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Abstract

Iterative localization algorithms are critical part in the control of mobile autonomous robots because they feed
fundamental position information to the robots. In a harsh unknown environment, the estimation of environmental
noise is hardly obtained during the movement of the robots. It means that the state-of-the-art methods, which
increase localization accuracy using error management, are unsuitable. In this paper, we deduced an upper bound
of the localization error without knowing the precise model of environment noise when the anchor nodes have
position errors. Utilizing the minimum upper bound, we can construct an optimal localization linear system of
iterative localization algorithms based on least square. An algorithm of generating localization linear system is
proposed by using the minimum upper bound. The algorithm reduces the impact of the shortage of environmental
information on localization error propagation. Our simulation results show that the algorithm is insensitive to noise and
can improve the localization accuracy by constructing a proper localization linear system with a high probability.
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1 Introduction
Indoor iterative localization algorithm of autonomous
robots is an active subject because of the environmental
complexity. The coordinates of autonomous robots are
the fundamental parameters of robot control [1]. Due to
the absence of Global Positioning System signals in
an indoor-like environment, the autonomous robots
need an iterative localization algorithm to provide their
position information. Laser, sonar, infrared, visual sensors,
or some combinations of these methods are used to locate
the robots [2]. However, those technologies may fail in
some harsh environments, such as a firing building which
is dusty, smoky, and dark.
Iterative localization based on Received Signal Strength

(RSS) is a suitable option to provide the position informa-
tion in a harsh scenario [3]. Indoor iterative localization
based RSS is exploited in ranging-based techniques,
which maps the distance by a measurement of RSS, see

e.g., [4–6]. Since the measurement noise is inevitable in
the practical localization system, algorithms are pro-
posed to improve the localization accuracy. In those al-
gorithms, the key component of decreasing localization
error is to estimate the measurement noise. And, those al-
gorithms work effectively if the noise is estimated precisely
[7]. However, in a harsh scenario, the noise estimation
is almost impossible to be achieved because of the insuf-
ficiency on measurement noise caused by the robots
mobility [8]. A new strategy of improving localization
accuracy is needed to solve the problem. Actually,
localization accuracy is influenced by the construction
of localization linear system (LLS) when least square is
used to calculate the position of the unknown node.
Therefore, we can decrease localization error by con-
structing proper LLS. In this paper, through the study-
ing of upper bound of localization error of LLS, an
upper bound of error propagation in the localization is
proposed. And, an algorithm which can be used to im-
prove the localization accuracy without environmental
noise estimation, by utilizing the upper bound to gener-
ate an optimum LLS.
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The paper is organized as following: In Section 2, re-
lated works are introduced. In Section 3, the key step of
iterative localization is briefly described to introduce the
symbols. In Section 4, after introducing the orthogonally
invariant norms, it is given that the error upper bound
of localization using anchors with localization error.
And, an algorithm of improving localization accuracy is
proposed by constructing optimum LLS which uses the
minimum upper bound. In Section 5, the random and
efficient of algorithm are verified by simulations.

2 Related work
The iterative localization algorithm is a distributed,
infrastructure-free positioning algorithm to calculate
nodes’ positions in the ad hoc networks [9, 10], which is
a “spreading” process of node information. The process
consists of three processes, which are node registry,
neighbor selection, and update criterion [11].
The main difference between the iterative localization

and the common localization is that the coordinates of
located nodes are used or not to calculate the unknown
nodes. In iterative localization, there exists unknown
nodes that will use the nodes’ coordinates which is cal-
culated with localization error. It means that anchor
node coordinates may or may not have errors in a co-
ordinate calculation process. To distinguish the anchor
nodes with position error from those nodes with precise
coordinates, the anchor nodes without coordinate errors
are named origin-anchors, while the others are called
pseudo-anchors. Based on the notions, a typical iterative
localization algorithm carries out in the following steps:

� Initiating nodes: Each node in the ad hoc network
initiates its coordinate and the coordinate’s errors.

