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Abstract

Owning to the high peak-to-average power ratio problem, the power efficiency of orthogonal-frequency-division-
multiplexing (OFDM) systems is usually low. It deteriorates in millimeter wave systems in which the design of an
efficient linear power amplifier is much more challenging. The linear-amplification-with-nonlinear-component (LINC)
technique can serve as a remedy, decomposing the input signal into two constant-envelop component signals
followed by high-efficient nonlinear amplifiers. However, the power combiner, a key component used to combine the
amplified signals, is difficult to implement. Combinerless LINC systems employ two transmit antennas such that two
component signals can be naturally combined at the receiver. Unfortunately, the performance of combinerless
LINC-OFDM systems is seriously degraded if difference, even small, exists between the two channels. The maximum
likelihood (ML) receiver can effectively solve the problem; however, its computational complexity is prohibitedly high.
We propose a coded combinerless LINC-OFDM system, including a convolutional encoder and a list Viterbi algorithm
(LVA) decoder, to solve the problem. The LVA can provide a small number of candidates for the ML detector,
dramatically reducing the required computational complexity. We also utilize an enhanced zero-forcing equalizer
such that the soft-demapping operation can be effectively conducted. Finally, we propose a simple iterative
interference cancellation scheme to further enhance the performance. Simulations show that the proposed
combinerless LINC-OFDM system can outperform the conventional OFDM while the consumed power is much lower.

Keywords: Linear-amplification-with-nonlinear-component (LINC), Orthogonal-frequency-division-multiplexing
(OFDM), Peak-to-average power ratio (PAPR), Maximum likelihood (ML), List Viterbi algorithm (LVA)

1 Introduction

As known, power amplifier (PA) is the most power-hungry
device in wireless transceivers. The PA efficiency heav-
ily depends on the peak-to-average power ratio (PAPR)
of the transmit signal. By allocating the modulated sym-
bols on orthogonal subcarriers, orthogonal-frequency-
division-multiplexing (OFDM) can have higher spectral
efficiency and lower equalization complexity than conven-
tional single-carrier systems [1]. For these reasons, OFDM
has been widely adopted in today’s wireless systems. How-
ever, combining of multiple modulated signals results in
high-variant signal amplitude, yielding the high PAPR
problem. A high PAPR signal requires a large PA power
back-off, resulting in low PA efficiency. Recently, millime-
ter wave (mmWave) communication has been considered
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as a promising technology for future fifth-generation (5G)
systems [2]. However, the PAPR problem will become
even worse in mmWave systems. Designing high-linearity
mmWave PAs remains a big challenge even with today’s
technology [3, 4].

In order to reduce the PAPR of the OFDM signal, some
baseband signal processing methods, like amplitude clip-
ping and filtering [5, 6], partial transmit sequence (PTS)
[7, 8], coding [9], and selected mapping (SLM) [10], have
been proposed. These methods can reduce the PAPR to
some extent with the price of higher processing com-
plexity or data redundancy. Another useful approach is
to modify the architecture of RF signal amplification
such that the linearity or the power efficiency can be
enhanced [11-16].

Conventional transmitters use Cartesian modulation to
form complex transmit signal. As a result, linear amplifi-
cation is required, yielding large back-off for high PAPR
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signal. Polar modulation, decomposing the complex trans-
mit signal into amplitude and phase signals, allows the
application of two different amplifications for the two sig-
nals. In the envelope-elimination-and-restoration (EER)
transmitter [12], the phase signal (constant-enveloped)
is amplified by a high-efficiency nonlinear PA and the
amplitude signal by a linear PA. Then, the amplified
amplitude signal is used to modulate the amplified phase
signal, yielding the original signal amplified by an equiva-
lent high-efficiency linear PA. Another polar transmission
technique is known as envelope tracking (ET) [13] in
which the amplitude signal is used to control the supply
voltage of a linear PA such that the PA can always be oper-
ated in the high-efficiency regions. With a different opera-
tion principle, the Doherty transmitter [14] combines two
equal-capacity PAs, referred to as carrier and peaking, in
the quarter-wavelength network. Only the carrier PA is
active when the amplitude of the signal is lower than the
half of the peak amplitude, and both PAs are active when
the signal amplitude is larger than the half of the peak
amplitude. In the above approaches, the transmit signal is
decomposed into two amplified by two PAs and there exist
various kinds of implementation issues. For example, sig-
nal bandwidth is expanded and the stringent timing align-
ment between two signals is difficult. Still, there is another
well-known approach referred to as linear-amplification-
with-nonlinear-component (LINC) technique [17] to be
described in the next paragraph.

In the LINC transmitter (also called as the outphasing
in [18]), the modulated signal is passed to a signal com-
ponent separator (SCS) [17, 19] and then decomposed to
two constant-envelope component signals. Since the two
component signals are both constant-enveloped, they can
be amplified by high-efficiency nonlinear PAs. After the
amplification, the two component signals are then com-
bined by a power combiner to obtain a linearly amplified
signal. Figure 1 shows the block diagram of a LINC sys-
tem. There are two main problems in the LINC system.
The first one is that the two signal paths cannot be per-
fectly balanced and the combined signal will be distorted.
Several methods for solving the PA imbalanced problem
were discussed in [20, 21]. The second problem is the

e
8,,(1) s g S, 1)
i
Fig. 1 Generic LINC architecture
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performance of the combiner. For good combining linear-
ity, the matched combiner is generally used. However, the
matched combiner will induce the severe power loss for
high PAPR signals. Simulation results in [22] show that
the power efficiency of the LINC transmitter with the
matched power combiner is similar to that of the con-
ventional transmitter without LINC. In [23], a multilevel
LINC architecture which can increase the efficiency of
the matched combiner was proposed. In [24], the Chireix
combiner was proposed. By adding the shunt resistors and
the transmission line coupler after both PAs, the power
efficiency can be improved [22, 24]. However, the linear-
ity of this design is degraded. This approach trades the
linearity for the power efficiency.

