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Abstract

In vehicular cyber-physical system (VCPS), beaconing mechanism is commonly deployed for the solar-powered
roadside infrastructure to detect available passing-by vehicles for data dissemination. The traditional beaconing
mechanism would cause a higher energy consumption due to the periodical beaconing procedure. To tackle this
problem, we propose a new data dissemination strategy for roadside infrastructures by adjusting the beaconing
interval to reduce the energy consumption. We model the beaconing procedure as a Markov model by observing the
periodical beaconing results and then using the modeling result to obtain the relationship between the beaconing
interval and the expectation of the single-vehicle discovery time. Then, with the average data transmission rate
requirement, we can calculate the maximum beaconing interval. We also introduce a satisfaction degree based on
the Sigmoid function to combine the decreased energy consumption and the decreased data rate. The satisfaction
degree function allows the roadside infrastructure to obtain the optimal beaconing interval based on the required
quality of service. The analysis of the results show that careful tuning of key parameters leads to improved energy
efficiency and increased data rate of the data dissemination strategy.
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1 Introduction
Cyber-physical system (CPS) is a complex system with
intricate interplay between the physical world and
the cyber world [1–4]. Vehicular cyber-physical system
(VCPS) is a typical CPS applied in the intelligent trans-
portation field. It has attracted a significant amount of
interests in the past few decades [5–8]. VCPS holds great
potential in enhancing vehicle safety and improving traf-
fic efficiency. It also can make a further contribution to
passengers’ comfort by providing infotainment services.
In VCPS, roadside infrastructures play an important

role. They are usually deployed in highways or road inter-
sections and can communicate with passing-by vehicles
through dedicated short-range communications (DSRC)
technologies. According to the difference of the structure
and the function, roadside infrastructures could generally
be divided into two types. One is with a large commu-
nication coverage and high processing capability [9–11].
They are used as wireless gateway nodes that interconnect
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vehicular ad hoc networks and a wired network (i.e., the
Internet), providing Internet connectivity to the vehicles.
Also, they offer the real-time traffic status to the vehicles.
The other kind is the simple structure roadside infras-
tructure just with the capability to disseminate data [12].
It disseminates the data stored in the infrastructure to
the passing-by vehicles periodically. Generally, these data
are the advertising messages. Due to the characteristics of
the convenient installation and the relatively low cost of
these simple structure roadside infrastructures, they have
been widely used in VCPS.With the massive uses of them,
the information content diversity of the whole network
will be enriched leading to a further improvement of the
VCPS. The research objects of this paper are these simple
structure roadside infrastructures.
These simple structure roadside infrastructures are

massively deployed in locations like the highway. Nor-
mally, they use the solar as power input due to the
unavailability or excess expense of wired electrical power.
While the provisioning cost of a solar-powered roadside
infrastructure is a strong function of its average energy
consumption. According to the analysis in [13] which is
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a part of the US Department of Transportation’s Vehi-
cle Infrastructure Integration Initiative, a breakdown of
the deployment costs also found that over 63% of these
roadside infrastructure costs would be consumed by solar
energy provisioning, e.g., solar panels, batteries, and their
associated electronics. So, it is important to reduce the
energy consumption of the simple structure roadside
infrastructures.
The energy consumption is mainly composed of two

parts: the energy consumed in the wireless commu-
nication and the energy consumed in the information
processing and computing. The radio is the most energy-
consuming component, taking nearly 30 times the energy
of the microcontroller unit used in the simple struc-
ture roadside infrastructures [14]. Therefore, to reduce
the energy consumption, the key point is to improve the
energy efficiency of the wireless communication.
For these simple structure roadside infrastructures, the

basic mechanism of the traditional data dissemination
strategy is beaconing [15, 16]. Beacon packets are period-
ically and locally broadcasted by a roadside infrastructure
to announce its current status and detect whether there
are suitable vehicles to disseminate the data to. One vehi-
cle in the communication range that successfully receives
the beacon packet needs to reply an acknowledgment
(ACK) packet. After receiving the ACK packet, the road-
side infrastructure can get the status of the vehicle. Then,
it can decide whether to start the data transmission pro-
cess or not based on the status of the vehicle and the
specific data content. In our research, we find that if the
vehicle density is relatively low around the location where
the roadside infrastructure is deployed, due to the limited
number of the passing-by vehicles, just a few numbers of
the beacon packets get a reply. Most of the beacon packets
are ineffective. Although the beacon packet is small, larger
numbers of ineffective beacon packets cause a high energy
waste.
In this paper, we design an energy-efficient data dissem-

ination strategy for roadside infrastructures by adjusting
the beaconing interval. We design two phases for the
new data dissemination strategy. The first is the model-
ing phase. The second is the applying phase. We model
the beaconing procedure as a Markov model by observ-
ing the periodical beaconing results in the modeling phase
and then use the modeling result in choosing a new bea-
coning interval in the applying phase. With the average
data transmission rate requirement, we can calculate the
maximum beaconing interval. By using the Sigmoid func-
tion, we can obtain the optimal beaconing interval based
on the satisfaction degree. Through the proposed strategy,
we can increase the effectiveness of the beaconing packets
and improve the energy efficiency of the data dissemina-
tion strategy. Our main contributions are summarized as
follows:

1. According to the Markov property of the presence of
the passing-by vehicles, we present the state
transition probabilities for the Markov model of the
beaconing results by using the maximum likelihood
method. Meanwhile, we calculate the duration of the
modeling phase within which the modeling can
guarantee a certain accuracy based on the central
limit theorem.

