
Lu et al. EURASIP Journal onWireless Communications and
Networking (2016) 2016:152
DOI 10.1186/s13638-016-0651-z

RESEARCH Open Access

A genetic algorithm-based job scheduling
model for big data analytics
Qinghua Lu*, Shanshan Li, Weishan Zhang and Lei Zhang

Abstract

Big data analytics (BDA) applications are a new category of software applications that process large amounts of data
using scalable parallel processing infrastructure to obtain hidden value. Hadoop is the most mature open-source big
data analytics framework, which implements the MapReduce programming model to process big data with
MapReduce jobs. Big data analytics jobs are often continuous and not mutually separated. The existing work mainly
focuses on executing jobs in sequence, which are often inefficient and consume high energy. In this paper, we
propose a genetic algorithm-based job scheduling model for big data analytics applications to improve the efficiency
of big data analytics. To implement the job scheduling model, we leverage an estimation module to predict the
performance of clusters when executing analytics jobs. We have evaluated the proposed job scheduling model in
terms of feasibility and accuracy.

Keywords: Big data, Hadoop, MapReduce, Job scheduling, Genetic algorithm

1 Introduction
Big data analytics (BDA) applications are a new cate-
gory of software applications that process large amounts
of data using scalable parallel processing infrastructure
to obtain hidden value. Hadoop [1] is the most mature
open-source big data analytics framework, which imple-
ments the MapReduce programming model [2] proposed
by Google in 2004 to process big data. Scalability is the
most important feature of Hadoop, mainly because it can
easily add compute nodes in the original cluster to analyze
big data.
The performance of big data analytics application is

related to the characteristics of jobs and the configuration
of clusters, which have a direct impact on performance of
big data analytics applications. When there are multiple
jobs that need to be executed with diverse cluster con-
figurations, the solution space of job scheduling is huge
and manual job scheduling is inefficient and can hardly
achieve the best performance.
Genetic algorithms (GAs) [3] are used to obtain opti-

mized solutions from a number of candidates. GAs are
inspired by an evolutionary theory: weak and unit species

*Correspondence: dr.qinghua.lu@gmail.com
College of Computer and Communication Engineering, China University of
Petroleum, Qingdao, China

are faced with extinction by natural selection and the
strong ones have greater opportunity to pass their genes
to future generations via reproduction [4]. Compared with
other classic optimization methods, GAs have its specific
advantages in terms of its broad applicability, ease of use,
and global perspective [5]. GAs are particularly useful to
one-objective and multiple-objective optimization prob-
lems [6] that make one- or multi-objective attainment to
the optimum.
The contribution of this work is mainly twofold. First,

we propose an estimation module to predict the perfor-
mance of Hadoop clusters when executing different big
data analytics jobs, which can be used by GAs. Then,
with the effective information which the estimation mod-
ule provides, we present a genetic algorithm-based job
scheduling model for geo-distributed data.
We evaluate the proposed solution using the data cen-

ters and cluster nodes from the Amazon EC2 [7] platform.
The experiment results show the proposed job scheduling
model is effective and accurate.
The remainder of the paper is organized as follows:

Section 2 describes the five basic stages of MapRe-
duce data processing that can be utilized in the cal-
culation of estimation module. Section 3 presents the
genetic algorithm-based job scheduling model. Section 4
details the performance estimation module, which is used

© 2016 Lu et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-016-0651-z-x&domain=pdf
mailto: dr.qinghua.lu@gmail.com
http://creativecommons.org/licenses/by/4.0/

Lu et al. EURASIP Journal onWireless Communications and Networking (2016) 2016:152 Page 2 of 9

by the algorithm for the calculation of time objective.
Section 5 implements and evaluates the genetic algorithm.
Section 6 covers the related work. Section 7 concludes the
paper.