To solve the problems of the conventional LINC, a com-
binerless LINC-OFDM system (CL-LINC-OFDM) was
then developed [25]. With two closed-spaced antennas for
signal transmission, the use of the power combiner can
be avoided. Two component signals can be naturally com-
bined in the air and received at the destination. Simulation
results in [25] show that the efficiency of the combinerless
LINC system is about 6 dB higher than the LINC system
with the matched combiner. An experimental demonstra-
tion of the combinerless LINC system was also shown in
[26]. However, the performance of the CL-LINC-OFDM
system will be seriously affected if there is difference, even
small, between the channels that the two component sig-
nals propagate. This effect is critical but not considered
in [25]. To overcome, a space-time coded combinerless
LINC system was proposed in [27]. The price to pay for
this approach is that the transmission rate is reduced
by half. Yet, a beamforming outphasing system was pro-
posed in [28]. Still, the throughput will be affected when
the phase error of the beamforming is considered. In our
previous work [29], an enhanced equalization method is
proposed using the LINC property, but its performance
is still far away from the conventional OFDM system.
In [30] , several suboptimum ML detection methods for
the CL-LINC-OFDM were proposed, reducing the com-
putational complexity to some extent. It was shown that
with the ML detection, LINC-OFDM can have similar
performance as conventional OFDM. However, the com-
putational complexity is still far too high for real-world
applications.

In this paper, we propose a coded CL-LINC-OFDM
system to solve the problems in [30]. In the system, a con-
volutional channel encoder is introduced and a specially-
designed Viterbi (VA) algorithm, referred to as the list
VA (LVA) is applied at the receiver. The main idea is
that with LVA, the number of candidates considered in
the likelihood calculation is dramatically reduced and
the computational complexity of the ML detector can be
reduced to a realizable level. We also utilize the enhanced
equalization method in [29] such that better soft input
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for the LVA can be obtained. Finally, we propose a sim-
ple iterative interference cancellation (IC) method that
can further enhance the performance of the proposed CL-
LINC-OFDM system. Simulations show that the proposed
CL-LINC-OFDM system can outperform the conven-
tional OFDM while the consumed power is much lower.
The remainder of this paper is organized as follows. The
second section describes the system model, the prob-
lems of CL-LINC-OFDM systems, and existing solutions.
The third section describes the equalizer that we use. The
fourth section shows the proposed ML detection with the
LVA. The fifth section analyses the power efficiencies of
conventional OFDM and CL-LINC-OFDM systems. The
sixth section provides simulation results to evaluate the
performance of the proposed algorithms, and the seventh
section gives conclusions.

2 System model

Figure 2 shows the block diagram of the proposed
coded CL-LINC-OFDM system. In the figure, d =
[do,...,dN_l]T denotes a length-N bit sequence to be
transmitted with an OFDM symbol. With the channel
encoding and symbol mapping operations, d is transferred
to a frequency-domain OFDM symbol denoted as s =
[ s0,- ..,sM_l]T, where M is the number of subcarriers.
Then, s is passed through the inverse-discrete-Fourier-
transform (IDFT) operation, and the output is expressed
by s; =[s:0,...,5.m_1]7. Note that s; does not include
the cyclic prefix (CP). The SCS [19] decomposes s; into
two constant-envelope component symbols denoted as
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T
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2 Isz,0l 2 [sear—1l
(3)

In (3), Vo is the peak magnitude for the OFDM sig-
nal. If any |s; ;| is larger than Vj, |s;;| will be clipped and
substituted by Vp, and the resultant component signal
will be % . I:iil The value of Vj should be chosen as a
compromise between the level of clipping noise and the
magnitude of PAPR. If V) is large, the clipping noise will
be small and the PAPR will be large and vice versa. Let the
ith component of s, 8;1, and sy be denoted by sy, s¢1,;, and
St2,i» respectively. Figure 3 shows the relationship of s;,
S¢1,i> and sg,;. With CP added, s;; and sy are delivered to
nonlinear PAs and then transmitted by two closed-spacing
antennas, 7X; and TX,. Denote the channel impulse
responses between TX;, TX, and the receiver as h; =
[hly(), R hl,p_l]T and h2 :[ hz,o, . ,l’lz,p_l]T, respec-
tively, where P is the number of the channel taps. For the
channel corresponding to the same transmit antenna, we
assume that each tap is statistically independent.

