q =
(
Hk,m,q −

NU−1∑
n=1

an,mejωnk
)
e−jω0k . (17)

2.2.2 Search for the best location
Searching for the best location involves the computation
of likelihood-based metrics for locations of interest, and
it is equivalent to maximizing the likelihood over the
locations. The likelihood to be maximized is defined by

u(ζ ) = f (Gm,q;∀(m, q)|ζ , g∗
0,q;∀q), (18)

where f (·) denotes the probability density function (PDF),
ζ denotes the location, and g∗

0,q,∀q, are g0,q,∀q, that
jointly maximize f (Gm,q;∀(m, q)|ζ , g0,q;∀q). Assume that
the CSI data have been scaled such that the variances
of wk,m,q,∀(m, q), are the same. Note that such scaling
requires the average noise power or signal-to-noise ratio
of every receiver chain to be estimated. However, as the
information is generally required also by the MIMO-
OFDM receiver, obtaining the information should not
involve any overhead. Then, based on (7) and because
wm,q,∀(m, q), are zero mean independent and identical
complex Gaussian random variables

f (Gm,q;∀(m, q)|ζ , g0,q;∀q) =
∏
∀q

∏
∀m

ℵ
(
g0,qe−j(2π/λ)(r(ζ )

m,q−r̄(ζ )
q ), σ 2

)
,

(19)

where σ 2 is the variance of wm,q, ℵ(μ, σ 2) is the PDF of a
circularly symmetric complex Gaussian random variable
with mean μ and variance σ 2, λ is the wavelength of the
radio-frequency carrier, r(ζ )

m,q is the distance from ζ to the
m-th antenna of the q-th AP, and r̄(ζ )

q = ∑Mq
m=1 r

(ζ )
m,q/Mq.

Then, it can be shown that

argmax
ζ

u(ζ ) = argmax
ζ

∑
∀q

|
∑
∀m

Gm,qej(2π/λ)r(ζ )
m,q |2.

(20)

Then, to determine the best location, the metric defined
as

s(ζ ) =
∑
∀q

|
∑
∀m

Gm,qej(2π/λ)r(ζ )
m,q |2 (21)

is computed for every location of interest, and the best
location ζ ∗ is obtained as s(ζ ∗) = maxζ s(ζ ).

2.3 Some remarks
2.3.1 AOA-based localization
Wemay note that the location metric (21) is a sum of met-
rics, each of which is contributed by the data of an AP, i.e.,
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s(ζ ) = ∑
∀q sq(ζ ), where sq(ζ ) = | ∑∀m Gm,qej(2π/λ)r(ζ )

m,q |2.
The metric contributed by the data of an AP has an inter-
esting property that may be described as follows. Note
that the metric sq(ζ ) can be equivalently expressed by

sq(ζ ) = | ∑∀m Gm,qej(2π/λ)[r(ζ )
m,q−r(ζ )

1,q ]|2. Then, since r(ζ )
m,q −

r(ζ )
1,q ,∀m will not considerably change if ζ moves along on
the same AOA to the q-th AP, sq(ζ1) ≈ sq(ζ2) if ζ1 and
ζ2 are along similar AOAs to the q-th AP. Then, we can
conclude that the metric contributed by the data of an AP
contains information of the AOA to the AP.
The usefulness of the effective CFR obtained by (16)

may be noted as follows. Thus far, we have assumed that
the direct path exists and all paths also have distinctive
delays. However, paths can actually have indistinguishable
delays. Then, a problem could arise when some scattered
paths of considerable amplitudes have delays close to the
delay of the direct path, while they also have AOAs con-
siderably different from that of the direct path. In this
case, the effective CFR will possibly contain also the AOA
information of the scattered paths that can degrade the
location estimation of the proposed algorithm. There-
fore, the proposed algorithm requires significant scattered
paths with delays close to the delay of the direct path
to also have AOAs close to the AOA of the direct path.
This could be realistic if the placement of the AP antenna
array is not close to any significant reflective materials.
Such placement also seems to be a good practice for other
AOA-based localization systems.