� Selecting origin-anchors: Three or more nodes are
selected as origin-anchors, whose coordinate errors
are considered as zero. Then, a relative coordinate
system is built by using those nodes.

� Generating pseudo-anchors: An unknown node
selects at least three located nodes from the neighbor
nodes set to calculate its position. After the node is
located, this node is updated as a pseudo-anchor.

In this perspective, an iterative localization algorithm is a
process of transforming the nodes into the pseudo-anchors.
Obviously, the localization accuracy is influenced by the

last two steps. The method of selecting origin-anchors is
studied, such as choosing the nodes with maximum dens-
ity factor [9]. Consider the executing time, the process of
pseudo-anchor generation will be executed more fre-
quently than the process of origin-anchor selection.
Therefore, improving the localization accuracy in the step
of generating pseudo-anchors will significantly decrease
the localization errors of all pseudo-anchors. To meet the

requirement of improving localization accuracy, physical
methods and cyber methods can be used.
In particular, physical methods are based on the idea

that the less measurement error is the less localization
error is. It improves localization accuracy by using
more sensitive sensors. For example, passive broad-
band harmonic nonlinear transmission-line tags were
used to measure the distance of two nodes [12, 13]
or the distance was estimated by using the channel
state information [14].
Meanwhile, under the constrains of the measurement

accuracy limitation in the physical methods, cyber
method is to design algorithms for finding an optimal
position estimation of the unknown node. Multilatera-
tion based on Least-Squares (MLS) [15] is one widely
used cyber method. Also, the localization error of MLS
was studied to improve the localization accuracy [16].
Cramer Rao Bound is used to calculate the localization
error bound [17–19], in which probability density func-
tion of noise is needed to calculate Fisher information
matrix. And, localization accuracy was characterized by
using a noise covariance bound when anchor nodes have
location uncertainty [20]. To calculate localization error
accumulating during an iterative process, the mean of
localization error was given in the literature [11]. All
those literatures assumed that the probability density
function or covariance of noise is known. However, ac-
cording to the description above, the assumption is not
always satisfied in a harsh scenario. The peculiarity of
localization in an anonymous environment is noticed
[21]. But, the literature is focused on converting the RSS
into the distance when little information on the radio
propagation model is provided. It is still not studied that
how to improve localization accuracy in the scenario of the
insufficiency on measurement noise caused by the robots
mobility. Xu et al. [22, 23] proposed a crowdsourcing-
based framework for processing mobile information and
have been proved to be a high accuracy and efficiency.

3 Iterative localization based on least squares
To introduce the notions and symbols used in the follow-
ing contents, here, we briefly describe the process of MLS.
Let x = (x, y) represents the coordinate of an unknown

node located based on an anchor nodes set {xi = (xi, yi)|i =
1,⋯, n} where n is the cardinality of the anchor nodes set,
and ∥ ∥ 2 is the Euclidean norm. Localization based least
squares performs as following:
First, the algorithm collects the measurement data,

which is

x−xik k2 ¼ d̂ i i ¼ 1;⋯; nð Þ ð1Þ

where d̂ i denotes the measurement distance between the
ith anchor node and the unknown node. Squaring both
sides of (1), a constraint is obtained
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xk k22þ xik k22−2xiTx ¼ d̂2
i i ¼ 1;⋯; nð Þ ð2Þ

It is obvious that there are n constraints in a
localization system.
Then, ith anchor node is selected as the benchmark-

anchor-node (BAN). Subtracting the ith reference from
all other constraints, we have:

2 xk−xið ÞxT ¼ xkk k22þd̂2
k− xik k22−d̂2

i

� �
ð3Þ

where k ≠ i; k = 1,⋯, n. After that, we have a localization
linear system (LLS) with n − 1 equations:

Aix
T ¼ bi ð4Þ

The subscript i of Ai and bi emphasizes that the A and
b are generated in the case of choosing ith anchor node
as BAN.
Finally, using the method of least-squares, the solution

x̂ in (4), which is the estimated coordinate of the un-
known node, is obtained

x̂ ¼ AT
i Ai

� �−1
AT
i bi ð5Þ

The estimation coordinate of pseudo-anchor always
deviates its physical coordinate since the measurement
error exists. The literatures introduced in Section 2 have
studied the methods of improving localization accuracy
based on measurement error estimation. Unfortunately,
as it is discussed, those algorithms are disabled because
of the insufficiency on measurement noise in a harsh
scenario. It is noted that the localization is influenced by
choosing BAN. Therefore, generating proper LLS is a
way to obtain the optimal localization accuracy instead
of measurement error estimation.
The following section discusses the upper bound of

the localization error propagation. We use the boundary
to guide the construction of LLS which can be used in
distribution infrastructure-free localization algorithm.

4 Localization error upper boundary of anchors
with errors
One character of iterative localization is that the
localization error propagates. We deduce an upper bound
of the localization error propagation based on orthogon-
ally invariant norms. In addition, an algorithm is proposed
by using the upper bound as a LLS measurement.

4.1 Orthogonally invariant norms
The orthogonally invariant norms are used to conduct
the upper bound of the localization error propagation.
The notion and its characters are introduced as follows.

Definition 1 (Orthogonally Invariant Norms (Watson et al.,
[24]). Consider SVD of a given matrix A, A have singular
value decomposition

A ¼ UΣVT ð6Þ
where U and V are orthogonal matrices and Σ is an m × n
diagonal matrix, where the diagonal terms are the singular
values of A in descending order

σ1≥σ2⋯≥σn ð7Þ
Orthogonally invariant norms can be defined by

Ak k ¼ ϕ σð Þ ð8Þ
where σ = (σ1,⋯, σn)

T and ϕ is a symmetric gauge func-
tion, such a function satisfies the following conditions:

(1)Φ(x) > 0, x ≠ 0,
(2)Φ(αx) = |α|Φ(x), ∀ α∈ ℝ,
(3)Φ(x + y) ⩽Φ(x) + Φ(y),
(4)Φ ε1xi1 ; :::; εnxinÞ ¼ Φ xð Þ;ð

where α is a scalar, εi = ± 1 for all i, and i1,⋯, in is a
permutation of 1, 2,⋯, n.
Also, the following characters of the norm, which will

be used in the Section 4.2, are obtained:

(1)‖AT‖ =‖A‖, ∀ A∈ℂm × n

(2)‖x‖ =‖x‖2, ∀ x∈ℂn

(3)‖AB‖ ⩽‖A‖2‖B‖, ∀ A∈ℂm × n, ∀ B∈ℂn × l

(4)‖AB‖ ⩽‖A‖‖B‖2, ∀ A∈ℂm × n, ∀ B∈ℂn × l

(5)‖A − B‖ ≤‖A‖ +‖B‖, ∀ A, B∈ ℂm × n

(6)‖A‖ −‖ B‖ | ⩽‖ A − B‖

4.2 Upper boundary of localization error of LLS-RSS iterative
algorithm
4.2.1 Upper boundary of localization of error LLS
We propose a lemma which describes the upper bound
of localization error for a LLS. The lemma issues an ab-
stract but a useful formula for calculating the upper
bound of the error propagation.
Theorem 1. Assuming ith anchor node is chosen as the

BAN, a LLS is expressed as

Âix̂i
T ¼ b̂i ð9Þ

where Âi = Ai + ΔÂiis a matrix constructed by anchors’
positions, Airepresents precise physical position of an-
chor nodes, ΔÂiis the coordinate errors of the anchors;

b̂i ¼ bi þ Δb̂i is a vector collection of the anchors’ pos-
ition and the measurement data, bidenotes the noiseless

measurement data, Δb̂i represents the noise of the
measurement data. The ratio of localization coordinate
to physical coordinate satisfies
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x̂ik k
xk k ⩽κ 1þ αð Þ 1þ βð Þ ð10Þ