At the receiver, the CP of the received OFDM symbol is
first removed and then an M-point DFT is applied. The
received frequency-domain signal can then be written as

y = His; + Hosy +n, (4)

where n is an Mx1 additive white Gaussian noise
(AWGN) vector with a covariance matrix of 031; H; and

s . . . .
S =— +e =[511.05- > Se1p-1]7 5 (1) Hy are two MxM diagonal matrices with diagonal ele-
2 ments being equal to the DFTs of h; and hy, respectively;
and s1 and sy are the DFTs of s, and sy, respectively.
s From the definitions of s;; and sy in (1) and (2), we can
t . .
S = 5 e=[s120,.-- ,stz,M_l]T, (2)  simply see that s = s; + sy since s; = s + s¢. We can
also see that the CL-LINC-OFDM system is equal to the
where conventional OFDM system if H; = Hj. In real world, the
Srl "
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Fig. 2 The transmitter and receiver structure of the proposed coded CL-LINC-OFDM system
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Fig. 3 The relationship between s;/, 5¢1, and sz,

two channel responses cannot be exactly the same, though
they are close. We may simply assume that H; =~ Hj and
apply a zero-forcing (ZF) equalizer to recover s. Let H =
(H; + Hy)/2 and 8 be the ZF estimate of s. Then, we have

§=H"ly. (5)

Unfortunately, it is found that the performance of CL-
LINC-OFDM can be seriously degraded if there exists a
difference between H; and Hj. This is because the chan-
nel difference will introduce a strong self-interference. For
reference convenience, we refer the ZF equalizer in (5) as
the direct ZF (DZF) equalizer.

In [27], the idea of space-time coding is applied in
the CL-LINC-OFDM system to solve the problem. The
Alamouti code is used in a way that for one symbol time
s;1 and sy are transmitted by TX; and TX3, respectively,
and for the next symbol time, —s}, and s}; are transmitted.
Using two consecutive received OFDM symbols and some
simple operations, we can obtain two signals §; and §; as

§1 = HHY + HyHY)s; + Hn; + Hyni, (6)
and
§) = (HiHY + HoHY)sy + Hin; — Hyn3, 7)

where n; and ny are the noise vectors of the two con-
secutive OFDM symbols. From the above equations, it is
simple to see that s can be recovered without any interfer-
ence; the estimate of s is given by (HlHlf + H2H]2{)_1 (s1+
§2). However, the main drawback of this approach is that
the throughput is reduced by half.

Except for the DZF method, the well-known ML
method can also be applied to (4). Let the number of can-
didates for s be K, s* be the kth candidate, and 1,k and sy i
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be the two component signals of s*. The ML problem can
then be formulated as:

k=arg min |y — (Hisyx + Haso )l 8)
1<k <K

It is readily to see that the computational complexity of
(8) is prohibitedly high and the solution of (8) is almost
impossible to obtain. Let the QAM size of each subcar-
rier be Q. Then, K will be equal to QM. For a simple
OFDM system with QPSK modulation and 64 subcarri-
ers, K = 4%*1 Note that for each k, we have to conduct one
DFT and one IDFT operations. The suboptimum solu-
tion proposed in [30] is to alleviate this problem; only the
detected symbols (with the DZF method) considered to
be unreliable are taken in the ML search. Also, the sub-
carriers are grouped and the ML search is only conducted
for each individual group, sequentially. Let U be the num-
ber of unreliable detected symbols, G be the number of
groups, and G divides U. Then, K = GQU/G. As an exam-
ple, let Q = 4, U = 12, and G = 3. Then, we have
K = 3 x 412/3 = 768. In other words, we have to con-
duct 768 DFTs/IDFTs for each OFDM symbol. Although
the complexity has been significantly reduced, it is still too
high for practical systems.

In the following sections, we will propose a new
approach to overcome the ML detection problem in (8).
The main idea is to include a convolutional code (CC)
channel encoder in the transmitter. The CC encoder in
our system serves two purposes. The first one, as that
in a typical communication system, is to enhance the
transmission reliability. The second one is to reduce the
number of the candidates considered in the ML detection.
For the channel decoder to operate, we first need QAM
symbols to be detected softly. The ZF method mentioned
in (5) can do the job. However, its performance is not sat-
isfactory. In the following section, we will first propose an
enhanced ZF equalizer and then the corresponding soft
demapper.

3 Enhanced equalization method

In [29], we proposed an enhanced equalization method
and we utilize it for the initial processing of the received
CL-LINC-OFDM signal. To start with, we first reformu-
late the received signals in (4). Define a diagonal matrix
C(sy) as

e
e 0 0
2
0 ls"—olz - 0
C(sy) = bl
Ve
o0 0 /|s[,M_1|2_1_

)
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By (9) and the definition of e in (3), we can rewrite s
and s as

s = (1+/C(sy)) %

. S
s = (1-C(s0) 5 (10)
where I is an M x M identity matrix. The received signal
in (4) can then be written as

1 j H
=3 (H; + Hy) S—i-i (H; — Hy) FC(sp)F"'s+n, (11)

where F and F¥ are used to denote the DFT and IDFT
matrices; both of them are assumed to be unitary. Note
that s, = F/s. From (11), we can see that the original rep-
resentation of the received signals has been transferred to
a form in which s instead of s; and sy is involved. Also,
we can see that if H; is not equal to Hy, the second term
in the right-hand-side of (11) acts as an interference. The
magnitude of this interference can be large even the dif-
ference of H; and Hj is small, and this is the reason why
CL-LINC-OFDM with DZF performs not well.

Observe that the diagonal terms in C(s;) are all greater
or equal to zero which suggests that the means of these
terms are not zero. If the non-zero-means can be removed,
the level of the interference can be reduced. Define a
positive value u and rewrite (11) as

. ,
y=3 (Hi+Hy)s+2 (Hi—Hy) F[C(s)) —ul+ ] Fls +n

1 ‘
=3 [(Hi +Hy) +ju (Hi — Ho)] s + % (Hy — Hy) F(C(sy)

—uD Fs +n.
(12)
Then, the equalized symbols can be obtained as
= 2[(H1 + Hp) +ju (Hy — H)] "y (13)

When u is equal to zero, (13) is reduced to (5). So, (13)
can be seen as a generalized form of the DZF equalizer
when CL-LINC-OFDM transmission is applied. We name
this equalizer as the enhanced ZF (EZF) equalizer.