2. We obtain the relationship between the beaconing
interval and the expectation of the single-vehicle
discovery time based on the state transition
probabilities. The single-vehicle discovery time
means the time interval between the adjacent two
times when the roadside infrastructure discovery one
vehicle. With the average data transmission rate
requirement which is related to the single-vehicle
discovery time, we can calculate the maximum
beaconing interval.

3. We introduce a satisfaction degree based on the
Sigmoid function to combine the decreased energy
consumption and the decreased data rate effectively.
If we want to choose a smaller beaconing interval
than the maximum beaconing interval and obtain a
shorter single-vehicle discovery time, we can use the
satisfaction degree function to obtain the optimal
beaconing interval which can balance the tradeoff
between energy consumption and the average data
transmission rate.

4. We demonstrate that the proposed data
dissemination strategy can significantly reduce the
energy consumption while satisfying the service
quality requirement. The impact of the system
parameters on the data dissemination strategy is
investigated via extensive simulation study. The
analysis of the results show that careful tuning of key
parameters leads to improved energy efficiency and
increased data rate of the data dissemination strategy.

The rest of the paper is organized as follows. Related
work is outlined in Section 2. Our system model and
the problem definition are described in Section 3. In
Section 4, we describe the detail of the modeling phase.
The applying phase is described in Section 5. The
whole beaconing interval optimization process is given in
Section 6. In Section 7, we make a numerical analysis of
our strategy. The conclusion is finalized in Section 8.

2 Related work
For the roadside infrastructures, energy conservation
in the data dissemination strategy guarantees the effi-
cient usage of energy, which makes great contribution
to the commercial application of VCPS. Recently, many
researches have been made to improve energy efficiency.
In [17], by using a mixed-integer linear programming
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Table 1 The beaconing results of the four scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Direction 1 0 0 1 1

Direction 2 0 1 0 1

optimization method, the author proposes a data dissem-
ination strategy with the ability of satisfying the com-
munication requirements while minimizing the energy
consumption. In the highway scenario, the location of
vehicles passing through the roadside infrastructure radio
coverage area can be predicted with a high degree of accu-
racy. Hammad et al. [18] use this information to reduce
the energy cost of the downlink infrastructure-to-vehicle
data dissemination. In [19], to obtain a energy-efficient
data dissemination strategy, authors classify the energy
efficiency problem into three categories and formulate
them as a three-step optimization problem. In [20] and
[21], two different on/off sleep data dissemination strate-
gies are proposed. In these strategies, if there is no request
received from vehicles, the roadside infrastructure works
alternately between ON and OFF in a periodical man-
ner to reduce the energy consumption. In [22], a vari-
able bit rate transmission is used to increase the energy
efficiency and the roadside infrastructures adapt its bit
rate to accommodate different channel path loss condi-
tions. However, all the above studies are still based on
the periodically beaconing strategy. The problem of how
to optimize the beaconing interval to reduce the energy
consumption is still a whitespace in these papers.

3 Problem definition
In this paper, we study about the energy efficiency
of the simple structure roadside infrastructures which
are deployed in locations like the highway. Generally,
two roadside infrastructures are deployed far away from
each other and there is no connection between them.
So, we just need to consider one roadside infrastruc-
ture on the highway. For one simple structure road-
side infrastructure, it does not need to disseminate
the data to every passing-by vehicles. It just needs to

disseminate the data to parts of the passing-by vehi-
cles and ensures a certain average data transmission
rate.
In the traditional data dissemination strategy, the

beaconing process is similar to a detecting process.
The roadside infrastructure sends a beacon packet on
the control channel to detect whether there is a vehicle
that can receive the data or not. One passing-by vehi-
cle that successfully receives the beacon packet needs to
reply an ACK packet which includes the vehicle status
like moving direction, velocity, and location. Generally,
the data dissemination strategy is applied separately for
the two traffic flow directions since most of the data con-
tents are related to the traffic flow directions. To help
understanding, four groups of beaconing results are given
in Table 1 corresponding to the four scenarios in Fig. 1.
If the roadside infrastructure successfully detects one or
more vehicles, we denote the beaconing result as 1; oth-
erwise, we denote it as 0. Need to note that, in the
traditional data dissemination strategy, the duration of the
beaconing period can guarantee that one vehicle could
be detected at most one time when it passes through the
communication range of the roadside infrastructure. If
one vehicle repeatedly receives the same beacon packet,
it only replies the ACK message once. For convenience,
we just consider one traffic flow direction in the fol-
lowing sections since the beaconing processes in both
directions are separate and similar. The results for one
direction can be readily generalized to the case of two
directions.
The periodical beaconing process in traditional data dis-