2.3.2 Effect of MT velocity
It may be interesting to assess the effect of the MT veloc-
ity on the performance of the proposed algorithm. In
this regard, we consider that there are two issues caused
by MT movement that may affect the performance. One
issue is the location shift of the MT that may change the
real multipath configuration of the channel during the
OFDM training symbol. The other issue is the Doppler
shift of the direct-path term in the estimated CSI. The
location shift should be of no concern because the dura-
tion of the training symbol is just 4 μs, which means that
a moving speed of 900 km/h is required to observe a loca-
tion shift of 1 mm. The 1-mm shift does not seem to
significantly change the multipath configuration, and the
900-km/h speed is infeasible in indoor environments.
Regarding the Doppler shift, it should be noted that

movement of the MT during a packet transmission would
cause a direction-dependent spectral shift of the radiating
wave. Hence, the spectral shift of one transmission path
arriving at the receiver could be different from the spec-
tral shifts of other paths. This effect is not as simple as that
of the local oscillator frequency offset between the trans-
mitter and the receiver, where the effect is equivalent to
causing identical spectral shifts for all paths. However, the

direction-dependent spectral shifts could only change the
phases of the sinusoidal terms in (6) and therefore could
not affect the frequency estimation of the MPM. In addi-
tion, the spectral shift of the direct-path term could only
rotate g0,q in (6) through a certain angle and therefore
could not change the MT location information in φ0,m,q,
1 ≤ m ≤ Mq.
However, the Doppler shift is known to cause inter-

carrier interference in OFDM data detection. It will also
affect the CSI estimation that is conventionally based on
detecting the data carried by the training symbol. For
a successfully detected data packet, we can expect that
such interference is insignificant. Therefore, in this paper,
we assume that the effect is negligible. Nevertheless, we
believe that it merits a detailed analysis that should be
conducted in a separate study.

2.4 CRLB for two-dimensional systems with linear-type
arrays

For benchmarking the performance of the location esti-
mators based on (7), we obtain the Cramer-Rao lower
bound (CRLB) [15], which is the variance of the estima-
tion error of aminimum variance unbiased estimator. This
is done on the basis of the following considerations. First,
we model the observation of the estimator as a real vector:

X =
[
OT

1 OT
2 · · · OT

Q

]T
, (22)

where Q is the number of APs, (·)T denotes the matrix
transpose, and

Oq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|g0,q| cos(φ0,1,q − ∠g0,q) + �(w1,q)
−|g0,q| sin(φ0,1,q − ∠g0,q) + 	(w1,q)
|g0,q| cos(φ0,2,q − ∠g0,q) + �(w2,q)
−|g0,q| sin(φ0,2,q − ∠g0,q) + 	(w2,q)

...
|g0,q| cos(φ0,Mq ,q − ∠g0,q) + �(wMq ,q)
−|g0,q| sin(φ0,Mq ,q − ∠g0,q) + 	(wMq ,q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(23)

We restrict the analysis to only the case in which each
AP antenna array is of linear type. Then, we base the com-
putation on the following geometrical reference model.
Denote the location of the array center of the q-th AP in
the Cartesian coordinate system as (xq, yq) and that of the
MT as (x0, y0). The locations are related using the polar
coordinate system as (rq, θq), as shown in Fig. 1. Define
a normal looking direction of an antenna array as a main
radiation direction when the phase shifts of all the antenna
elements are zero.While the linear antenna array of an AP
has two normal looking directions, we shall be interested
in only the one that is closest to the direction of arrival of
the MT. For the q-th AP, we denote the counter-clockwise
angle of the normal looking direction relative to the x-axis
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Fig. 1 Illustration of geometrical reference model. Illustration of geometrical reference model of (x0, y0), (xq , yq), (rq , θq), and γq

as γq. For example, if the array elements of the q-th AP
are placed along the x-axis in Fig. 1, γq will be π/2. Then,
assuming that the spacing between the antenna elements
in each array is d and rq >> d, φ0,m,q, ∀(m, q), can be
approximated by