The performance of the EZF equalizer strongly depends
on the choice of . We now derive an optimum p such
that the average power of the interference is minimized.
Define a vector v as

v = [C(sy) — ] sq. (14)

~Thus, the interference vector in (12) is equal to
é (Hy — Hy) Fv. To calculate the variance of the interfer-
ence in each subcarrier, we first calculate that of v. When
M is large, it is reasonable to approximate s; as a zero-
mean complex white Gaussian vector. The covariance
matrix of s; can be expressed as E;I where Ej is the power
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of the transmit signal. The mean of each component of v
is given by

2 2

0 0
e T—p|seig =E{sei -1
4 j

(15)

Note that s; is a zero-mean complex Gaussian ran-

v V2
—land —s;,/ —%5 — 1
Izl P\ =Sl

have the same appearing probablhty, and the expectation
value of (15) is zero. By the truth that each element of v
is also independent to each other, the covariance matrix
of v can be seen as an M xM diagonal matrix with the
same diagonal term. Defining each diagonal term as o2

dom variable such that s ;

2
and assuming > >> 1, we can approximate [s;| as a
Rayleigh distributed random variable and its probability
density function (PDF) is given by

2|Stz| ls“
pIsiil) = —— (16)
( tl) E,
The value of 02 can then be derived as
5 2
V
2 0
o, =E —-1- s
! Is,i|* o e
143 143
=E{Isyil® 5 — 1)t = 2uE { Ispl* | —%5 — 1
IS, IS,
+12E {Iseil®)
V2
= V§+ (u* — 1) Es — 2uE { Isiil? ﬁ -1
ti
(17)

To derive a closed-form solution for the third term of
(17), we use an approximation that /1 —x &~ 1 — 0.6x:

143 Is¢,:12

Ist,il* ﬁﬂ: Ist,il Vo, |1 — V;
S

Volst, 06'”'
VO

|3tl|

&

= Volss,il — 0.6

(18)

The approximation used in (18) is modified from the
first-order Taylor expansion such that better performance
can be obtained. With the PDF shown in (16), the mean
and the third moment of |s; ;| can be obtained as

E{Jsul) = w;_” 3T

3
——E; .
g s

, and E{lst,i|3} = (19)
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Substituting (18) and (19) to (17), we can obtain

2
oy

%

3
s
Ve + (u* —1) Es — 2uE {V0|st,,'| 06 ‘t/‘()' }

0.9 /T 3
00w+ O
2
1 0.9v/7E
V2 E—-E vy [T - 22T
4 E, Vo

2
1 T 0.9/ E;
E, - Vo)== - — .
s |:,U« 2 < 0 Es VO )]

Equation (20) is a quadratic function of u, and the opti-
mum g giving the smallest o2 can be easily found as:

(20)

_ Vo [m 0.45+/mE;

21
r=oVE Vo (21)
The corresponding o2 can also be obtained as
2
1 0.94/E
ol = V3 —E— ;E (VO /El - V”S)
S 0
=v¢|(1-%)+ 457 - 1) £ 08InE
0 4 ' Ve ooavg
(22)

Since the channel encoder is operated on the bit level,
the equalized symbol § has to be de-mapped into soft
bits, a process referred to as soft-demapping [31]. Soft-
demapping for OFDM systems requires to calculate the
log-likelihood-ratio (LLR) for each transmit bit. To do
that, we have to first calculate the signal-to-interference-
noise ratio (SINR) of the equalized signal at each subcar-
rier. Let the channel magnitude response of subcarrier k
be Gy, and the variance of interference-plus-noise in the
same subcarrier be o,f. Then, the SINR, denoted as yx, can
be calculated as:

|Gyl

.
Ok

(23)

As mentioned, the covariance matrix of v is diagonal.
Then, the covariance matrix of the interference-and-noise
vector in (12) is also diagonal and its kth diagonal term is
given by

|Hix — Hoxl*
4 %
| (Hix + Hax) +ji (Hyx — Hox) 12
+ 4

2 _
0 =

2 2
o, +0,,

(24)

where Hj j is the kth diagonal component of Hy, Hy is

that of Ho, avz is the interference variance given in (22),

(2016) 2016:153
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and o is the variance of the clipping noise. From (22),
we see that the value of 02 is an increasing function of
Vo. Note that the value of V) determines the PAPR of the
transmit signal. A smaller V, means a lower PAPR, higher
power efficiency, and lower interference in (12). How-
ever, more signal samples will be clipped, increasing the

@,(i.k) = c, (L)
£, (k) =1
1<i<I 1<k<L

t=t+1

S

I<t<N

Yes

4, k) = min g, (j.D)+¢,(j.0)]

I<I<L

(G 1y =argmin[g, (. +c,(j.i)]
1<j<1
II<SL

1<i<lI

&(.k)=j
7k =10"

[
)

(j*.0")y=argmin“ [, (j.)+cy (j.D]

1<j<I
I<I<L

ey@k)y=j"yyG@.k)=I

Get the kth state sequence (1, j,......j, ,,1) as
Jva =ex k) 1y =y (k)

jr :gm](jml’lr»])’lr :}/ml(jm]’ll»l)
I<t<N-1

Fig. 4 The operations of parallel LVA
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clipping noise level. From (12), we can obtain the channel
magnitude response and then calculate yy as

AZE(| (Hyx + Hox) + ji (Hix — Hog) 2
02|Hix — Hixl? + 02| (Hix + Hox) + ju (Hix — Hog) 12 + 402’
(25)

Yk =

where A, is an equivalent amplitude after clipping. The
values of 0> and A, can be found as follows. Denote the
clipped time-domain OFDM signal as 3;,; and the clipping
ratio, equivalent to the square root of the PAPR value, as
Vo
JE
Since the time-domain OFDM symbol is approximated
by a complex white Gaussian process, then

Efsyil®) = £ (1- ).