semination strategy is shown in Fig. 2. In kth period,
the beaconing result is denoted as a Boolean variable Rk .
R = {R1,R2, · · · ,RN } represents the beaconing results
of the whole beaconing process. N is the number of the
beaconing periods and also is the number of the beacon-
ing results. As we mentioned in the previous section, the
number of passing-by vehicles is limited in the low-vehicle
density scene. Large numbers of continuous zeroes appear
in R. From the energy point of view, beaconing in this zero
value time ismeaningless. The data dissemination strategy

Fig. 1 Four beaconing scenarios in the data dissemination strategy
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Fig. 2 The periodical beaconing process in the traditional data dissemination strategy

will be more energy efficient if the roadside infrastruc-
ture broadcasts the beacon packets with a certain inter-
val instead of broadcasting them in each period. This is
the core idea of our proposed strategy. Intuitively, if the
beaconing interval is too long, the roadside infrastruc-
ture may miss too many dissemination opportunities. If
the beaconing interval is too short, there is no obvious
improvement in the energy efficiency. How to obtain a
suitable beaconing interval is the most important problem
in our study. As shown in Fig. 3, we design a model-
ing phase and an applying phase in our energy-efficient
data dissemination strategy. In the modeling phase, like
the traditional data dissemination strategy, the roadside
infrastructure sends the beacon packets periodically to
learn the presence of passing-by vehicles. The duration of
one period defined as t0. t0 is very small. In the applying
phase, the roadside infrastructure calculates the optimal
beaconing intervals defined as t̂a and t̂b. If the initial bea-
coning result is 0, the roadside infrastructure sends the
beacon packets with time interval t̂a, otherwise with t̂b.
The detail of the new strategy is shown in the following
sections.

4 Themodeling phase
Normally, the research objects of our paper are deployed
on the highway. The existence of the Markov property
in the scenario of highway has been validated in
[23–25]. Since the beaconing results are directly related
to the presences of the passing-by vehicles, we can model
the traditional beaconing procedure as a continuous-time
Markov process. We define the state space as X = {x1, x2},

with x1 = 0 and x2 = 1 indicating that the beaconing
results are 0 and 1. The state transition probability matrix

is defined as P(t) =
(
P00(t) P01(t)
P10(t) P11(t)

)
, where Pij(t) =

P(Rs+t = j|Rs = i), i, j ∈ {0, 1}.

4.1 The state transition probabilities when the beaconing
period is t0

As shown in Fig. 3, we define M as the number of the
beaconing periods in the modeling phase. We define R =
{R1,R2, · · · ,RM} with Rm ∈ X for ∀m ∈ {1, · · · ,M} as
the beaconing results. After theM beaconing periods, the
roadside infrastructure can get the beaconing result sam-
ples denoted as r1, r2, · · · , rM. Based on these samples,
we can estimate the state transition probabilities of the
Markov model. The state transition probability matrix is

denoted as P(t0) =
(
P00(t0) P01(t0)
P10(t0) P11(t0)

)
, where Pij(t0) =

P(Rs+t0 = j|Rs = i), i, j ∈ {0, 1}, s = {1t0, 2t0, · · · , (M −
1)t0}. Since it can be understood that the discrete-time
Markov chain is the discretization of the continuous-time
Markov chain, when the time slot is very small, they
are identical in essence. According to this property, we
use the maximum likelihood estimation method that is
used in the discrete-time Markov chain to estimate tran-
sition probability. The maximum likelihood estimation is
consistent and asymptotically unbiased. The counts of
the occurrence of four different transition types such as
(rk , rk+1) = (0, 0), (0, 1), (1, 0), (1, 1) are defined as n00,
n01, n10, and n11, k = {1, 2, · · · ,M − 1}. The likelihood
function is given by

Fig. 3 The beaconing process in our new energy-efficient data dissemination strategy
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Fig. 4 State transition rate of the Markov process

L(P(t0)) = P(R;P(t0))

= P
(M−1∏

k=1
P(R(k+1)t0 = rk+1 | Rkt0 = rk ;A

)
= P

(
R1 = r1;P(t0)) · (P00(t0)n00 · P01(t0)n01
·P10(t0)n10 · P11(t0)n11

)
.