φ0,m,q = 2π
λ

(m − (Mq + 1)/2)d sin(θq − γq). (24)

Based on [15], the CRLB can be computed by

CRLB(ζ̂ ) = [ I−1]1,1 + [ I−1]2,2 , (25)

where [K]i,j denotes the (i, j) element of matrix K and I is
the Fisher information matrix:

[I]i,j = 2
σ 2

∂μT

∂ui
∂μ

∂uj
, (26)

where μ is the mean of X, and (u1,u2, ..,u2Q+2)
.=

(x0, y0, |g0,1|,∠g0,1, .., |g0,Q|,∠g0,Q). However, following
[16], the CRLB may be also computed by

CRLB(ζ̂ ) = [I−1
e ]1,1 + [I−1

e ]2,2 , (27)

where Ie is the equivalent Fisher information matrix
obtained as follows. Let

I =
[
A B
BT C

]
, (28)

where the sizes of matrices A, B, and C are 2 × 2, 2 × 2Q,
and 2Q × 2Q, respectively. Then, Ie can be computed by

Ie = A − BC−1BT. (29)

Noting that ∂θq/∂x0 = −(sin θq)/rq and ∂θq/∂y0 =
(cos θq)/rq, we then apply these two relations and (22),
(23), and (24) to derive the elements of A, B, and C.

Accordingly, after arranging the terms, we obtain B as
a zero matrix, and therefore, Ie = A, which can be
expressed by

Ie = 1
σ 2

Q∑
q=1

|g0,q|2
Mq(M2

q − 1)
6

(2πd cos(θq − γq)

λrq

)2
p(θq)p(θq)

T,

(30)

where

p(θq) = [
sin(θq) − cos(θq)

]T . (31)

We may use (27) and (30) to compute the CRLB as a
function of g0,q, 1 ≤ q ≤ Q, which are random variables.
In this paper, by considering such variability, the CRLB is
then obtained by averaging the computed CRLBs across
the simulated values of {g0,q|1 ≤ q ≤ Q}.

3 Numerical results and discussions
3.1 Multipath propagation model
In this paper, we estimate the performance of the pro-
posed algorithm on the basis of computer simulation
using statistical indoor channel models. In addition,
because our algorithm is AOA-based, we require a rele-
vant channel model to provide specifications of the AOA
characteristics in addition to the power delay profile of
the multipath. As we find that only the IEEE 802.11 TGn
channel models [17] are available in detail and meet our
requirements, we base our performance evaluation on
only such models.
Let us briefly describe the major characteristics of the

models as follows. In a TGn channel model, a non-line-
of-sight (NLOS) model is defined by delay taps, with each
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tap representing the contribution of scattered paths of the
same delay. The delay taps are grouped into clusters such
that scattered paths within the same cluster possess the
same random characteristics of the AOA to the receiver.
In other words, the AOAs of scattered paths of a clus-
ter are obtained as follows. First, the mean AOA is drawn
from a uniform distribution over [0,2π ). Then, the AOA of
each scattered path is drawn from a Laplacian distribution
according to the obtained mean and the angular spread
(AS), i.e., the standard deviation, specific to the cluster.
The amplitude of a scattered path is a complex Gaussian
random variable, with the magnitude being a Rayleigh dis-
tribution. The number of clusters, power delay profile,
and AS of each cluster are specific to model subtype, e.g.,
the number of clusters is three for model D. The total
received power in an NLOS model is also subjected to
path loss, which includes a log-normal shadowing effect
and is specific to the model subtype. The TGn channel
modeling also provides a line-of-sight (LOS) model for
each model subtype, which is relevant to our case where
the localization algorithm requires the existence of LOS.
In a TGn channel model, an LOS model of a subtype is
simply obtained by adding an LOS component to the first
arriving tap of the corresponding NLOS model. However,
the addition is done according to a first-tap k-factor, i.e.,
the ratio of the LOS power to the average power of the
NLOS first tap, which is specific to the model subtype.
The TGn channel modeling does not use a large first-tap
k-factor for any model subtype because changing from the
NLOS model to the LOS model of the same subtype will
slightly reduce the root-mean-square (RMS) delay spread
of the channel (see Table 1).
However, we note that the described LOS model con-