In [32], it was shown that the clipped signal can be
modelled as

Spi = AcSei + iy

K =

(26)

(27)

(28)

where 7, is a clipping noise uncorrelated to s;,;. The value
of A, and the variance of n.;, denoted as ocz, are found to

be

Ac=1—e"" 4+ \/?( erfc (), (29)

where erfc(.) denotes the complementary error function,
and

0?2 = E{|3,*} — A2E;

4

—E, [1 _e (1 —e

g K /T erfc (K)] .

T erfe (K))2:|

~E, [e—K (30)

0 [1 — e K + @erfc (K)]2

Finally, the LLR of the ith bit transmitted at kth subcar-
rier is obtained as

max P (Yk|sx = o)
eS

LLR (b)) ~ In = yx{min [3 —af®

max P Gilsk = @) ¢ wesd,

aeSlk
PPN 2
— min | — a|*},
aeSil'k

(31)

where S1 or Sok indicates the symbol set in which the ith
bit of each element is 1 or 0. The LLR values are deemed
as the de-mapped soft bits and then used as the input to
the channel decoder.

As we can see from (30), the SINR at each subcarrier
depends on the clipping ratio, «. If « is larger, the clip-
ping noise will be smaller. At the same time, however,
the interference will become stronger. We now derive a
closed-form expression for the average SINR such that an
optimum « maximizing the average SINR can be found.
Let the mean of each channel gain in H; and Hy be nor-
malized to one. Then, the average channel gain for the EZF
can be obtained as

E{| (Hix + Hax) +jm (Hix — Hax) 1} = 2+ 2p + 2% (1 — p),
(32)

where p = E{Hl,kH;,k} denotes the antenna correlation.
Substituting (20), (26), (30), and (32) into (25) and tak-
ing the expectation, we can obtain the average SINR (i.e.,
E{yx}), denoted by SINR,, of the CL-LINC-OFDM system
with the EZF equalizer as

SINR, =

(33)

1-p) ( + n?+ Ogﬂf — KT — l) +p [e—’(2 — k/merfc (/c)] + 2SNR*1’
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where SNR=ES/O'3 and p = [1 +po+p2d-— ,0)]. Using the value of i in (21), we can rewrite the average SINR as

SINR, =

[1 —e 4 f erfc (/c)]2

(34)

a=-p[e(1-3%)

l+p+7(5- 045) 1 - p)
see, the average SINR is a function of p and «. It can be
shown that the average SINR is a concave function of «.
For each p, we can then find the optimum « by a simple
numerical search.

where p = [ ] As we can

4 Maximum likelihood detection with list Viterbi
algorithm
In this section, we would consider the architecture of
the decoder. As mentioned, the decoder serves two pur-
poses: one is for the reduction of the bit-error-rate and
the other is to reduce the computational complexity of the
ML detector. We first reconsider the LINC-OFDM system
shown in (11). Re-arrange (11) asy = Hs + n where H is
an M x M equivalent channel matrix given by
o1 J H
H = (Hi +Hy) + 2 (Hi —H) FC(s)F™.  (35)

Since the diagonal terms in the diagonal matrix C(s;)
are not all the same, the second term in (35) is not a
diagonal matrix. It indicates that we cannot apply the
carrier-by-carrier detection scheme as that in the con-
ventional OFDM system. To have a better performance,
we can apply the block-wise ML detection scheme as
shown in (8). Unfortunately, as mentioned, the high com-
putational complexity makes the general ML detection
almost impossible to conduct. Here, we propose using the
LVA [33] to reduce the number of candidates in the ML
detection.

The LVA was originally proposed to enhance the per-
formance of a concatenated coding system where the CC
is used as the inner code. Since it is generally difficult
to implement the joint decoding of both inner and outer
codes, the inner code is softly decoded and the output is
then used as the input for the outer decoder. Although
the optimum decoding algorithm such as BCJR [34] can
be applied, the required computational complexity is high.
The LVA serves as an alternative soft decoding scheme by
giving multiple decoded bit sequences. The conventional

Table 1 Power efficiency comparison

PAPR (dB) morpm  (PA uNe (PAIN mune (PAIn
in [35]) (%) (35]) (%) [36]) (%)