2 Related work
There have been numerous works devoted to Hadoop’s
performance prediction. Berlińska and Drozdowski [8]
propose a mathematical model of MapReduce and ana-
lyze MapReduce distributed computations as a divisible
load scheduling problem. However, they do not consider
the system constraints. There is also some work on opti-
mizing MapReduce [9, 10]. Zaharia et al. [10] proposed
a prediction model for sub-tasks of Hadoop job, rather
than the entire job. Xu et al. [11] extracted character-
istic values related to Hadoop performance and utilized
machine learningmethods to find the optimal value, with-
out building performance models. Han et al. [12] pro-
posed a Hadoop performance predictionmodel. However,
it does not consider the data preparation phase of this
thesis.
There are also some GA-based approaches proposed

in job scheduling. Krishan Veer and Zahid [13] presents
a design and eventual analysis of a scheduling strat-
egy using GA that schedules the job with the objec-
tive of minimizing the turnaround time of the job. The
evaluation is simplified due to the limitations. In [14],
the application of meta-heuristic for cloud task schedul-
ing on Hadoop is investigated. A scheduling algorithm
using execution time, order of task arrival, and loca-
tion of data (i.e., assign task to the node which con-
tains the required data) to determine the best execution
schedule is presented. But the performance prediction
model is unintelligible, and the cost is not taken in
consideration.

3 Background
Hadoop consists of the MapReduce algorithm and
the Hadoop Distributed File System (HDFS) [15]. The
Hadoop workflow includes five phases, which is illus-
trated in Fig. 1.

• Prepare. The source data in the local disk is uploaded
to HDFS in this phase. According to the predefined
partition size of the data segmentation, source data
are segmented in blocks first and then stored a copy
to the data node in the pipeline way according to the
network topology distance.

• Map. Each mapper reads data blocks from HDFS and
generates key-value pair < k1, v1 > of the input data.
Then, it executes a user-defined map method which
generates intermediate data < k2, v2 >.

• Copy. It is also called shuffle. The intermediate data
from the mapper nodes is passed to the appropriate

reducer based on the key. The process is from the
completion of the first map wave to all intermediate
data mapper outputs having been transferred to the
reducer.

• Sort. This stage occurs before the reduce phase. The
values of the output data from the map are sorted by
the sort algorithm in accordance with the different
keys and output the key-value pairs < k2, list(v2) >

for the reduce phase. All the values are sorted in
list(v2).

• Reduce. In this phase, the user-defined reduce
method are executed to generate the key-value pairs
< k3, v3 > as the final result.

This paper utilizes the performance module for the
case of this paper to predict Hadoop data processing
performance including the abovementioned five phases.
After the time consumption characteristics have been pre-
dicted, we can infer the cost of big data processing jobs,
which depends on the characteristics of time consump-
tion.

4 Design of the genetic algorithm-based job
schedulingmodel

4.1 Overall design of the GA-based approach
The working flow of the GA-based decision-making for
job scheduling is shown in Fig. 2, and the overall decision-
making process is as follows. First, the estimation module
is used to model the clusters and jobs. Then, some simula-
tions are conducted to collect job execution information,
such as the time and cost array which shows all the time
and cost taken by each job run on all clusters. After that,
the time and cost information is used in certain frame-
work where GAs give optimized solutions for the job
scheduling schema.
For big data, we choose a certain cluster deployment

way to process them. However, different processing jobs
do not always have the same performance with the same
cluster configuration, due to the job characteristics and
one job also cannot obtain the consistent result with
different clusters because of the cluster or Hadoop char-
acteristics.
When simultaneously assigning multiple jobs to pro-

cess data in one data center, there are many kinds of
optional cluster configuration circumstances for each
job, which can bring about a large number of job
scheduling schemas. So choosing the one with best
performance among those jobs scheduling schema is
another major issue to be addressed in this paper.
In order to get optimized solutions in job schedul-
ing decision, we use the genetic algorithm to choose
solutions which have the minimal finishing time and
cost. These are the objectives of the job scheduling
problems.

Lu et al. EURASIP Journal onWireless Communications and Networking (2016) 2016:152 Page 3 of 9

Fig. 1 Traditional MapReduce workflow

We give a general mathematical description of the prob-
lem and then create the appropriate objective optimiza-
tion model based on genetic algorithms: take the data
processing in a data center, for example, and assume that
a data center has N optional clusters and M jobs to be
executed. We use an integer vector to represent the ulti-
mate job scheduling scheme, Si indicates that the job i is
assigned to the cluster Si, where Si ∈ [0,M]. So far, we
have achieved getting the job scheduling scheme which
have the shortest overall execution time by genetic algo-
rithm. The overall execution time and cost refers to the
time it consumed when all jobs complete the execution.