sists of LOS and NLOS parts, with the first tap of the
NLOS part being set to have the same delay as (but
arbitrarily different AOA from) the LOS. This seems to
be unrealistic if the placement of the AP antenna array
is not close to any significant reflective materials. Such
placement seems to be also a good practice for other
AOA-based localization systems. Assume that such place-
ment has been done successfully for every array, although

Table 1 NLOS and LOS characteristics of models D and E of [17]

Model D Model E

First-tap k-factor (dB)
NLOS −∞ −∞
LOS 3 6

RMS delay spread (nm)
NLOS 50 99

LOS 47 95

Maximum delay spread (nm)
NLOS 390 730

LOS 390 730

absorptive materials may be required in some cases. Then,
it would be more realistic if a scattered path with a delay
close to that of the LOS also had its AOA statistically close
to that of the LOS. Accordingly, we modify the TGn chan-
nel models for our purpose by (i) setting the mean AOA
of the NLOS first tap to equal the AOA of LOS and (ii)
introducing a new parameter σ0 as the AS of the NLOS
first tap. The impact of this parameter on the algorithm
performance will be studied by simulation.
The TGn channel models include six model subtypes

with RMS delay spread in the range of 0 to 150 ns. We
use the LOSmodels D and E in this paper because accord-
ing to [18], the associated delay spreads are representative
of typical office environments for model D and typical
large open spaces and office environments for model E.
In addition, such environments are expected to be tar-
gets of a wide range of indoor location-based services. The
characteristics of the two models in terms of the first-tap
k-factor, the RMS delay spread, and the maximum delay
spread (tNP−1,q − t0,q) are summarized in Table 1, while
additional details can be found in [17]. Note that each LOS
model is multipath-rich while having a direct path that
is nondominant because changing from the NLOS model
to the LOS model of the same subtype can just slightly
reduce the RMS delay spread of the channel.

3.2 Common assumptions and search method
The performance of the proposed method is evaluated
with geometrical assumptions as shown in Fig. 2, illus-
trating the region of interest for localization, which is a
square having an area of 400 m2 and the normal looking
directions of the antenna arrays of four APs located at the
corners of the square. Each antenna array is of linear type
with half-wavelength spacing between elements. A carrier
frequency of 5 GHz is assumed. In addition, an antenna
gain of 0 dB is assumed for the MT antenna as well as for
each array element of an AP. Further, it is assumed that
the variance of the CSI estimation error depends only on
the system noise, i.e., E

[|Hk,m,q − wk,m,q|2]/E[|wk,m,q|2
]

equals the average signal-to-noise ratio per OFDM sub-
carrier. Regarding the OFDM signal models [1], we will
consider only the 40-, 80-, and 160-MHz models, as they
should be sufficient for demonstrating the performance
with regard to the bandwidth.
In this paper, the search for the best location on the

basis of the metric of (21) is conducted in three rounds. In
the first round, the metrics are computed for regular grid
points over the 400-m2 square region with a grid-point
spacing of 1 m, and the first-round optimum location is
then determined. In the (n + 1)-th round, the metrics are
computed for regular grid points over the (l2n)-m2 square
region centered at the n-th round optimum locationwith a
grid-point spacing of ln/20, and the (n+1)-th-round opti-
mum location is then determined, where ln/2 equals the
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Fig. 2 Illustration of geometrical simulation assumptions. The 400-m2 region of interest for localization and the normal looking directions of the
antenna arrays of four APs located at the corners

grid-point spacing in meters for the n-th round. Note that
the grid-point spacing for the last round, representing the
effective resolution of the search space, is 10−2 m.