6 2.25 9.19 15.15

8 142 582 9.59

10 0.9 3.68 6.07

] +p [e K _ g Jmerfc (/c)] + ZSNR_

VA outputs a bit sequence while the LVA outputs multi-
ple. With more input sequences, the reliability of the outer
decoding can be enhanced. Simulation results in [33] ver-
ify that the performance of the concatenated coded system
is indeed enhanced with the LVA. Here, we extend the use
of the LVA to reduce the complexity of our ML problem.
Now, we briefly describe the operations of the LVA. The
LVA can be implemented as parallel or sequential pro-
cessing fashion. Since the outputs of these two kinds of
LVAs are the same, we only discuss the parallel LVA here.
The difference between the LVA and the VA lies in that
the LVA reserves multiple while the VA only one survival
path for each state. Let the number of states in the trel-
lis be I and the number of survivor paths to preserve be
L, the branch metric from state j to state i at time (£ — 1)
to t be ¢; (j, i), Ct (j, i) = oo when state i and j are not
connected in the trellis diagram, and ¢ (i, k) be the kth
lowest path metric to state i at time ¢. Figure 4 gives the
detailed operations of the parallel LVA. Here, &; (i, k) and
vt (i, k) denote the state and the corresponding ranking
which can reach ¢ (i, k) at time (¢ — 1). Also, min® ()
is the kth smallest value in the elements of (.). With the
LVA, we can then obtain L state sequences having the low-
est path metrics. For the /th state sequence, we can derive
its detected bits from the corresponding two consecutive

A N T
I:dl,07 dl,lj s dl,N—l]

Once we have the L best detected bit sequences, we can
use them as the candidates for the block-wise ML detec-
tion. By this way, the number of the candidates can be
dramatically reduced. Figure 5 shows the procedure of our
low-complexity ML detector. Note that we have to regen-
erate the L best estimated symbol sequences, denoted by
81,....81, and each symbol sequence has to be re-encoded,
re-interleaved, and symbol re-mapped. With the IDFT
operation, we can obtain the L time-domain estimated

states as &1 =

Table 2 Simulation parameters

Parameters Value

Number of FFT points (M) 128

CP length 16

Fading Rayleigh fading
Channel tap number (P) 6

Power delay profile Uniform power delay profile
QPSK

Ideal

Modulation

Channel estimation
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Simulated values

Theoretical values

Fig. 6 Comparison of simulated O’VZ and theoretical O’VZ in(22)

2
VZ/E (dB)

OFDM symbols, denoted them as §¢1,....8;.. From (9)
and (11), we can then obtain the ML detection from the L
candidates as

A 1 N i A o
= arg min |ly— 5 (H1+Hy)% — % (Hi — Hy) FCG, DF"31]. (36)

Finally, the detected bit sequence can be obtained as
dp=a.

To further enhance the performance, we now propose
a simple IC method. As seen from (12), the second term
is the interference when the EZF is applied. Let the ML
detected symbol be §p and §p; = F8p. We can then use
C(Sp,) to artificially generate the interference term and
then conduct IC as

y=vy- sg (Hy — Hy) E (CGpy) — ul) Fap,  (37)

where & is a cancellation factor and & < 1. Note that
we only conduct partial IC in order to control the error
propagation effect. With y, we can then apply the EZF
equalizer, the LVA, and the ML detector again. This pro-
cess can be repeated until a desired number of the iter-
ations is met. The best partial cancellation factor & can
be determined by simulations. In general, its value can
be increased as the iteration proceeds since the detected
symbols would become more and more reliable. When the
IC scheme is applied, the SINR with the EZF equaliza-
tion in (25) must be re-calculated. This can be obtained by

20

n T T T T
> - © = DZF equalization
18} 1N . - 8 - EZF equalization |- -
B
s
160 Q ~ a
. .
141 * Ta .
o, L
B -
\° B .n
g 12f < Raai SR . y
i 0, B -p g
@ 10F ‘e s
~e
NG R
8t (9% .
(<] ~6
ol ~O- <. |
0= ©O.
©-e. -6
ar TG -0
2 1 | 1 1 1 | 1 1 1
1 099 098 097 096 095 094 093 092 091 0.9

Fig. 7 Performance comparison of DZF and EZF equalizers in CL-LINC-OFDM systems (different antenna correlations)

p
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(38)

Vk

where the detected symbols are simply assumed to be all
correct. With the SINR, the LLR can be re-calculated as
that in (31).

5 Power efficiency of CL-LINC-OFDM systems

In this section, we analyze the power efficiency of the
conventional OFDM and CL-LINC-OFDM systems. For
conventional OFDM, only the linear PA is considered. For
CL-LINC-OFDM, either linear or nonlinear PAs can be
used. The input signal is assumed to be in its back-off
range, and clipping is conducted for signal with amplitude
exceeding the range. Let the maximum and the average
output power of the transmitter be denoted by P« and
Poyt, respectively. Then, Py = VO2 for OFDM systems.
By assuming that PAs can be operated with approximately
full linearity under P; 4p, the PA output power will only
have 1 dB loss. Thus, we can have P; 4g & Pnax. The aver-
age power efficiency of the conventional OFDM system
can be denoted by porpm, as [11]

P out

Py
where P, means the average DC-input power. Since the
conventional OFDM system is operated with linear PA

(class A), the DC-input power is fixed [11] and can be
written as

MOFDM = ) (39)

Py g8
b
M“1dB

Pin = (40)

(1= £)202|Hig — Hixl? + 02| (Hyx + Hax) +ju (Hix — Hox) |2 + 402’

where (1 gp is the efficiency when the output power is
Pj 4. Substituting (40) to (39), we can rewrite LorpMm as

m1dBPout  H1dBPout  M1dB

= . (41)
Py g PAPR

MOFDM =
Prax

For CL-LINC-OFDM, Ppax = 2 x V3 /4 = V¢/2. Note
that Pyt of the CL-LINC-OFDM system is the average
power after signal combining. Since the component sig-
nals are constant-enveloped, the PA can operate in its
maximum efficiency which is denoted as ptmax. We then
have the power efficiency of the CL-LINC-OFDM system,
denoted by uiiNne, as