Ti =
∑M

j=0
STij × E(i, j) (1)

Ci =
∑M

j=0
SCij × E(i, j) (2)

Here, we utilize Eqs. (18) and (19) to respectively
represent the execution time and cost of all jobs assigned
to one cluster, which are the objectives we considered in
genetic algorithm. In order to facilitate the calculation of
the overall execution time of job scheduling scheme, we
add E(i, j) to indicate whether job i is assigned to the clus-
ter j. The explanations of the symbols in the two equations
are described one by one as follows:

1) i represents the sequence number of a job with the
scope of [0,N].

2) j ∈ [0,M] represents the sequence number of a
cluster.

3) STij in Eq. (18) is the time a job consumes when
running in the cluster j. The calculation of it will be
achieved by performance estimation module in the
next section.

Fig. 2 Flow diagram of the decision-making for job scheduling

Lu et al. EURASIP Journal onWireless Communications and Networking (2016) 2016:152 Page 4 of 9

4) SCij = Cij × STij ×Nclus in Eq. (19) is to calculate the
cost of running a job in the cluster j , in which Cij
represents the cost of running a certain node per
second and Nclus is the number of nodes in cluster j .

5) When job i is assigned to cluster j , E(i, j) = 1;
otherwise E(i, j) = 0 .

A chromosome corresponds to a unique solution in the
solution space. GAs can typically make use of Booleans,
real numbers, and integers to encode a chromosome
[9]. The representation of chromosome in our case is
using integer (starting from 0) sharing the idea of [10].
That is to say, we are using an integer vector V =
[V0,V1,�,Vi,�,Vp−1] (where p is the number of decision
variables, and in our case, it is 12: the number of jobs) to
represent a solution which is a natural number and acts
as a pointer to the sequence of the cluster to which the
job is assigned to execute. For example, a chromosome
[0, 6, 2, 8, 2, 4, 5, 9, 6, 1, 3, 7] represents that a solution
chooses the first cluster whose sequence number is 0 to
execute job 0 and chooses the eighth cluster for job 9, the
eleventh cluster as the processing cluster of the third job,
and so on. Based on the chosen allocation strategies, the
GAs then decide its fitness using the objective Eqs. (1) and
(2) introduced.

5 Performance estimationmodule of job
execution

5.1 Assumption
To achieve the genetic algorithm for job scheduling prob-
lem, we need to input the source data of the two objec-
tives: time and cost array. In this paper, we propose a
performance estimation module which can predict the
execution time and cost of data processing jobs, according
to different characteristics. The papermakes the following
assumptions for simplification:

• About the reduce wave, we use recommendations in
[16] and assumes that the maximum number of
reduce that can be executed simultaneously is 1.

• We do not support speculative execution. That
means, we will not repeat map or reduce execution
and select the faster as the final result, killing the
slower one, for it proved to have little contribution to
improve the overall execution time.

5.2 Total execution time overview
In this paper, performance-related parameters are divided
into four categories: cluster, hadoop&HDFS, application,
and obtained by module. The symbol and explanation of
all parameters are listed in Table 1.
The overall data processing time contains two parts:

one part is the preparation time of the source data and
the other is the time to perform the data processing job.

Table 1 Symbol and explanation of all parameters

Type Symbol Explanation

Cluster DCi the ith data center i ∈ [1,Ndcs]

Bii Bandwidth between nodes in DCi

Vdw Speed of writing data to the local disk

Hadoop&HDFS Pi Partition size

Nsm Number of simultaneous maps executed
in one node

Ncr Number of simultaneous reduces executed
in one node

Ncp_threads Number of i/o threads copy to one reduce
node

Vcp_thread Theoretical maximum copy speed of one
copy thread

Vreduce_rep Theoretical maximum output replication
speed of one copy thread

NSpaths Number of sort paths for copy

Nreps Number of replicas in HDFS

Sbuff Sort buffer size for copy

App DSi Input data size in the ith data center

Np Number of partitions

Nreduces Number of reduces

Mthruput Average map throughput of each node

Rthruput Average reduce throughput of each node

RIOmap Ratio of map output to input size

RIOreduce Ratio of reduce output to input size

Module Ttotal Total execution time

Tprepare Total execution time for raw data input into
HDFS

Tjob Total execution time for a job

Tmap Time for a map wave

Tcopy Time for a copy wave

Tsort Time for a sort phase

Treduce Time for a reduce phase

Trp Time for reduce processing

Tro Time for reduce output writing

Nmw Number of map waves

Equation (3) shows the overall time to process data by
clusters. The overall time for data processing in each data
center needs to be calculated, and the maximum of them
will be taken as the final result.