(1)

By solving

⎧⎪⎪⎨⎪⎪⎩
∂L(P(t0))/∂P00(t0) = 0
∂L(P(t0))/∂P01(t0) = 0
∂L(P(t0))/∂P10(t0) = 0
∂L(P(t0))/∂P11(t0) = 0,

(2)

the maximum likelihood estimators ˆP00(t0), ˆP01(t0),ˆP10(t0), and ˆP11(t0) can be obtained as follows:⎧⎪⎪⎨⎪⎪⎩
ˆP00(t0) = n00/(n00 + n01)
ˆP01(t0) = n01/(n00 + n01)
ˆP10(t0) = n10/(n10 + n11)
ˆP11(t0) = n11/(n10 + n11).

(3)

Then, the estimation process of the state transition
probabilities has been done.

4.2 The duration of the modeling phase
As described above, if we have the samples, we can make
the estimation. It is obvious that the more samples we get,
the more accurate the estimation is. An analysis of how
many samples are needed to satisfy the desired accuracy
is presented in this subsection.
The central limit theorem is utilized in our analysis.

Since ˆP00(t0) = 1 − ˆP01(t0), ˆP11(t0) = 1 − ˆP10(t0), onlyˆP01(t0) and ˆP10(t0)will be discussed in this subsection.We
discuss ˆP01(t0) first. Assuming among M samples there
areM0 ones whose values are 0, then we have

M0 = M ·
(
1 − P01(t0)

P01(t0) + P10(t0)

)
as M → ∞, (4)

where P01(t0)
P01(t0)+P10(t0) represents the probability that the

beaconing result is 1. We define

Ck =
{

0 rk = 0, rk+1 = 0
1 rk = 0, rk+1 = 1 , (k = 1, · · · ,M0). (5)

{Ck} are independent and identically distributed vari-
ables. The mean value of {Ck} is P01(t0), and the variance
is P01(t0) − P01(t0)2. From (3), ˆP01(t0) can be expressed as

ˆP01(t0) = n01/(n00 + n01) = 1
M0

M0∑
k=1

Ck . (6)

We demand that the relative error | ˆP01(t0) − P01(t0)| of
an estimator should be below a relative estimation error
θ with the corresponding confidence probability α. In
mathematical terms, we request

P
(∣∣∣∣∣ ˆP01(t0) − P01(t0)

P01(t0)

∣∣∣∣∣ < θ

)
≥ α, (7)

where θ and α are inputs to describe the desired accu-
racy in the estimation. If (7) is fulfilled, the estimation
achieves the desired accuracy. Combining (4) and (7),
since P01(t0) ≥ 0, we have following equations:

P
(∣∣∣∣∣ ˆP01(t0) − P01(t0)

P01(t0)

∣∣∣∣∣ < θ

)

=P
(∣∣∣∣∣ 1

M0

M0∑
k=1

Ck − P01(t0)

∣∣∣∣∣ < θP01(t0)
)

=P

⎛⎜⎜⎜⎝
∣∣∣∣∣∣∣∣∣

M0∑
k=1

Ck − M0P01(t0)

√
M0 ·

√
P01(t0) − P01(t0)2

·
√
P01(t0) − P01(t0)2√

M0

∣∣∣∣∣∣∣∣∣ < θP01(t0)

⎞⎟⎟⎟⎠

=P

⎛⎜⎜⎜⎝
∣∣∣∣∣∣∣∣∣

M0∑
k=1

Ck − M0P01(t0)

√
M0 ·

√
P01(t0) − P01(t0)2

∣∣∣∣∣∣∣∣∣ < θ

√
M0√
1

P01(t0) − 1

⎞⎟⎟⎟⎠

=P

⎛⎜⎜⎜⎝
∣∣∣∣∣∣∣∣∣

M0∑
k=1

Ck − M0P01(t0)

√
M0 ·

√
P01(t0) − P01(t0)2

∣∣∣∣∣∣∣∣∣ < θ

√
M ·

(
1 − P01(t0)

P01(t0)+P10(t0)

)
√

1
P01(t0) − 1

⎞⎟⎟⎟⎠ .

(8)

Based on the central limit theorem, we have

Fig. 5 The case when the initial beaconing result is 0
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Table 2 The relationship between ETa(ta) and ta

ETa(ta) 0.5 1.0 1.5 2.0 2.5 3.0

ta 0.28 0.59 0.91 1.23 1.49 1.82

M0∑
k=1

Ck − M0P01(t0)

√
M0 ·

√
P01(t0) − P01(t0)2

→ N(0, 1) as M0 → ∞. (9)

We denote �(•) as the standard normal cumulative
distribution function. Then, we have

2�

⎛⎜⎜⎝θ

√
M ·

(
1 − P01(t0)

P01(t0)+P10(t0)

)
√

1
P01(t0) − 1

⎞⎟⎟⎠ − 1 ≥ α. (10)

In (10),M > 0, 0 ≤ P01(t0) ≤ 1 and 0 ≤ P10(t0) ≤ 1.We
denoteMa

min as theminimum required number of the bea-
coning result samples for ˆP01(t0). For any state transition
probability values,Ma can be expressed as follows:

Ma
min =

(
�−1( 1+α

2 )
)2

θ2
(1 − P01(t0))