Pout

MLINC = Mmax =
Pmax

Mmax

. 42
PAPR (42)

Note here that the PAPR in (42) is the PAPR before sig-
nal separation. Specific figures for p; 45 and umax depend
on the PA design. For comparison purposes, we choose
the recent results in [35, 36] for the efficiency calcula-
tion. Here, the power efficiency u is approximated as the
power-added efficiency (PAE) for simplicity. For the lin-
ear PA in [35], 148 = 9% and tmax = 18.3%. For the
nonlinear one (class AB) in [36], itmax = 30.3 %. The effi-
ciency of the conventional OFDM and CL-LINC-OFDM

S e St R
“““ B-=----m
ot ¢

—A— CL-LINC-OFDM with DZF (p=0.9)
_a|| —E— CL-LINC-OFDM with DZF (p=0.94)
[| —e— CL-LINC-OFDM with DZF (p=0.98)
— A~ GL-LINC-OFDM with EZF (p=0.9)

- E1— CL-LINC-OFDM with EZF (p=0.94)
— © — CL-LINC-OFDM with EZF (p=0.98)
—— Conventional OFDM

T

T

1 1 1

3 8 13

18 23 28 33
SNR(dB)

Fig. 8 Performance comparison of conventional OFDM and CL-LINC-OFDM systems (different antenna correlations)
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14+ SNR=15dB

12 SNR=12dB

SNR=9dB
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SNR=6dB
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Theoretical values

O Simulated values

I I I !

3 4 5 6 7

2
VJ/E (dB)

Fig. 9 Relationship of average SINR and PAPR in proposed CL-LINC-OFDM system

8 9 10 11 12

systems is then evaluated for PAPR being equal to 6, 8, and
10 dB, respectively. Table 1 shows the results calculated
from (41) and (42). As we can see, the power efficiency
of the CL-LINC-OFDM system is about four-time higher
than that of the conventional OFDM system when the lin-
ear PA in [35] is applied. Similar result is also observed
in [25, 26]. The power efficiency of the CL-LINC-OFDM
system becomes about seven-time higher than that of the
conventional OFDM system when the nonlinear PA in
[36] is applied. The power efficiency of the CL-LINC-
OFDM system can be even higher when PAs with higher
nonlinearity are considered [4].

6 Simulation results

In this section, we report simulation results demonstrat-
ing the effectiveness of the proposed approaches. Table 2
gives the detailed simulation parameters.

We first evaluate the validity of the derived interference
variance in (22) when the EZF is applied. Without loss of
generality, we let E; = 1. Figure 6 shows the simulated and
the theoretical o2 for various VZ/E’s. As we can see, the
calculated values in (22) are close to the simulated results
and the approximation error can be ignored.

We then evaluate the performance of the CL-LINC-
OFDM system with the proposed EZF equalizer. A

1

T
—©— CL-LINC-OFDM with DZF+VA
—+&— CL-LINC-OFDM with EZF+VA
—%— CL-LINC-OFDM with EZF+LVA(L=4) []
—&A— CL-LINC-OFDM with EZF+LVA(L=8) §
—<— Conventional OFDM H

0 5

SNR(dB)

Fig. 10 Performance comparison of conventional coded OFDM system and proposed coded CL-LINC-OFDM system (p = 0.98)
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5
T

T
—©— CL-LINC-OFDM with DZF+VA
—H&— CL-LINC-OFDM with EZF+VA
—¥— CL-LINC-OFDM with EZF+LVA(
—4A— CL-LINC-OFDM with EZF+LVA(l
—&— Conventional OFDM

)

L=4
L=8) §

SNR(dB)

Fig. 11 Performance comparison of conventional coded OFDM system and proposed coded CL-LINC-OFDM system (p = 0.96)

channel model characterized by the antenna correlation is
used in the simulations. Leth, = [hl,p hz,p] T be the vec-
tor consisting of the two pth taps of two channels. Denote
its correlation matrix as R,. Then,

H 1 »
Rp=E[hphp]=Pp|:p e

where P, is the power of the pth tap and p is the
correlation coefficient. With R,, we can generate the cor-
related MIMO channels. For details, see [37]. Since TX;

(43)

and TX; are located closely, the two channel responses are
highly correlated, which means p is close to one. When
p = 1, H; and Hj are fully correlated, i.e., H; = Hj and
the CL-LINC-OFDM system will be reduced to a conven-
tional OFDM system. H; and Hj are assumed to be known
and the average SINR is used as the performance mea-
sure. Also, let Es/o2 = 20 dB and PAPR = 10 dB. With
this PAPR setting, the effect of the clipping noise can be
neglected. For the conventional DZF equalizer, we have
the average SINR, denoted by SINRpzr, as

T

—&A— CL-LINC-OFDM EZF+LVA(L=8) +4 iterations
—— Conventional OFDM

SNR(dB)

Fig. 12 Performance of proposed coded CL-LINC-OFDM system with interference cancellation (p = 0.96)

10 15




Wu et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:153

#{sm) )
o[- (=)l

For the EZF equalizer, we have the average SINR, denoted
by SINREZF, as

SINRpzr =

2

]| s
2
v (g g o

We evaluate the SINRs corresponding to different
antenna correlations; Fig. 7 shows the simulation result.
From the figure, we can see that the SINR is strongly
affected by the antenna correlation. The smaller the cor-
relation, the lower the SINR. For the DZF equalizer, the
SINR is reduced from 16 to 4 dB when the correlation
varies from 0.995 to 0.9. For the EZF equalizer, the SINR
is reduced from 20 to 10.5 dB. As we can see, the EZF
equalizer is much better than the DZF. Figure 8 shows the
bit-error-rate (BER) simulations for various antenna cor-
relations. As we can see, the EZF equalizer significantly
outperforms the DZF equalizer. From Fig. 8, we can also
see that the performance of the CL-LINC-OFDM is much
worse than that of the conventional OFDM, especially
when the antenna correlation is lower.