3.3 Selection of algorithm parameters
The performance of the proposed algorithm depends on
its parameters L and ρ. We realize that obtaining opti-
mal values of the parameters may require a separate
elaborate study. In this paper, we only select certain val-
ues for demonstrating the basic working performance of
the proposed algorithm and for comparing the proposed
algorithm with previous methods. This is done for each
standard signal model [1] as follows.
First, we select a tentative value of L to be the middle

value of the range (10). Therefore, the selected values for
the 40-, 80-, and 160-MHz OFDM signal models are 49,
102, and 209, respectively.
Then, a tentative value of ρ is selected from the sim-

ulation results as shown in Fig. 3. The results show the
root-mean-square error (RMSE) versus ρ with OFDM
signal bandwidth (B) and number of antennas per AP
(Mq = M,∀q) as parameters. The RMSE is obtained
from 1000 independent samples, based on the following
assumed typical conditions. TheMT transmitted power is
10 dBm, the AP receiver noise figure (NF) is 4 dB, and the
LOS model D is used with σ0 = 4°. In addition, the MT
is uniformly and randomly located in the 400-m2 region,
except the locations that are close to the center of an
antenna array by less than 1m. All the RMSE values shown

in the figure are based on same test data, defined by the
drawn MT locations and channel characteristics. Accord-
ing to the results, the selected values of ρ are 1/32 for the
40- and 80-MHzmodels and 1/16 for the 160-MHzmodel,
as they represent a rough approximation of the optimal
values for the assumed conditions.
Then, we iterate the simulation experiments by fixing

the value of ρ to the tentative one and performing sim-
ulations for evaluating the performance in terms of L.
According to the results, the performance does not vary
significantly with L. Therefore, the tentative values of L
and ρ stated above are adopted in this paper.

3.4 Implications of σ0 and CSI interpolation
We also study the implications of the AS of the NLOS first
tap and CSI interpolation. The localization performance
is evaluated with the same assumptions as in Section 3.3,
except that L and ρ are set to be the selected values and σ0
is now variable. The performance is also evaluated for two
cases. One is based on using discontiguous CSI as input
data and using linear interpolation to obtain contiguous
CSI as proposed. The other is based on using contigu-
ous CSI as input data, assuming that the used OFDM
subcarriers are already contiguous. For a value of σ0, the
performance results for both cases of CSI data are based
on the same test data, defined by the drawn MT locations
and channel characteristics. It may be noted from the
results shown in Fig. 4 that the localization performance
of both cases is similar, although using discontiguous CSI



Demeechai et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:146 Page 9 of 16

Fig. 3 Average localization error in terms of ρ . Root-mean-square error versus ρ with OFDM signal bandwidth and number of antennas per AP as
parameters

with linear interpolation leads to slightly worse perfor-
mance. Hence, we may conclude that linear interpolation
is effective in mitigating the problem of CSI discontigu-
ity in the proposed algorithm. The results also show that
the RMSE values when σ0 = 0°, 4°, 8°, and 16° for both
cases are around 0.7, 1.1, 1.6, and 2.7 m, respectively.
Hence, controlling σ0 to be small based on the placement
of the antenna arrays as mentioned in Section 3.1 is very
important for realizing good performance of the proposed
algorithm.