(
1

P01(t0)
+ 1

P10(t0)

)
. (11)

For ˆP10(t0), the analysis process is the same. The mini-
mum required number of the beaconing result samples for
ˆP01(t0) is denoted asMb

min. We have

Mb
min =

(
�−1 ( 1+α

2
))2

θ2
(1 − P10(t0))

(
1

P01(t0)
+ 1

P10(t0)

)
. (12)

Therefore, when the desired accuracy α and θ are given,
we have the following equations:

Mmin = max
{
Ma

min,M
b
min

}
, (13)

whereMmin is denoted as the minimum required number
of the beaconing result samples for the estimation.
Actually, since we do not know the values of P01(t0)

and P10(t0) before we start the modeling phase, we cannot
calculate the required number of the samples. To tackle
this problem, we have the following processes. At the

beginning of the modeling phase, we send Mdefault bea-
con packets firstly. The value ofMdefault is analyzed in the
later section. According to the Mdefault beaconing result
samples, we can calculate the P01(t0) and P10(t0). Then,
we can get the Mmin. If Mmin ≤ Mdefault, it means the
estimation of the state transition probabilities reaches the
desired accuracy, and we can stop the modeling phase.
If not, the periodical beaconing continues. We denote
Mactual as the actual number of the beacon packets. After
each of the continuous beaconing processes, we recal-
culate the Mmin and compare it with the Mactual. Until
Mactual ≥ Mmin, we stop the periodical beaconing and
start the applying phase. The total beaconing times of the
modeling phaseMtotal is equal to the currentMactual. The
total duration of the modeling phase is expressed as

Tmodeling = t0Mtotal. (14)

Through the above analyses, we can summarize the
following proposition:

Proposition 1. After acquiring a certain number of sam-
ples, the estimation of the state transition probabilities for
the Markov process can achieve a desired accuracy.

5 The applying phase
After obtaining the state transition probabilities when the
beaconing period is t0, we can calculate the system param-
eters of the Markov process. Then, we can obtain the
optimal beaconing interval and apply it in the applying
phase.

5.1 The state transition probabilities in the applying
phase

We define the state transition rate matrix of the Markov
process as

Q =
(−λ λ

μ −μ

)
, (15)

where λ and μ are the arrival rate and the departure rate
shown in Fig. 4. The state transition probabilities can be
derived from the matrix Q. We have

Fig. 6 The case when the initial beaconing result is 1
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Table 3 The relationship between ETa(tb), ta , and tb

ETb(tb) 0.5 1.0 1.5 2.0 2.5 3.0

ta 0.28 0.59 0.91 1.23 1.49 1.82

tb 0.23 0.49 0.78 1.11 1.30 1.57

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P00(t) = μ

λ+μ
+ λ

λ+μ
e−(λ+μ)t

P01(t) = λ
λ+μ

− λ
λ+μ

e−(λ+μ)t

P10(t) = μ
λ+μ

− μ
λ+μ

e−(λ+μ)t

P11(t) = λ
λ+μ

+ μ
λ+μ

e−(λ+μ)t

. (16)

In the modeling phase, we have obtained the estimation
results ˆP00(t0), ˆP01(t0), ˆP10(t0), and ˆP11(t0). Combining
with the beaconing period t0, we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ =

( ˆP01(t0)
)
log

(
1

1− ˆP01(t0)− ˆP10(t0)

)
( ˆP01(t0)+ ˆP10(t0)

)
t0

μ =
( ˆP10(t0)

)
log

(
1

1− ˆP01(t0)− ˆP10(t0)

)
( ˆP01(t0)+ ˆP10(t0))t0

. (17)

According to (16) and (17), we can calculate the state
transition probabilities in any value of t.

5.2 The optimal beaconing interval when the initial
beaconing result is 0

Figure 5 illustrates the case when the initial beaconing
result is 0. We denoteNa as the beaconing times such that
the roadside infrastructure can discover one passing-by
vehicle in this case. Obviously, the first Na − 1 beacon-
ing results are 0, the final one is 1. The probability mass
function of Na can be represented as

P(Na = n) =
{
P01(ta)Pn−1

00 (ta) n ≥ 1
0 others . (18)

Table 4 Simulation parameters
Parameter Value

The length of a beaconing period t0 0.1 s

The confidence probability value α 99%

Relative estimation error θ 20%

Energy used for each beaconing ξ 10mJ

Average amount of data in each transmission process ω 300 kbit

Threshold δaE 90

Threshold δaR 5.5

Threshold δbE 16

Threshold δbR 600

The expectation of the required beaconing times
ENa(ta) is

ENa(ta) =
∞∑
n=1

nP01(ta)Pn−1
00 (ta)

= P01(ta)
1 + P200(ta) − 2P00(ta)

.
(19)

Therefore, the expectation of single-vehicle discovery
time ETa(ta) is

ETa(ta) = ta · ENa(ta). (20)

When ˆP01(t0) = 0.28 and ˆP10(t0) = 0.40, we have
Table 2.
All the calculated beaconing intervals are larger than

t0 = 0.1. The energy consumption decreases.