Ttotal = max(Tprepare + Tjob) (3)

1. Prepare time
We need to upload the data, including the replicas, from

the local disk distributed in multiple data centers to their

Lu et al. EURASIP Journal onWireless Communications and Networking (2016) 2016:152 Page 5 of 9

own HDFS (Eq. (4)) in this phase, where the bandwidth
between node in local cluster is Bii.

Tprepare = DSi × Nreps
Bii

(4)

2. Job time
(a) Map time
Map phase execution time can be calculated by Eq. (5),

where the average processing time of input data block
in each wave multiplied by the corresponding number of
wave is the map time of the ith data center. The average
throughput of the map is obtained from the average pro-
cessing time of running the job with the input data whose
block size is given. The wave number of each data center
is calculated by Eq. (6) and the number of the data blocks
divided is calculated by Eq. (7).

Tmap = Pi
Mthruput

× Nmw (5)

Nmw =
⎡
⎢⎢⎢
max

(
Nsm,

⌈
Np

Nnodes

⌉)
Nsm

⎤
⎥⎥⎥ (6)

Np = DSi × Nreps
Pi

(7)

(b) Copy time
This stage refers to the output data of the map copied to

reduce. Since we only consider the case of one local clus-
ter or different clusters in respective data center, it does
not involve the transfer of data to remote and we need
not consider the problem of bandwidth across the clus-
ter between different data centers. When output data is
copied to reduce, it often occurs that a plurality of thread
copy data to reduce at the same time. The theoretical max-
imum copy speed is the sum of all thread. But in reality,
copy speed is also limited by the local network bandwidth.
Therefore, the actual copy speed of one thread is calcu-
lated as Eq. (8). The entire local copy speed is Eq. (8)
multiplied by the number of thread (Eq. (9)). This paper
argues that all nodes of a cluster are in the same subnet;
thus, only the local copy speed and map output data size
will have an impact on the copy time (Eq. (10)).

VCopyThread =min

⎛
⎝ Bii

min
(
Nsr,

⌈
Nreduces
Nnodes

⌉)
× Ncp_threads

,Vcp_thread

)

(8)

VLocalCopy = VCopyThread × Nreduces × Ncp_threads (9)

Tcopy = DSi × Nreps × RIOmap
VLocalCopy

(10)

Table 2 The parameters of jobs

Jobi DSi (G) RIOmap RIOreduce

0 1 0.18 0.17

1 2 0.18 0.17

2 4 0.18 0.17

3 8 0.18 0.17

4 1 1.25 1.5

5 2 1.25 1.5

6 4 1.25 1.5

7 8 1.25 1.5

8 1 1 1

9 2 1 1

10 4 1 1

11 8 1 1

(c) Sort time
The time estimation of the sort stage is independent on

the network, which is shown in Eq. (11). Among them, the
calculation of the form is shown in Eq. (12).

Tsort =

⎧⎪⎪⎨
⎪⎪⎩

2×
⌈Nreduces

Nnodes

⌉
Vdw

× λNSpaths

(
DSi×Nreps×RIOmap

Nreduces∗Sbuff
)
,

DSi
Nreduces∗Sbuff

> 1
0, else

(11)

λF(n, b) =
(

1
2F(F − 1)

n2 + 3
2
n − F2

2(F − 1)

)
∗b (12)

(d) Reduce time
The output data of sort is the input of the reduce

phase. During this phase, data processing and writing to
HDFS are operated simultaneously; thus, we can take the

Table 3 The parameters of clusters

Clusi Nnodes Nreduces Pi (M)