3.5 Comparison with other methods
The performances of the proposed method, the RSSI-
based method [8], and the CSI-based method [9] were
compared under the same statistical channel conditions.
The CSI-based method [9] and the RSSI-based method
are similar but differ in terms of the observation data
that they use. The RSSI-based method uses the RSSI as
observation data, whereas the CSI-based method [9] uses
a norm computed from the CSI as observation data. We
will refer to the RSSI-based method [8] and the CSI-based

Fig. 4 Average localization error in terms of σ0. Root-mean-square error versus σ0 for two cases of CSI data
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method [9] as the RSSI method and the CSI normmethod,
respectively. Both methods require the localization algo-
rithm to be trained before use or testing. In the training
process, usually referred to as fingerprinting, the PDF of
the observation data conditioned on the MT location is
obtained from the training data for each reference loca-
tion. In the use phase, the location is determined as a
weighted average of the reference locations according to
the observation data and the trained model. For the per-
formance comparison, the LOS models D and E are used
with the following simulation conditions. The MT trans-
mitted power is 10 dBm, the AP receiver NF is 4 dB, and
each LOS model has σ0 = 4◦. In addition, B = 160 MHz
and M = 2. The MT locations for testing are rectangular
grid points spanning the 400-m2 region with a grid-point
spacing of 1 m, except for the center points of the four
antenna arrays. The set of reference locations for the RSSI
and CSI-norm methods is the same as the set of MT loca-
tions for testing. Because the RSSI and CSI-normmethods
assume observation data from a single antenna, the RSSI
and CSI-norm averaged across the antennas in the array
are respectively used as the observation data for the two
methods in this paper. The training data for each reference
location consist of 500 independent samples of the obser-
vation data, while the test data for each grid point consist
of 10 other independent samples.
Figures 5 and 6 show the results of the cumulative

distribution function (CDF) according to models D and
E, respectively. It can be noted that the proposed algo-
rithm clearly outperforms the other two methods in both

channel models. Note that the RSSI and CSI-norm meth-
ods are not generally designed to model both small-scale
and large-scale fading effects. They are designed to model
only the variabilities of small-scale fading conditioned on
a fixed large-scale fading condition because when a sig-
nificant object moves in the environment and changes
the large-scale fading condition, the methods usually
need to be retrained for maintaining the performance.
In the simulation environment of this study, different
samples of observation data correspond to totally inde-
pendent fading conditions. Therefore, the two methods
cannot perform well in this simulation experiment. The
figures also show that the performance of the proposed
method improves when changing from model D to model
E, possibly because of the stronger LOS component in
model E.

3.6 Effect of infrastructure conditions
Figure 7 shows the results of the localization performance
in terms of the signal-to-noise condition, signal band-
width, and number of antennas per AP. The localization
performance is evaluated with the same assumptions as in
Section 3.3, except that L and ρ are set to be the selected
values and the MT transmitted power is varied over the
range of −20 to 20 dBm. All the RMSE values shown in
the figure are based on the same test data, defined by
the drawn MT locations and channel characteristics. The
figure shows that the localization performance improves
with increasing MT transmitted power, but the improve-
ment is saturated when the power increases over around

Fig. 5 Performance comparison according to channel model D. CDF of localization errors for the RSSI, CSI-norm, and proposed methods according
to channel model D
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Fig. 6 Performance comparison according to channel model E. CDF of localization errors for the RSSI, CSI-norm, and proposed methods according
to channel model E

10 dBm.We believe that the performance saturation could
be mainly due to residual contributions from scattered
paths that still remain in the effective CFR. Note that we
could expect such contributions to be smaller by having
richer observation data for the multiple-sinusoid param-
eter estimation process of the proposed algorithm. This
is supportive of the results shown by the figure, where
the saturated performance improves with increasing B or

M. The saturated performance, when the MT transmit-
ted power equals 10 dBm, is summarized in Table 2. The
table lists numerical values of the RMSE in meters and
also in percent maximal length of a straight line within the
localization region, in order to illustrate how the errors
are related to the dimension of the localization region.
Note that the maximal length is considered to be 20

√
2 m.