5.2.1 Themaximumbeaconing interval
We denote the average data transmission rate require-
ment as D. The average amount of data in each of data
transmission process is denoted as ω. Then, we have

D ≤ ω

ETa(ta)
. (21)

According to (18), (19), and (20), we can calculate the
maximum ta which is denoted as tmax

a .

5.2.2 The optimal beaconing interval
Generally, in the real system, we do not always need to
use the maximum beaconing interval. Under the con-
dition that there is an average data transmission rate
requirement, we need to calculate an optimal beacon-
ing interval that can balance the tradeoff between energy
consumption and the average data transmission rate. In
this paper, we introduce a satisfaction degree based on
the Sigmoid function to combine the decreased energy

Fig. 7 The relationship between the required number of samples and
the state transition probabilities
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consumption and the decreased data rate effectively. The
Sigmoid function has been widely employed to approx-
imate users’ satisfaction with respect to service quality
or resource allocation. The optimal beaconing interval
calculation process is shown as follows.
When the initial beaconing result is 0, the average

decreased energy consumption is denoted as fE(ta), the
average decreased data rate is denoted as fR(ta). The
energy used for each beaconing is denoted as ξ . Then, we
have

fE(ta) = ξ

(
1
t0

− 1
ta

)
(22)

fR(ta) = ω

(
1

ETa(t0)
− 1

ETa(ta)

)
. (23)

We normalize fE(ta) and fR(ta) to the range [0,1] to
linearly combine them. We denote f̂E(ta) as a mea-
sure of the degree of satisfaction for the decreased
energy consumption. We denote f̂R(ta) as a mea-
sure of the degree of satisfaction for the decreased
data rate. The normalization process is shown as
follows:

f̂E(ta) = 1
1 + exp(−( fE(ta) − δaE))

(24)

f̂R(ta) = − 1
1 + exp(−( fR(ta) − δaR))

. (25)

In the above, f̂E(ta) is modeled as a Sigmoid func-
tion of fE(ta). δaE is a predefined threshold reflecting

a

b

Fig. 8 The relationship between the number of samples and the value of maximum likelihood estimation. a Effects of ξ on gX . a Consider P01(t0). b
Consider P10(t0)
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Fig. 9 The relative estimation error of the maximum likelihood
estimation

the requirement of the decreased energy consumption,
below which the roadside infrastructure has very lim-
ited satisfaction and above which its satisfaction rapidly
reaches an asymptotic value. δaR is defined similarly.
In this paper, a roadside infrastructure can define the
thresholds δaE and δaR according to its own require-
ments. The effects of δaE and δaR are analyzed in the later
section.
It should be noticed that f̂E(ta) is a positive value-

decreasing function since the degree of satisfaction
decreases with the increase of the energy consumption.
On the other hand, f̂R(ta) is a positive value-increasing
function, which implies that higher single-vehicle dis-
covery rate leads to more satisfaction of the roadside
infrastructure.
By jointly considering f̂E(ta) and f̂R(ta), the objective

function fX is defined as

fX = f̂E(ta) + f̂R(ta). (26)

Fig. 10 The optimal interval when the initial beaconing result is 0

When the initial beaconing result is 0, by maximiz-
ing (26) and considering tmax

a , we can obtain the optimal
beaconing interval t̂a

t̂a = min{tmax
a , argmax fX}. (27)

5.3 The optimal beaconing interval when the initial
beaconing result is 1

Figure 6 illustrates the case when the initial beaconing
result is 1. We denoteNb as the beaconing times such that
the roadside infrastructure can discover one passing-by
vehicle in this case. Obviously, except the first and the final
beaconing results, the left results are 0. Considering that
the probability of Nb = 1, denoted as P(Nb = 1), is differ-
ent from other probabilities, the probability mass function
of Nb can be represented as

P(Nb = n) =
⎧⎨⎩
P11(tb) n = 1
P10(tb)P01(t̂a)Pn−2

00 (t̂a) n ≥ 2
0 others

, (28)

where t̂a is the optimal beaconing interval obtained in the
above subsection. The expectation of required beaconing
times ENb(tb) is

ENb(tb) = P11(tb) +
∞∑
n=2

nP10(tb)P01(ta)Pn−2
00 (ta)

= P11(tb) +
(
P10(tb)P01(ta)(2 − P00(ta))
1 + P200(ta) − 2P00(ta)

)
.

(29)

Therefore, the expectation of single-vehicle discovery
time ETb(tb) is

ETb(tb) = tbP11(tb) +
∞∑
n=2

(tb + (n − 1)ta)P10(tb)P01(ta)Pn−2
00 (ta)

= tbP11(tb)

+ P10(tb)P01(ta)((tb − ta)(1 − P00(ta)) − P00(ta) + 2)
1 + P200(ta) − 2P00(ta)

.