where

κ ¼ Â†
i

�� �� Âi

�� ��
α ¼ ΔÂi

�� ��
2

Âi

�� ��
2

β ¼ 1

b̂i

�� ��
2= Δb̂i

�� ��
2−1

�� ��
ð11Þ

Proof. First, based on the LLS expression Âix̂i ¼ bi þ Δ

b̂i, x̂i is calculated as

x̂i ¼ Â†
ibi þ Â†

iΔb̂i ð12Þ
where Â†

i is Moore-Penrose pseudo-inverse of matrix Âi.
Then, applying norm characters on (12), an inequality

is obtained

x̂i
T

�� ��⩽ Â†
i

�� ��
2 bik k2 þ Â†

i

�� ��
2 Δb̂i

�� ��
2 ð13Þ

The inequality can be transformed into

x̂ik k
xk k ⩽ Â†

i

�� ��
2

bik k2
xk k þ Â†

i

�� ��
2

Δb̂i

�� ��
2

xk k ð14Þ

It is noted that Aixi
T = bi. Inequalities

bik k⩽ Aik k2 xk k2
1= xk k⩽ Aik k2= bk k2

�
ð15Þ

are concluded. Using those inequalities, (14) becomes

x̂ik k
xk k ⩽ Â†

i

�� ��
2
Â†

i

�� ��
2

1þ Δb̂i

�� ��
2

bik k2

 !
ð16Þ

For bi
∧��� ���

2
− b

∧
i −Δb

∧
i

��� ���
2
, it is bi

∧��� ���
2
≥ b

∧
i −Δb

∧
i

��� ���
2

��� ��� .
Therefore,

x̂ik k
xk k ⩽ Â†

i

�� ��
2 Aik k2 1þ βð Þ ð17Þ

where β ¼ b̂i

�� ��
2= Δb̂i

�� ��
2−1

�� ��−1.
Because of ‖Ai‖2 = ‖Âi − (Âi −Ai)‖2, it is obtained that

Aik k2⩽ Âi

�� ��
2 þ ΔÂi

�� ��
2: ð18Þ

Thus,

Â†
i

�� ��
2 Aik k2≤κ 1þ ΔÂi

�� ��
2= Âi

�� ��
2

� �
ð19Þ

where κ ¼ Â†
i

�� �� Âi

�� �� . Finally, combining (17) and (19),
the conclusion is obtained.

4.2.2 Error upper boundary of LLS-RSS
The Theorem 1 gives a universal upper bound of the meas-
urement error. Since RSS is widely used as the measure-
ment data, we propose a concrete numeral upper bound of
the measurement error of a LLS-based RSS (LLS-RSS).
The upper bound will be fundamental of algorithm which
can construct the optimum LLS in the next subsection.
To calculate the upper bound of Lemma 1, we need to

calculate k, α, and β. The k and α are calculable, because
all components are only related with known coordinate of
anchors (origin-anchors, pseudo-anchors, or combination

of them). However, the measurement data noise Δb̂i is ran-
dom and unmeasurable. It makes instantaneous value of β
that cannot be calculated. The value can be obtained is the
mean of β which is upper boundary. As an extension of
Theorem 1, the mean of error upper bound of LLS-RSS is
given by Lemma 2.

Theorem 2. In a LLS-RSS expressed as Âix̂i
T ¼ b̂i þ Δ

b̂i , ΔÂiis a matrix constructed by the minimum upper
bound of localization error of corresponding anchors. If
the radio propagation model between ith node and kth
node satisfies the model of distance-dependent path loss
with log-normal fading, whose parameters are η and Xσ i ,
and random variable Xσ i i ¼ 1;⋯; n−1ð Þ are independent
and identically distributed, there is

E
x̂ik k
xk k

	 

≤κ 1þ ςð Þ 1þ 1

ξ−1

� �
ð20Þ

where

ς ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1 k≠ið Þ Δxkk k22
q

þ n−1ð Þ Δxkk k22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1 k≠ið Þ xk−xik k22
q

ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1 k≠ið Þ xkk k22−d̂2
k− xik k22þd̂2

i

� �2r

cj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1;k≠i
d̂2
i −d̂

2
k

� �2r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1 k≠ið Þ Δxkk k22
q

þ n−1ð Þ Δxkk k22

c ¼ 1− exp
1
2

2 ln 10ð Þ
10η

σ

� �2
" #

ð21Þ

Proof. According to the radio propagation model of
distance-dependent path loss with lognormal fading [25],
we have:

Pr drð Þ ¼ P0−η10 log10
di

d0

� �
þ Xσ i ð22Þ

The distance between ith anchor and the unknown
node, denoted as di, should be calculated as

dk ¼ d010
P0−Pr drð ÞþXσi

10η ð23Þ
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However, since Xσ i is a physically immeasurable random

variable, the kth estimated distance, denoted as d̂k is
calculated as

d̂k ¼ d010
P0−Pr drð Þ

10η ð24Þ
Introduce a Δd2, which is defined as

Δd̂2
k≜d̂

2
k−d

2
k ¼ d̂2

k 1−10
2Xσi
10η

� �
ð25Þ

The mean of Δd2 is known as [3]

E Δd̂2
k

h i
¼ d̂2

k 1− exp
1
2

2 ln 10ð Þ
10η

σ

� �2
 !

ð26Þ

Consider the definition of bik , kth component of bi,

then the bik can be donated as

bik ¼ xkk k22þd̂2
k− xik k22−d̂2

i

� �
ð27Þ

In a practical localization system, the noise always ex-
ists in measurement data. It is defined as

bik≜b̂
i
k− Δb̂ik;1 þ Δb̂ik;2
� �

ð28Þ

We introduce Δb̂i;1 and Δb̂i;2 to denote the vectors

whose elements are b̂i;1 and b̂i;2, respectively. Thus, there is

E
b̂i

�� ��
2

Δb̂i

�� ��
2

 !
⩽

b̂i

�� ��
2

E Δb̂ik;1
� ���� ���

2
þ E Δb̂ik;2

� ���� ���
2

ð29Þ

where E Δb̂i;2

� ���� ���
2
¼ E Δd̂ i

� �
−E Δd̂k

� ���� ��� since the ran-

dom variables are independent and identically distributed.
Use Theorem 1, Combine (25), (29) and norm defin-

ition, the (20) and (21) are obtained.

4.3 Optimum algorithm of constructing LLS
Theorem 2 gives the numerical result of localization ac-
curacy influenced by node information and measure-
ment data. The theorem can handle the situation that
the positions of the anchor nodes can exist error. Al-
though the error upper bound is calculated in statistical
significance, Δbi/bi appears with a high probability,
which is tested in experiments.
Therefore, the minimum upper bound can be used as

a localization quality indicator of the LLS. An LLS con-
struction algorithm, optimum algorithm of constructing
LLS (OAC-LLS) shown as Algorithm 1, is proposed.
This algorithm utilizes the minimum upper bound to
choose the best candidate from the LLS set with a high
probability.

Remark: The environment parameter σ/η is needed to
calculate the Ei in (19). But, a estimated value can be
used. It will not significantly affect the result. It means
that the algorithm could be fully “blind” based on an as-
sumption value. Of course, any knowledge of parameter
can improve the algorithm performance. This conclusion
is discussed in Section 5.2.

5 Simulation and discussion
The following assumptions are used in experiments.

(i) We use three origin-anchor nodes, whose coordinates
are (0, 0), (50, 0), and (25, 50), respectively. The nodes
are numbered by their orders. The fourth node is a
pseudo-anchor whose coordinate is (25, 25). The fifth
node is a pseudo-anchor.

(ii)The radio propagation model uses distance-dependent
path loss with log-normal fading with Gaussian noise
N (0, 1.5).

(iii) The position of the unknown node is calculated as

x̂m ¼ ÂT
mÂm

� �−1
ÂT

mbm.

