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Abstract

When a wireless sensor network (WSN) is employed to monitor environmental data, efficient energy usage is
demanded so that the WSN lifetime can be extended. In this context, we propose a distributed energy conservation
algorithm (DECA). DECA considers the known past to make predictions on the measurement change over time in
order to put sensor nodes into sleep mode, saving energy. Sensor nodes compute their inactivity periods taking into
account the inactivity periods of their neighboring nodes. The signals are reconstructed at the sink node, from the
sampled values received from sensor nodes. DECA is designed to keep the reconstruction error of the monitored
process below a given fraction of its actual value. Since DECA works on the application layer, it can be combined with
medium access control and routing protocols to further improve energy management. The proposed algorithm is
evaluated with simulations using real data. Results show gains in the network lifetime of up to 1000 % as compared to
a WSN without any energy management, while maintaining the error of the reconstructed process at the sink within
the desired fraction imposed. Since a strategy for managing the sleeping period in routing nodes is proposed, a metric
for evaluating the effects of sleeping periods on network connectivity is also proposed. We have verified that the
network connectivity is not impaired by the proposed algorithm, as packet delivery ratios above 90 % were obtained.
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1 Introduction
Recent advances in micro-electronics and wireless com-
munications made it possible to develop and deploy low
cost, low energy consumption, and tiny sensors. These
have been used to build wireless sensor networks (WSNs)
[1]. A WSN can be applied in several domains [2–4], such
as (i) inmedical applications, to remotely monitor patients
and their biometric data; (ii) for military purposes, to
monitor forces; (iii) in industrial automation; and (iv) to
sense variables in a region of interest.
In this work, we consider that a WSN is employed to

sense a physical variable, a field—a process whose value
depends on space coordinates (x, y, z) and on time t. Each
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sensor Si samples the monitored process at its position
(xi, yi, zi) measuring s (xi, yi, zi, t) and, eventually, trans-
mits the measurement to a sink node (for the sake of
simplicity in the reminder, we ignore the coordinate z and
use the notation si(t) = s (xi, yi, t)). In a WSN, the sink is
usually more robust than the sensor nodes, and it can be
used as a gateway [1].
The problem that we consider is: How can we make

an energy-efficient usage of the WSN while providing
an acceptable reconstruction of the sensed field for the
monitoring application? As acceptable reconstruction, we
assume that the reconstruction error is kept below a pre-
defined value, while energy efficiency involves improving
the network autonomy, by increasing its lifetime. More
specifically, we assume that the network lifetime is the
time until the first node dies, i.e., when its energy ends [5].
In this work, we propose a distributed energy conserva-

tion algorithm (DECA) that runs in the application layer
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for wireless sensor networks in monitoring applications.
Roughly, each sensor independently considers informa-
tion which is expected to be available at the sink node
to predict a future measured value and this in turn is
used to compute the inactivity period (the interval while
the node stays in sleep mode) of a given node Si. Each
sensor node sleeps during its inactivity period, and then
the node wakes up, measures the desired quantity, and
transmits it if the error between the current measure-
ment and the predicted behavior of the monitored field
is larger than a given threshold, reiterating the process.
Energy saving and the resulting increase in network life-
time is achieved by both reducing the amount of trans-
missions and also by putting nodes to sleep during their
inactivity periods.
The decision whether or not to sleep is performed

by each node individually, that is locally. Nodes do not
depend on the reception of sleeping commands or data
from the sink. Therefore, when making this decision, two
aspects need to be considered. The first is that for comput-
ing its inactivity period (IPi), each node Si must consider
how the sink reconstructs the process from the mea-
surements the sink receives. As a consequence, in order
to guarantee a trusty reconstruction of the process, we
impose the constraint of keeping the reconstruction error
within an acceptable distortion criterion at the sink and
not solely at the sensor. Therefore, since each node takes
its own decision, the proposed strategy is decentralized
and distributed.
An important issue to be considered when computing

the inactivity/sleeping period of a sensor is: How does
putting a given node to sleep impact the network con-
nectivity? Therefore, the second aspect driving DECA
design refers to multi-hop networks, where nodes can
act both as sources (when they measure samples of the
monitored process) and as routers/relays (when besides
measuring they also forward packets from neighbors),
that is, the inactivity period of a sensor node must be
at least considered by a sensor that is routing its mes-
sages. Inversely, when deciding its inactivity period, each
node must account for the impacts of this decision on
network connectivity, that is, on other nodes. This is
considered in DECA; nodes forward their own inactivity
periods together with the measurements and an inactivity
period is used by the first-hop router when it computes its
inactivity period.
Therefore, although running in the application layer

and the decision of how long to sleep being taken
autonomously by each sensor, network topology and
routes awareness are inherent to DECA since the inactiv-
ity periods of sensors being routed by a node are consid-
ered by the node when deciding for how long to sleep. In
addition, a fringe benefit of forwarding inactivity periods
is that sensor nodes are not required to be synchronized,