As we mentioned in the second section, the interference
power depends on the value of Vj, i.e, the PAPR value. A
smaller V() will result in a smaller interference level but a
larger clipping noise level. Thus, there is an optimum V),
i.e., an optimum clipping ratio. Simulations are then used
to find the value. Figure 9 shows the relationship between
SINR and PAPR when the EZF equalization is applied for
p = 0.98. Note that the theoretical SINR derived in (34)
is also shown. From Fig. 9, we can see that for higher SNR
(for example, 15 dB), the optimum PAPR is between 6 and
7 dB. This result indicates that when PAPR is higher than
7 dB, the interference dominates the SINR, and when it is
smaller than 6 dB, the clipping noise dominates. It can also
be seen that the theoretical SINR is close to the simulated
SINR.

From Fig. 9, we can also see that when input SNR is
lower, the optimum clipping ratio tends to be higher. How-
ever, the variation of the resultant equalized SINR is small.
It is then proper to let the optimum clipping ratio be 6 dB
for all cases.

Now, we consider the proposed coded CL-LINC-OFDM
system. We use a simple (2,1,2) CC encoder with the gen-
erator polynomials given by g = 1 4+ D 4+ D? and
g® = 1+ D2 For simplicity, we let the size of the cod-
ing block be 126. Then, the size of the coded output block
will be 2 x (126 + 2) = 256 where the two additional bits
are for tail bits. Without any puncturing, we can then fit

SINRgzr = . (45)
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each coded block into one QPSK OFDM symbol with size
of M = 128. Also let the interleaver be a 16 x 16 block
interleaver.

We now compare the performance of the conventional
coded OFDM and the proposed coded CL-LINC-OFDM
systems. For the both systems, the PAPR is set as 6 dB. The
standard VA is used for the decoding scheme of the con-
ventional OFDM while the proposed ML detector with
the EZF equalizer is used for the proposed coded CL-
LINC-OFDM system. The performance of the CL-LINC-
OFDM system with conventional VA and DZF is also
evaluated. Here, we use the performance of the conven-
tional coded OFDM system as a benchmark. Figures 10
and 11 show the simulation results for p = 0.98 and
p = 0.96, respectively. Similar to the previous case, the
performance of the combinerless system degrades as the p
is reduced. However, the level of the degradation is not as
severe as that in the uncoded case. From Figs. 10 and 11,
we can see that when the proposed ML detector is applied,
the performance of CL-LINC-OFDM can be enhanced
even for L = 4 in the LVA. Note that in some cases,
the performance of the CL-LINC-OFDM is even better
than the conventional OFDM. This is because the LINC
operation can be viewed as a coding process; it acts as an
inner code added for the system. With the inner code, the
performance of CL-LINC-OFDM can outperform con-
ventional OFDM. Figure 12 shows the simulation result
when the IC scheme proposed in fourth section is applied.
We let the number of iterations be three and §; be the can-
cellation factor in the ith iteration. With simulations, we
derive that & = 0.2, & = 0.4, and &3 = 0.8. From the
figure, we can see that CL-LINC-OFDM significantly out-
performs conventional OFDM when SNR is higher (e.g.,
15 dB). Note that we let p = 0.96 in the simulation case,
implying that the performance gap will be even larger for
p = 0.98.

7 Conclusions

In this paper, we propose a coded CL-LINC-OFDM sys-
tem to solve the low power efficiency problem inherent
in OFDM systems. First, we design an EZF equalizer that
can have better performance in the combinerless sys-
tem. Then, we use the LVA to obtain a small number
of solution candidates such that the ML detection can
be efficiently conducted for the CL-LINC-OFDM system.
To further enhance performance, we develop a simple
interference cancellation method. Simulation results show
that the proposed coded CL-LINC-OFDM system can
have the similar performance as the conventional OFDM.
However, the power efficiency of the proposed CL-LINC-
OFDM is much higher. When the antenna correlation is
high enough, the proposed system can even have better
performance than the conventional OFDM. Note that the
CC decoder can be implemented with the BCJR algorithm
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to provide soft outputs. How to use the soft outputs to
obtain the ML solution deserves further investigations.
As mentioned, the LINC operation can be seen as a cod-
ing process. How to calculate its soft outputs and apply
sophisticate iterative decoding schemes can also serve
potential topics for further research. Finally, a bandwidth
problem needs to be considered for real-world applica-
tions. It is known that the bandwidth of the LINC compo-
nent signals is much wider than its original signal. There
are a number of methods to reduce the bandwidth, e.g.,
[38, 39]. However, these methods may distort the com-
bined signal. How to recover the transmit signal at the
receiver deserves further investigations. Research in these
directions is now underway.
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