Comparing the performance improvement as a result of

Fig. 7 Average localization error in terms of the signal-to-noise condition, signal bandwidth, and number of antennas per AP. Root-mean-square
error versus MT transmitted power with OFDM signal bandwidth and number of antennas per AP as parameters
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Table 2 Localization performance in terms of B andM when the
MT transmitted power is 10 dBm, expressed as root-mean-square
error in meters and also in percent maximal length of a straight
line within the localization region

M = 2 M = 4

B (MHz)

40 3.9 m; 13.79 % 2.8 m; 9.90 %

80 2.0 m; 7.07 % 1.8 m; 6.36 %

160 1.2 m ; 4.24 % 1.1 m ; 3.89 %

changing from M = 2 to M = 4 for the three cases of
B shown in the table, we can see that the improvement
decreases with increasing B.
Figure 8 compares the results of Fig. 7 and the CRLB

when B = 160 MHz. The important points to be noted
are as follows. The CRLB performance always improves
steadily with increasing MT transmitted power. The per-
formance of the proposed algorithm is much worse than
that of the CRLB in all the cases. This large perfor-
mance gap is expected because the CRLB here is based
on the observation data modeled by (7), which is free of
scattered-path contributions, and the CRLB result corre-
sponds to an optimal unbiased estimator. The source of
impairment of the CRLB results is only the AWGN.
It is also interesting to see how the proposed method

performs in terms of the MT location and the number of
usable APs. Figures 9, 10, 11 and 12 show the simulation
results with the same assumptions as in Section 3.5, except
that the test data for each grid point here consist of 30
independent samples and only model D is used.
It can be noted from Fig. 9 that the 90 % confidence level

error bound, i.e., the error when the cumulativeprobability

is 0.9, increases approximately from 1.2 to 1.6 and 3.5 m
when the number of usable APs is reduced from 4 to 3
and 2, respectively. The performance seems to degrade
steadily if the number of usable APs is greater than two.
However, the performance with two APs is still better than
the performances of the RSSI andCSI-normmethods with
four APs, as shown in Fig. 5, from which we may note that
the 90 % confidence level error bounds are around 4.5 and
3.8 m for the RSSI and CSI-norm methods, respectively.
For the proposedmethod, the preferable number of usable
APs seems to be three or greater, while having only two
usable APs may still be viable in some applications.
Regarding the localization performance in terms of the

MT location, it is interesting to note from Fig. 10 that the
RMSE is locally large for locations on the line connect-
ing the two usable APs. This can be explained by noting
that the locations on such a line correspond to the case
where the equivalent Fisher information matrix expressed
in (30) is singular. Intuitively, the singularity indicates
that the available information is not sufficient for esti-
mation, i.e., the location information contribution in the
observation data is not sufficient for deducing a location.
Therefore, the localization performance in the singularity
case here is extremely vulnerable to the AWGN. It may
be noted from Figs. 11 and 12 that having more usable
APs effectively relieves the singularity problem, especially
for locations farther away from the two underlying APs.
In contrast, having more usable APs is less effective in
relieving the problem for locations close to an AP, possibly
because the equivalent Fisher information matrix for such
a location is largely dominated by only the contribution of
that AP.

Fig. 8 Comparison with CRLB when B = 160 MHz. Root-mean-square error versus MT transmitted power with number of antennas per AP as a
parameter when B = 160 MHz
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Fig. 9 Performance in terms of the number of usable APs. CDF of localization errors in terms of the number of usable APs

4 Recommendations for further study
The purpose of this paper is to introduce a new algorithm
for indoor localization and to demonstrate the poten-
tial superiority of the proposed algorithm over previous
approaches to the same problem. We believe that the
issues listed below merit further investigation.

• Validation with real measurements: In this paper, the
localization performance of the proposed algorithm
was evaluated on the basis of statistical indoor

channel models specifically obtained for
benchmarking data communication systems. It is
much more relevant to evaluate the performance on
the basis of real measurements or a statistical indoor
channel model specifically obtained from real
measurements for benchmarking AOA-based
localization systems. Therefore, performance
validation with real measurements is very
important.