since the algorithm does not demand an absolute time
base, employing just relative times (time intervals).
We should highlight that DECA differs from existing

proposals in the literature as (i) DECA is applied in the
application layer; (ii) DECA does not impose an uniform
sampling interval for the measurements time-series; (iii)
by design, DECA imposes the reconstruction error of the
sensed variable to be within an acceptable distortion cri-
terion; (iv) DECA is decentralized and distributed, since
each and every node decides by itself for how long to
sleep, although considering information about the nodes
it forwards packets for; and (v) DECA uses a determin-
istic approach for computing the node sleeping/inactivity
period.
Since nodes are put to sleep during their estimated inac-

tivity periods, in order to evaluate the impact of this in
the network connectivity, we propose a metric that we call
success ratio.
The proposed algorithm is assessed by simulations. The

IEEE 802.15.4 network standard, which is widely used in
WSNs, is considered in the simulations. In addition real
environmental data are employed. Results show a signif-
icant increase in the network lifetime by using DECA,
as compared to WSNs without any energy management
scheme. We have also verified that network connectivity
is not impaired by the algorithm, what, indeed, makes it
worth to use DECA on any monitoring application alike
the one considered by DECA.
This work is structured as follows. Section 2 presents

related works and proposals dealing with energy conser-
vation in WSNs. In Section 3, we present a model for
WSN based monitoring applications. In Section 3.2.1,
this model is used to size-up the impacts of putting
nodes to sleep in WSNs, and it is employed to derive
the proposed algorithm for saving energy in monitoring
applications (DECA). In Section 4, we describe DECA
algorithm implementation. In Section 5, we present the
sensor node energy model used in this work and the sim-
ulation aspects. In Section 6, we present results obtained
with simulations considering real environmental data. At
last, conclusions are discussed in Section 7.

2 Energy saving inWSNs
The design of node’s hardware, its miniaturization, and
energy harvesting have gained importance for WSN
deployment, but, at the same pace, methods leading to
energy saving in a WSN have also turned into an impor-
tant issue. In [6], a survey of energy saving methods for
WSNs is presented, including a taxonomy for energy sav-
ing schemes. Some energy saving methods are briefly
mentioned hereafter.
According to [1], communication (i.e., transmission and

reception) is the task that requires more energy in aWSN.
This means that it may be advantageous for a node to
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process data, in order to compress it or to decide whether
to transmit it or not and thus save energy while sleeping
[7]. In [8], spatial and temporal correlations between mea-
sured samples are used to decrease the amount of trans-
missions, saving sensor node energy. The sink predicts the
field being sensed by sensor nodes using information that
it receives from the nodes. Using the received data, the
sink estimates for how long each node can sleep and then
sends different messages for the distinct nodes conveying
their sleeping periods. This strategy is centralized as the
sink decides for how long the nodes can sleep, and a given
node may not be put to sleep at all, in the case that packets
are lost, thus severely impacting energy saving. Differently,
our strategy is completely decentralized, since each sensor
node computes its own sleeping period.
Similarly, in [9], the temporal pattern of samples mea-

sured by sensor nodes is used to reduce the amount of
transmissions to the sink node. The monitored process
is compared against its expected behavior, if they match
then the node does not transmit its value in order to
increase network lifetime. If the measurements do not
match the expected behavior, then the nodes transmit the
values. Since this scheme does not involve node sleeping,
a confinement of its gain in network lifetime is obtained.
DECA tries to track the monitored process and the sensor
nodes do not need to know (a priori) the behavior of the
process that is being sensed.Moreover, DECAmakes node
to switch into a sleeping mode, increasing the autonomy
of sensor nodes.
In [10], a sleep-awake scheme is proposed, in which

a network coordinator periodically transmits a beacon
frame with a sleeping command. Therefore, this scheme
is centralized and nodes enter the sleeping state syn-
chronously upon the reception of this command. To
improve energy saving, a power control mechanism in
the MAC sublayer is also proposed, based on the dis-
tance between neighboring nodes. In our proposal, sensor
nodes do not receive any sleeping command (which could
eventually be lost because of the wireless channel). Fur-
thermore, DECA runs at application layer of sensor nodes,
independently of lower-layer protocols.
In [3], a “derivative-based prediction” is employed in

each sensor node to manage the need for transmissions. It
simply allows each node to verify if the measured quantity
did not change enough, in which case it is not transmit-
ted. This approach resembles the one presented in [11].
The energy conservation algorithm in [11] aims at reduc-
ing the amount of transmissions by managing the need for
them. A sample is transmitted only if the percentage vari-
ation between it and the last transmitted sample is greater
than a given threshold and nodes sleep between transmis-
sions. The current proposal outperforms the previous one
[11] because DECA obtains a constrained reconstruction
error.