0 2 2 64

1 2 2 128

2 4 2 64

3 4 2 128

4 4 4 64

5 4 4 128

6 8 4 64

7 8 4 128

8 8 8 64

9 8 8 128

Lu et al. EURASIP Journal onWireless Communications and Networking (2016) 2016:152 Page 6 of 9

Table 4 Other related parameters

Type Symbol Value

Cluster Vdw 50.96MB/s

Hadoop&HDFS Nsm 4

Nsr 2

Ncp_threads 30

Vcp_thread 10MB/s

Vreduce_rep 10MB/s

NSpths 10

Nreps 3

Sbuff 716

App Mthruput 1.18MB/s

Rthruput 15.47MB/s

maximum time of them and the final time of this stage
(Eq. (13)).

Treduce = max(Trp,Tro) (13)

Calculating the processing time of one reduce and then
multiplied by the number of reduces can get the overall
processing time of reduce (Eq. (14)). In this paper, it is
assumed that there is only one reduce wave. The circum-
stances we considered is transferring all source data to a
local data center to build a cluster or setting up clusters
simultaneously in respective data centers without trans-
ferring source data; therefore, the source data in these two
circumstances are different.

Trp = DSi × Nreps × RIOmap
Nreduces × Rthruput

×
⌈

Nreduces
Nnodes × Nsr

⌉
(14)

The duplication is set as 3 in HDFS, including the orig-
inal data set. In this paper, the remote cluster does not
exit and all nodes are in the same subnet, so it is not
time-consuming to transfer the copy to a remote cluster.
One copy will be written to the local hard disk, while the
remaining two copies will be stored in other nodes in the
local cluster. This process should be limited to the local
bandwidth. We choose the maximum time of the local
disk writing time and the local clusters writing time as the
reduce output writing time (Eq. (15)).

Tro = max
(
Trp_disk,Trp_local

)
(15)

The local disk writing time of a copy is equal to the aver-
age amount of data written to the local disk in each node
divided by the disk write speed (Eq. (16)). The disk write
speed is obtained by Bonnie++ [17], a tool for disk I/O
performance test.

Trp_disk = DSi × RIOmap × Nreps
Nnodes ∗ Vdw

(16)

Because of the assumption that one reduce only produce
a single output file and two copies of it will be copied to the
other two nodes in local cluster, the copy speed is limited
by the bandwidth of the subnet the cluster belongs to. We
utilize Eq. (17) to estimate the minimum store speed of
each reduce data copy in the local cluster.

Vrp_local =min
(
Vreduce_rep

,
Bii

min
(
Nsr,

⌈
Nreudces
Nnodes

⌉)
∗ (Nreps−1)

⎞
⎠ (17)

Table 5 Execution time

Time (s)
Clusi

0 1 2 3 4 5 6 7 8 9

Jobi

0 237.9 237.9 127.5 237.9 124.4 234.7 124.4 234.8 122.8 233.1

1 475.7 475.7 255.0 255.0 248.7 248.7 138.4 248.7 135.2 245.6

2 951.4 951.4 510.0 510.0 497.5 497.5 276.8 276.8 270.5 270.5

3 1902.8 1902.8 1020.1 1020.1 994.9 994.9 553.5 553.5 541.0 541.0

4 329.8 329.8 219.5 329.8 170.4 280.7 170.4 280.7 145.81 256.1

5 659.7 659.7 439.0 439.0 340.7 340.7 230.4 340.7 181.2 291.6

6 1319.3 1319.3 878.0 878.0 681.4 681.4 460.7 460.7 362.5 362.5

7 2638.7 2638.7 1755.9 1755.9 1362.8 1362.8 921.5 921.5 724.9 724.9

8 284.6 284.6 174.2 284.6 147.7 258.1 147.7 258.1 134.5 244.8

9 569.2 569.2 348.5 348.5 295.5 295.5 185.1 295.5 158.6 269.0

10 1138.3 1138.3 696.9 696.9 590.9 590.9 370.2 370.2 317.2 317.2

11 2276.6 2276.6 1393.9 1393.9 1181.8 1181.8 740.5 740.5 634.4 634.4

Lu et al. EURASIP Journal onWireless Communications and Networking (2016) 2016:152 Page 7 of 9