To distinguish the different LLS, which use different
anchor set of origin-anchors or pseudo-anchors, we
add a superscript on Âi to declare the used anchor

nodes. Therefore, Â1‐2‐3
1 means the LLS uses three nodes

whose numbers are 1, 2, and 3, and 1-st node are chosen
as BAN.

5.1 Evaluation indicator
The fundamental of algorithm is the mean of error upper
bound. It is noted that the upper bound is given in statis-
tical perspective. It is possible that the upper bound is
minimum while the localization is not optimum. The
evaluation indicator of algorithm should reflect that the
algorithm can choose optimum LLS or not using upper
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bound. Therefore, the coordinate error is unsuitable to
evaluate the algorithm performance.
To evaluate the efficiency of improving accuracy using

minimum rough upper bound, we introduce two counters:
(a) strict-match-counter (SMC) and (b) slack-match-count
(LMC). The counters work as following:

� SMC: Let initial value of SMC be 0. SMC increases
1, if and only if, the minimum of rough upper
bound and the minimum of localization absolute
error are both obtained when ith anchor is selected
as a BAN.

� LMC: It is similar to SMC. However, LMC increases
1 when localization absolute error is smallest or

second smallest in the case of the upper bound is
minimum with the same BAN.

5.2 Feasibility of the algorithm
Each value is the match count per 100 times simulations
using SMC. The calculation of minimum upper bound
uses σ/η = 0.65 in each time.
To calculate the upper bound by using Theorem 2, σ/η is

needed to obtain c. Experiments are implemented to illus-
trate the probability of construction optimum LLS varies
with σ/η. The fifth node is placed at (25, 6). σ/η = 0.65 is
used in each time of calculation of minimum upper bound.
As shown in Fig. 1, the probability of construction

optimum LLS varies with σ/η. The curve shows a

Fig. 1 Experiments result of probability of construction optimum
LLS varies with σ/η

Fig. 2 Experiments result that the minimum upper bound
matches with optimum LLS. The simulation is done 100 × 100
times, and each value is the match count per 100 times simulations
using SMC

Fig. 3 Experiments result that the minimum upper bound
matches with optimum LLS. The simulation is done 100 × 100
times, and each value is the match count per 100 times simulations
using LMC

Fig. 4 Each colored block represents the matching counts per 100
times using SMC, when the fifth node is fixed at a certain coordinate.
The noise is random in each time. The green starts are origin-anchors
and pseudo-anchor used to locate 5-th node
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trend that the probability is descent while the σ/η is
away from the precise value. It means that the algo-
rithm could be fully “blind” on the environment.
Meanwhile, any information of environment, such as
the possible range of σ/η, can greatly improve the al-
gorithm performance.

5.3 Randomness of the algorithm
Experiments are executed to test the randomness of the
algorithm. The fifth node is placed at (25, 6), and the ex-
periments are executed for 100 × 100 times.
As shown in Fig. 2, if the SMC is selected as an evalu-

ation indicator, the mean and standard deviation of

Fig. 5 Localization accuracies vary with different BANs. The unknown node is fixed at (25, 45), and noise is random in each time

Fig. 6 Minimum error upper bounds vary with different BANs. Each upper bound corresponds each localization accuracy in Fig. 5
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probability of choosing best LLS are 0.2959 and 4.57, re-
spectively. In the same way, shown in Fig. 3, if LMC is
used as an evaluation indicator, the mean and standard
deviation of probability of constructing best LLS are
0.3934 and 4.86, respectively. It is noted that there are
totally eight LLS can be constructed. The probability
choosing optimum LLS is 0.125. Our algorithm can gen-
erate the best LLS with a higher probability.