(30)

When ˆP01(t0) = 0.28 and ˆP10(t0) = 0.40, we have
Table 3.
All the calculated beaconing intervals are larger than

t0 = 0.1. The energy consumption decreases.

5.3.1 Themaximumbeaconing interval
We denote the average data transmission rate require-
ment as D. The average amount of data in each of data
transmission process is denoted as ω. Then, we have

D ≤ ω

ETb(tb)
. (31)
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According to (18), (19), and (20), we can calculate the
maximum tb which is denoted as tmax

b .

5.3.2 The optimal beaconing interval
Similarly, based on the Sigmoid function, we can obtain
the optimal beaconing interval as follows. We denote
the average decreased energy consumption as gE(tb). The
average decreased data rate is denoted as gR(tb). Then, we
have

gE(tb) = ξ

(
ENb(t0)
ETb(t0)

− ENb(tb)
ETb(tb)

)
(32)

gR(tb) = ω

(
1

ETb(t0)
− 1

ETb(tb)

)
. (33)

When the initial beaconing result is 1, we denote ĝE(tb)
as the measure of the degree of satisfaction for the
decreased energy consumption, and we denote ĝE(tb) as
the Sigmoid function of fE(ta). δbE is a predefined threshold
reflecting the energy requirement, and δbR is a predefined
threshold reflecting the data rate requirement. We denote
gX as the objective function. Similar with the optimization
process in the above subsection, we have

ĝE(tb) = 1

1 + exp
(
−

(
gE(tb) − δbE

)) (34)

ĝR(tb) = − 1

1 + exp
(
−

(
gR(tb) − δbR

)) (35)

gX = ĝE(tb) + ĝR(tb). (36)

Then, we can obtain the optimal beaconing interval as t̂b

t̂b = min{tmax
b , argmax gX}. (37)

Through the above analyses, we can summarize the
following proposition:

Proposition 2. No matter the initial beaconing result
is 0 or 1, the optimal beaconing interval for the roadside
infrastructure can be obtained by exploiting the tradeoff
between the average energy consumption and the single-
vehicle discovery rate.

5.4 Restarting the modeling process
Actually, the state transition probabilities are not con-
stants.When they vary, the beaconing intervals previously
calculated are no longer effective in the model. Some-
times, keep using such intervals could lead to a sharp
decrease on single-vehicle discover rate. Thus, we need to
restart the modeling phase to update the beaconing inter-
vals after a certain period. Generally, there are two modes
in real application, the first mode is to restart the mod-
eling phase perodically. This mode is easy to implement
by presetting a remodeling clock. The other mode is to
restart the modeling phase on demand. We compare the
expected single-vehicle discovery rate with several recent
observed rates. If the difference is beyond a threshold and
lasts for a particular length of time, we restart the mod-
eling phase. This mode can better adapt to variability in
the model but also holds a higher computational complex-
ity. In this paper, we do not specify which mode we apply.
Research onmode selection and parameter determination

Fig. 11 The optimal interval when the initial beaconing result is 1
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is not our focus in this paper. We leave it to the future
work.

6 Optimal beaconing interval in the data
dissemination strategy

In this paper, we design an energy-efficient data dissemi-
nation strategy for roadside infrastructures by optimizing
the beaconing interval. The details of the two phase of
the new data dissemination strategy are analyzed in the
above sections. In this section, we summarize the whole
beaconing interval optimization process in Algorithm 1.

7 Numerical analysis
The numerical results of the energy-efficient data dissem-
ination strategy are presented in this section. Firstly, we
study the performance of the maximum likelihood esti-
mation of the state transition probabilities. Secondly, a
specific case is given to show how to choose the optimal

Algorithm 1: Beaconing Interval Optimization
Process
Input: N1, t0, α, θ , ξ , ω, δaE , δ

a
R, δbE , δ

b
R

1 Send N1 beacon packets with period t0;
2 Get N1 beaconing results, Rfinal is equal to the final
beaconing result;

3 Calculate p̂01(t0), p̂10(t0) by (3), and calculateMmin by
(13);

4 Mfinal = N1;
whileMmin < Mactual do

5 Send one beacon packet with period t0;
6 Renew Rfinal;
7 Recalculate p̂01(t0), p̂10(t0) by (3), and recalculate

Mmin by (13);
8 Mactual = Mactual + 1;
end

9 Calculate t̂a, t̂b by (27) and (37);
10 H = 0;
while H = 0 do

11 if Rfinal = 0 then
12 Send the next beacon packet with time

interval t̂a;
end

13 else
14 Send the next beacon packet with time

interval t̂b;
end

15 ifMeet the criteria of restarting the modeling
phase then

16 H=1;
end

end
17 Restart the algorithm.

intervals by maximizing the objective functions. Finally,
we extensively investigate the effects of the system param-
eters (denoted by ξ , ω, δaE , δaR, δbE , δbR) on the optimal
beaconing intervals.