Fig. 10 Average localization error in terms of the MT location based on two usable APs. Root-mean-square error versus MT location when only two
APs located at (0,20) and (20,20) m are usable
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Fig. 11 Average localization error in terms of the MT location based on three usable APs. Root-mean-square error versus MT location when only
three APs located at (0,20), (20,20), and (20,0) m are usable

• Other super-resolution methods: Estimating the
frequencies of all the sinusoids in the CFRs plays a
major role in obtaining an effective CFR for the
proposed algorithm. Although the MPM is used in
this paper because it directly addresses the problem
of interest, we believe that other super-resolution
methods should also be studied in this regard.

• Using a priori knowledge in estimation: In this paper,
estimating the parameters of all the sinusoids in the
CFRs plays a major role in obtaining an effective CFR.
Such estimation has been performed without
considering a priori knowledge about the parameters,
i.e., their statistical models. Note that such knowledge
may be used to improve the estimation performance

Fig. 12 Average localization error in terms of the MT location based on four usable APs. Root-mean-square error versus MT location when all four
APs are usable
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in general, as discussed in [16]. Applying such
knowledge to the proposed algorithm is an
interesting direction for further study.

• Optimal parameters for the algorithm: In this paper,
the values of the algorithm parameters L and ρ were
selected for simply demonstrating the basic working
performance of the proposed algorithm. Actually, the
optimal values could depend on variable conditions
of the radio channel and infrastructure. These effects
are also worthy of further study.

• Problem of NLOS: In addition to bandwidth
availability and multiple-antenna configuration, an
essential requirement for the proposed algorithm to
work is the availability of LOS in the radio channel. In
this regard, the availability required is just sufficient
for triangulation. This requirement is the same as for
the ultrawideband-based localization regime [19, 20].
Several methods for mitigating the problem of LOS
availability have been presented in the literature.
These methods are based on the detection of channel
condition. By applying the detection of channel
condition, we may simply ignore an AP if the
detection result declares unavailability of LOS. We
could then expect performance degradation on the
basis of the results shown in Fig. 9, or encounter an
outage if the number of usable APs is less than two.
We note that the signal processing results obtained
using the proposed method are employed as
observation data for the detection of channel
condition. However, a detailed study of such
detection is beyond the primary scope of the present
paper and it is therefore recommended for future
work.

• AOA bias induced by diffraction: In the present
study, the effect of diffraction caused by building
components, such as walls, is ignored. If not properly
managed, this effect may degrade the performance of
the proposed algorithm by introducing a bias into the
AOA of a direct path, as well as the performance of
the ultrawideband-based localization regime by
introducing a bias into the time of arrival of a direct
path. Therefore, further investigation is required to
efficiently mitigate such a bias.

• MT velocity effect : As discussed in Section 2.3.2, a
detailed analysis of the effect of MT velocity on the
localization performance should be carried out in a
future study.

• Simple way to obtain the effective CFR: Note that
an,m obtained using the proposed algorithm by
solving (13) is an estimation of gn,qe−jφn,m,q .
Therefore, according to (7), a0,m is also an estimation
of Gm,q. Then, it might be better to save computation
by using a0,m as Gm,q, instead of obtaining Gm,q from
(16). This issue also requires further investigation in

order to observe its possible effects on the
localization performance.

5 Conclusions
A new localization method based on an asynchronous
network of MIMO-OFDM access points was proposed.
This method can be implemented on WLANs of a cur-
rent standard without affecting their protocol structures.
The method involves first obtaining effective CFRs, in
which irrelevant contributions from scattered paths and
the uncertainty of the OFDM time synchronizer are min-
imal, and then searching for the most likely location. The
proposed method does not require a training process for
adaptation to ever-changing environments. The availabil-
ity of direct paths is sufficient for triangulation, as in the
ultrawideband-based localization regime. Further, signifi-
cant scattered paths with delays close to the delay of the
direct path are required to have AOAs close to the AOA
of the direct path.
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