Table 6 Execution cost

Cost($)
Clusi

0 1 2 3 4 5 6 7 8 9

Jobi

0 0.04 0.04 0.05 0.09 0.05 0.09 0.09 0.18 0.09 0.18

1 0.09 0.09 0.10 0.10 0.09 0.09 0.10 0.19 0.10 0.19

2 0.18 0.18 0.19 0.19 0.19 0.19 0.21 0.21 0.20 0.20

3 0.36 0.36 0.39 0.39 0.38 0.38 0.42 0.42 0.41 0.41

4 0.06 0.06 0.08 0.12 0.06 0.11 0.13 0.21 0.11 0.19

5 0.12 0.12 0.17 0.17 0.13 0.13 0.17 0.26 0.14 0.22

6 0.25 0.25 0.33 0.33 0.26 0.26 0.35 0.35 0.27 0.27

7 0.50 0.50 0.66 0.66 0.51 0.51 0.70 0.70 0.55 0.55

8 0.05 0.05 0.07 0.11 0.06 0.10 0.11 0.20 0.10 0.18

9 0.11 0.11 0.13 0.13 0.11 0.11 0.14 0.22 0.12 0.20

10 0.22 0.22 0.26 0.26 0.22 0.22 0.28 0.28 0.24 0.24

11 0.43 0.43 0.53 0.53 0.45 0.45 0.56 0.56 0.48 0.48

The reduce output data size divided by Eq. (17) is the
maximum time of data copies to store in the local cluster
(Eq. (18)) .

Trp_local = DSi × RIOmap × RIOreduce
Nreduce

∗ 1
Vrp_local

(18)

The copy phase from the first wave completion of the
map results in the overlap between these two phases; thus,
the job execution time of one cluster in respective data
center is shown as Eq. (19).

Tjob =
{
Tmap + Tcopy

Nmw
+ Tsort + Treduce, Tmap > Tcopy

Tmap
Nmw

+ Tcopy + Tsort + Treduce, Tmap < Tcopy

(19)

6 Evaluation
6.1 Setting of the experiment
Suppose we have the following hypothetical scenario:
there are 12 data processing jobs and 10 clusters which
have specific configuration. This is considered as one of
the examples which is discussed in detail in this paper. We
utilize Amazon EC2 (Amazon Elastic Compute Cloud) as
a test platform. The types of the nodes in the experiment
are all m1.large which is one of the node types that AWS
supports and their configuration is the same to each other,
namely, 64-bit RHEL (short for Red Hat Enterprise Linux)
operating system, two core, 7.5-G memory, 2 420-G stor-
ages. The cost of each node is $0.34 per hour. The data
center is located in US East (Northern Virginia), and the
bandwidth we test using Netperf [18] is 282.4 MB/s.
The parameters of jobs and cluster configuration are

listed in Tables 2 and 3, respectively. Table 4 shows other
related parameters. As illustrated previously, we have 12

jobs and 10 clusters. For each job, it can be allocated to
any of the 10 clusters. So, there will be allocation schemes.
Our goal for job scheduling is to choose the best alloca-

tion scheme from all of the possible schemes using GAs.
Before making this decision, we utilize the performance
estimation module to predict the execution time and cost
which are the decision indicators in GAs. Then, we get a
two dimensional time and cost array which is shown in
Tables 5 and 6, respectively. From Tables 5 and 6, we can
see that different jobs running on the same clustermay not
have the same time and cost consumption. Also, same jobs
can take different times and costs to finish its execution in
different clusters.
In our implementation, we choose to use Java-based

GA frameworks. There are some popular implementa-
tions, such as JGap [19], ECJ [20], and JMetal [21].
When compared with JMetal’s counter-parts, the design
of JMetal has a good separation of concerns in terms
of its easiness for applying different GAs after a prob-
lem is abstracted. Therefore, JMetal is chosen as the
GA framework in our paper. In our evaluations, GA

Table 7 Parameters for NSGA-II

Symbol Value

Population size 50

Max evaluations 2000

Crossover operator Single-point crossover

Crossover probability 0.9

Mutation operator Bit-flip mutation

Mutation probability 1/number of variables

Selection operator Binary tournament2

Lu et al. EURASIP Journal onWireless Communications and Networking (2016) 2016:152 Page 8 of 9