7.1 The performance of the maximum likelihood
estimation

In this subsection, we investigate the accuracy of the
maximum likelihood estimation. In Fig. 7, we show the
relationship between the required number of samples and
the state transition probabilities (P01(t0),P10(t0)) with the
given relative estimation error θ and the confidence prob-
ability value α as Table 4. From this figure, we observe that
when P01(t0) or P10(t0) decreases, the required number of
samples increases.
In Fig. 8a, b, we study the relationship between the

number of samples and the value of maximum like-
lihood estimation. Each point in the figures indicates
the value of an estimation. We mark the actual state
transition probabilities on the figures. In the figures,
we can find that, in the cases of (P01(t0),P10(t0)) =
(0.28, 0.40), (0.02, 0.10), (0.11, 0.81), the estimates can
approach to the actual state transition probabilities with
the number of samples increased.
Figure 9 shows the relative estimation error of the max-

imum likelihood estimation. The theoretical maximum
relative estimation error and the actual relative estimation
error are given in this figure. Similar with the results of
Fig. 8a, b, we can find that the relative estimation error
decreases with the increase of the number of samples. On
the other hand, it is notable that the actual relative esti-
mation error is always smaller than the theoretical value.
This proves the validity of our method if calculating the
minimum required number of samples.

7.2 A specific case
With the parameters in Table 4, ˆP01(t0) = 0.28 and
ˆP10(t0) = 0.40, a specific case is given to show how to

choose the optimal intervals by maximizing the objec-
tive functions. Figure 10 corresponds to that the initial
beaconing result is 0. In Fig. 10, we observe that f̂E(ta)
increases with ta while f̂R(ta) decreases with ta. The rea-
son is that with the increase of the beaconing interval
ta, the average decreased energy gets larger and also the
decreased data rate becomes larger, thus leading to a
higher satisfaction on energy consumption and a higher
dissatisfaction on data rate. By carefully balancing the
decreased energy consumption and the decreased data
rate, the optimal beaconing interval can be found. Figure
11 corresponds to that the initial beaconing result is 1.
The increase of ĝE(tb) and the decrease of ĝR(tb) can
be explained similarly as in Fig. 10. Another important
observation is that when the initial beaconing results are
different, the optimal values are different. Particularly,
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a

b

c

Fig. 12 Effect of the system parameters when initially the state is 0. a
Effects of ξ on fX . b Effects of ω on fX . c Effects of δaE , δ

a
R on t̂a

when the maximum value of fX is 0.5578, the optimal bea-
coning interval t̂a is 2 s; while when the maximum value of
gX is 0.8618, the optimal beaconing interval t̂b is 2.4 s.

Fig. 13 Effect of the system parameters when initially the state is 0.
a Effects of ξ on gX . b Effects of ω on gX . c Effects of δbE , δ

b
R on t̂b

7.3 Investigation on the effect of system parameters
In this subsection, we discuss the effect of parameters.
Besides the parameters we discussed, the other parame-
ters are set according to Table 2. Figure 12a–c illustrates
the simulation results when the initial beaconing result
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is 0. Figure 12a shows the possible region of fX when
ω = 300 kbit and ξ changes from 8.5 to 12mJ. Figure 12b
illustrates the influence of ω on the objective function fX
when ξ = 10mJ. Since ξ affects the decreased energy con-
sumption fE(ta), and ω is related to the decreased data
rate fR(ta), the value of fX is affected by them. δaE and
δaR are the thresholds when the initial beaconing result
is 0. δaE is a predefined threshold reflecting the energy
requirement, and δaR is a predefined threshold reflecting
the data rate requirement. Figure 12b shows the relation-
ship between δaE , δaR, and t̂a. By adaptively adjusting the
threshold δaE and δaR, the roadside infrastructure can sat-
isfy its various requirements. Specifically, if the roadside
infrastructure prefers to work in an energy-saving mode,
it can choose a long beaconing interval so as to save as
much energy as possible. As shown in Fig. 12c, for a cer-
tain δaE , the optimal beaconing interval t̂a increases with
the increase of δaR. On the contrary, if the roadside infras-
tructure wants to disseminate more data, it can send the
beacon packets more frequently. Figure 13a–c illustrates
the simulation results when the initial beaconing result is
1. The investigation is similar.

8 Conclusions
In this paper, we propose an energy-efficient data
dissemination strategy for roadside infrastructure in
VCPS. We model the beaconing procedure in the data
dissemination strategy as aMarkovmodel.With obtaining
the relationship between the beaconing interval and the
expectation of the single-vehicle discovery time, we can
calculate the maximum beaconing interval. By using the
Sigmoid function, we can obtain the optimal beaconing
interval to based on the satisfaction degree. The impact
of the system parameters on the data dissemination strat-
egy is investigated via extensive simulation study. Our
future work involves extensive empirical investigations
and analytical studies of the proposed approach.
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