5.4 Effectiveness of the algorithm
Figure 4 shows the algorithm effectiveness varies with
change of the pseudo-anchor’s position. The algorithm is
more effective when the fifth node in the triangle zone
bordered by the first, third, and fourth nodes. While the
fifth node moves away the zone, the probability of con-
structing optimum LLS deceases. This phenomenon is
reasonable. The localization accuracy of fourth node is
stable and precise since the qualities of measurement

data are almost the same (Yang et al., [26]). It means
that the fifth node has an additional pseudo-anchor with
high accuracy besides four origin-anchors, which make
the upper boundary more valuable.
Although the algorithm does not have a good numer-

ical performance when the SMC is used as indicator, it
is noted that the worst accuracy will not be obtained, as
shown in Figs. 5 and 6. In fact, the localization accur-
acies are tightly close when the minimum upper bounds
are approximately the same, which is shown as enlarged
party of Figs. 5 and 6. Therefore, the algorithm is still ef-
fective in the perspective of improving localization
accuracy.
Additionally, Figs. 5 and 6 show that the curve of

absolute errors gently changes when the LLS is the
one with minimum upper boundary. It means that
the algorithm is stable. The factor of upper bound,
κ = ‖Âm‖2‖Âm‖2, is a condition number, which means
that the condition number of LLS will be smaller
when the upper bound is minimum. Therefore, the
algorithm, which uses minimum upper bound, is in-
sensitive to noise.

5.5 Performance evaluation
Experiments are done in our exhibition room. The sce-
nario is showed as in Fig. 7. All nodes are based on
CC2530. Four of them, which are considered as anchor
nodes, are fixed on the ceiling. The others are consid-
ered as unknown nodes. A laptop is used to sample data
and servers as localization server.
Figure 8 illustrates the cumulative distribution func-

tion (CDF) of localization errors. The experiment results
show that the error falls within the range of 2 m for over
90 % of points, and the 50 % accuracy is less than 1.2 m.
The algorithm 1 has a better performance than the

Fig. 7 Exhibition room

Fig. 8 CDF of localization error in exhibition room
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algorithm which BAN is chosen random. The probability
choosing optimum LLS is 0.125 since there are totally
eight LLS that can be constructed. However, this prob-
ability can approach 0.45 as simulated in Section 5.3.
Therefore, we can obtain more accurate coordinate
compared to the coordinate obtained when BAN is ran-
dom selected.

5.6 Computational complex
In some application of mobile autonomous robots, the
energy consumption and computation ability are con-
strained. It requires the localization to be realized on-chip.
Computational complexity, which is defined as the number
of operations performed by the algorithm [27], is always
used to evaluate the possibility implemented on chip.
Algorithm 1 consists of a choosing BAN process and a

least-squares algorithm. Assume the algorithm is used in
2D localization, in which case xi, Δxi(i = 1,⋯, n) are two
dimensional vectors. The time complexity of least-
squares algorithm will be O(n3). To find the best BAN,
we first execute n loops to obtain Ei(i = 1,⋯, n), then we
find the minimum Em which is the best BAN. It is noted

that Â†
i

�� ��
2 , ‖Âi‖2, Δxkk k22 , xk−xik k22 , d̂2

k , and d̂2
i −d̂

2
k

� �2
are repeated used in algorithm. The time complexity of

Â†
i

�� �� is 64n + 96 +O(2n) when using Matlab pinv func-
tion. The cost functions of other terms are shown as
Table 1.
Therefore, the time complexity of algorithm 1 is O(3n3).

The algorithm is more complex than the least-squares al-
gorithm. It is reasonable because the algorithm trades
computational complex off for localization accuracy. It is
also noticed that n is the anchor node number, which is a
small value in practice.

6 Conclusions
An upper bound of error propagation of iterative
localization is derived, which can be used in the situation
that the precise distribution of the environment noise is
unknown. The minimum upper bound is adopted to
evaluate the localization result of LLS with certain meas-
urement data. With this method, an optimum algorithm
of constructing LLS is proposed. Even when the environ-
ment noise is unknown or unpriced evaluated, the

algorithm still can construct the proper LLS with highly
probability, which means it can still obtain the best
localization accuracy with high probability.
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