Fig. 3 Comparison between real measurement and module prediction

Non-dominated Sorting Genetic Algorithm (NSGA-II) is
chosen as the concrete algorithm. Algorithm parame-
ters setting in our implementation includes the maximum
evaluations, the crossover probability, and the mutation
operator, as shown in Table 7. As choosing integer chro-
mosome, single-point crossover, bit-flip mutation, and
Binary tournament2 operators are selected drawing on
the experience of [22]. Reference [6] talks about how the
operators work to make a change to the chromosome in
GAs.

6.2 Results
In order to evaluate the effectiveness of the proposed
performance estimation module, we choose US East
(Northern Virginia) data center to set up real clusters
in Amazon EC2 platform and run some experimental
jobs and compare them to the results obtained from per-
formance estimation module (Fig. 3). By comparing the
results estimated and real results in Fig. 3, we can find
that our performance module estimates accurately the
data processing time in general. Bandwidth and resource
load may lead to delays in real world when compared with
predicted time performance, but this part of error can
be acceptable. Since the estimation of cost performance
depends on the times, so deduce the effectiveness of it
from the above conclusion.
Meanwhile, in order to compare the performance of

NSGA-II with other algorithms, we choose simple alloca-
tion method for comparison, which is a random allocation
policy: all jobs are assigned to a group of clusters ran-
domly. We verify and evaluate each job scheduling policy
derived by NSGA-II and simple allocation method. The
results are shown in Tables 8 and 9, respectively. From
these three tables, we can find that the scheme obtained
from GA-based approach takes 989.5 time units and $2.6

to finish all of 12 jobs’ execution while the other scheme
from a simple method takes 2638.7 time units and $3.10.
So, GA-based approach can do the optimized decision and
make the data processing have the fastest execution effi-
ciency and minimum cost. According to the GA-based
scheme, data processing jobs can be finished as fast as
possible with the optimized cost, and therefore, users can
have better experience and can be more satisfied.

7 Conclusions
Job scheduling is one of the most important issues in
big data analytics. In this paper, we propose a genetic
algorithm-based approach, which uses a performance
estimation module we put forward, for obtaining opti-
mized jobs scheduling scheme that have the optimized

Table 8 NSGA-II-based approach

Jobi Clusi Time Cost

0 1 237.9 0.04

1 1 475.7 0.09

2 2 510.0 0.19

3 7 553.5 0.42

4 0 329.8 0.06

5 0 659.7 0.12

6 4 681.4 0.26

7 8 724.9 0.06

8 4 147.7 0.55

9 5 295.5 0.11

10 5 590.9 0.22

11 9 634.4 0.48

Total 989.5 2.6

Lu et al. EURASIP Journal onWireless Communications and Networking (2016) 2016:152 Page 9 of 9

Table 9 Simple scheduling method

Jobi Clusi Time Cost

0 1 237.9 0.04

1 9 245.6 0.19

2 2 270.5 0.20

3 7 553.5 0.42

4 7 280.7 0.21

5 7 340.7 0.26

6 9 362.5 0.27

7 1 2638.7 0.25

8 7 258.1 0.20

9 7 295.5 0.22

10 6 370.2 0.28

11 6 740.5 0.56

Total 2638.7 3.10

time and cost consumption. The optimized solutions can
be used to enable effective scheduling strategies, and then
in the actual running, system can make use of the cho-
sen scheduling scheme to execute data processing jobs.
The whole process is evaluated and the results show that
our approach is feasible with acceptable performance and
accuracy. Due to the limitations in our performance esti-
mation module, currently, the evaluation is simplified and
in the future, the approach will be extended to be more
complete and precise.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This project is supported by the National Natural Science Foundation of China
(Grant No. 61402533), the Fundamental Research Funds for the Central
Universities (Grant No. 16CX02047A), and the Scientific Research Foundation
of China University of Petroleum (Grant No. Y1307021).

Received: 23 December 2015 Accepted: 5 June 2016

References
1. A Hadoop, Apache Software Foundation (2016).

http://hadoop.apache.org
2. J Dean, S Ghemawat, MapReduce: simplified data processing on large

clusters. Commun. ACM. 51(1), 107–113 (2008)
3. M Mitchell, An introduction to genetic algorithms. Journal of Computing

Sciences in Colleges. 20(1) (2004)
4. A Konak, DW Coit, AE Smith, Multi-objective optimization using genetic

algorithms: a tutorial. Reliab. Eng. Syst. Saf. 91(9), 992–1007 (2006)
5. K Deb, An introduction to genetic algorithms. Sadhana. 24(4–5), 293–315

(1999)
6. SM Thede, An introduction to genetic algorithms. J. Comput. Sci. Coll.

20(1), 115–123 (2004)
7. E Amazon, Amazon elastic compute cloud (amazon ec2). Amazon Elastic

Compute Cloud (Amazon EC2) (2015). https://aws.amazon.com/ec2/
8. J Berlińska, M Drozdowski, Scheduling divisible mapreduce

computations. J. Parallel Distrib. Comput. 71(3), 450–459 (2011)
9. T Nykiel, M Potamias, C Mishra, G Kollios, N Koudas, MRShare: sharing

across multiple queries in MapReduce. Proc. VLDB Endowment. 3(1–2),
494–505 (2010)

10. M Zaharia, A Konwinski, A Joseph, R Katz, I Stoica, in Proceedings of OSDI
201. Improving MapReduce performance in heterogeneous
environments, (2008), pp. 29–42

11. L Xu, in Parallel and Distributed Processing SymposiumWorkshops & PhD
Forum (IPDPSW), 2012 IEEE 26th International. MapReduce framework
optimization via performance modeling (Shanghai, China, 2012),
pp. 2506–2509

12. J Han, M Ishii, H Makino, in Computer Science and Information Technology
(CSIT), 2013 5th International Conference on. A Hadoop performance model
for multi-rack clusters, (Amman, Jordan, 2013), pp. 265–274

13. S Krishan Veer, R Zahid, in Computer Engineering and Applications (ICACEA),
2015 International Conference on Advances in. A GA based job scheduling
strategy for computational grid, (Ghaziabad, India, 2015), pp. 29–34

14. A Syed Hasan, R Kamran, in 2015 International Conference on Open Source
Systems & Technologies (ICOSST). Cloud task scheduling using nature
inspired meta-heuristic algorithm, vol 2 (IEEE, 2015), pp. 158–164

15. K Shvachko, H Kuang, S Radia, R Chansler, in 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST). The hadoop distributed file
system, (Nevada State, Molossia, 2010), pp. 1–10

16. T White, Hadoop: The definitive guide. (O’Reilly Media, April 2015)
17. Bonnie, Bonnie++ (2012). http://sourceforge.net/projects/bonnie/.

Accessed 19 July 2015
18. Netperf, Netperf (2012). http://www.netperf.org/netperf/.

Accessed 19 July 2015
19. DY Chen, TR Chuang, SC Tsai, JGAP: a Java-based graph algorithms

platform. Softw. Pract. Experience. 31(7), 615–635 (2001)
20. site, site (2015). https://cs.gmu.edu/~eclab/projects/ecj/.

Accessed 19 July 2015
21. JJ Durillo, AJ Nebro, jMetal: a Java framework for multi-objective

optimization. Adv. Eng. Softw. 42(10), 760–771 (2011)
22. W Zhang, KM Hansen, in Engineering of Complex Computer Systems, 2009

14th IEEE International Conference on, IEEE. An evaluation of the NSGA-II
and MOCell genetic algorithms for self-management planning in a
pervasive service middleware, (2009), pp. 192–201

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://hadoop.apache.org
https://aws.amazon.com/ec2/
http://sourceforge.net/projects/bonnie/
http://www.netperf.org/netperf/
https://cs.gmu.edu/~eclab/projects/ecj/

	Abstract
	Keywords

	Introduction
	Related work
	Background
	Design of the genetic algorithm-based job scheduling model
	Overall design of the GA-based approach

	Performance estimation module of job execution
	Assumption
	Total execution time overview

	Evaluation
	Setting of the experiment
	Results

	Conclusions
	Competing interests
	Acknowledgements
	References