The proposals in [3, 8, 9] consider a uniform sampling
interval for the sampled measurements. This is similar
to the proposals for “signal compression” based on piece-
wise linear smoothing [12]. However, once a node is put
into sleep mode, the sampling is not uniform anymore;
this aspect emerged in [11] and is fully considered by the
algorithm presented in this work.
Finally, DECA can be used together with other energy

saving protocols, as for example the ones proposed to save
energy in the network layer and in the MAC sublayer
[13–18] in order to further augment energy saving.

3 Sensing and reconstructing a process with a
WSN

Figure 1 summarizes the problem of using aWSN to sense
a field. Sensor nodes are spread in a region of interest
and measure a collection of samples s(M)

i of a physical
quantity—i indicates the sensor and (M) is used to indi-
cate that these values are in principle known only by the
measurement node. As sensor nodes use an algorithm to
save energy by managing the necessity of communication,
a subset of their measurements is transmitted. The set of
transmitted samples by node i is s(T)

i . From node i, the sink
node receives the set s(R)

i . Since a wireless channel is used,
some packets may be lost and therefore s(R)

i ⊂ s(T)
i . From

the received samples, the sink reconstructs the field.

3.1 Measurements sampling, transmission, and reception
Let us assume that:

a) A measured sample s(M)
i may be transmitted or not,

i.e., it may generate a transmitted sample s(T)
i or not,

therefore s(T)
i ⊂ s(M)

i
b) A transmitted sample s(T)

i may be received or not, i.e.,
it may generate a received sample s(R)

i or not,
therefore s(R)

i ⊂ s(T)
i

c) The monitored process is considered to be sufficiently
smooth to be tracked with a simple predictor

d) The received samples are equal to the transmitted
samples, except by eventually lost data

Consider a sensor node Si and a sink node Ss. The mea-
surements collected by Si can be organized as a vector

s(M)
i =

[
s(M)
i

(
t(M)
i [1]

)
, s(M)
i

(
t(M)
i [2]

)
, . . . ,

s(M)
i

(
t(M)
i [N]

)]
,

(1)

where the t(M)
i [n], n ∈ [ 1 . . .N] are the measure-

ment/sampling times and are such that ti(M)[ j]<



da Rocha Henriques et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:163 Page 4 of 18

Fig. 1 Framework considered in this work

ti(M)[k] if j < k. One can also define the vector composed
of the instants when the elements of s(M)

i are measured

s(M)
i =

[
s(M)
i [1] , s(M)

i [2] , . . . , s(M)
i [N]

]
, and

t(M)
i =

[
t(M)
i [1] , t(M)

i [2] , . . . , t(M)
i [N]

]
. (2)

At the sink node, the reconstruction of the process is
done from the available information, which is in princi-
ple a subset of the measured samples. Since s(R)

i ⊂ s(T)
i ⊂

s(M)
i , reconstruction employs the received samples s(R)

i
and the corresponding times t(R)

i , i.e.,

s(R)
i =

[
s(R)
i [1] , s(R)

i [2] , . . . , s(R)
i [K]

]
and

t(R)
i =

[
t(R)
i [1] , t(R)

i [2] , . . . , t(R)
i [K]

]
. (3)

The values of the elements of t(R)
i are the measurement

times of samples that are transmitted by the sensors and
that are received by the sink. At any given time of the net-
work life the cardinality of s(R)

i is smaller than or equal
to the cardinality of s(M)

i , that is K ≤ N . One notes that
t(R)
i ⊂ t(M)

i and that s(R)
i ⊂ s(M)

i . Although, the mapping
from n in s(M)

i [n] to k in s(R)
i [k] is will be considered in

Section 3.3.

3.2 Reconstruction of the process
Let si(t) = s (xi, yi, t) be the value collected by sensor Si
placed at (xi, yi) over time and its reconstruction version
at the sink be ŝi(t) = ŝ (xi, yi, t). The reconstruction error
can be defined as

e (Si, t) = e (xi, yi, t) = si (t) − ŝi (t) . (4)

We want to reconstruct the process s (x, y, t) within an
acceptable error criterion. The reconstruction ŝi (x, y, t)
can be obtained using an interpolator.

3.2.1 Interpolator data
The sink forms the set of received samples from node
Si, s(R)

i . In order to save energy nodes do not transmit
all measured samples, i.e s(T)

i ⊂ s(M)
i . In addition, some

transmissions may be lost, therefore, s(R)
i ⊂ s(T)

i ⊂ s(M)
i .

For the moment, we assume that s(R)
i ≡ s(T)

i ; packet loss
impact is discussed in Section 6.
At time t, the set measurements collected by Si is

s(M)
i (t) =

{
s(M)
i

(
t(M)
i [ j]

)}
t(M)
i [j]<t

=
{
s(M)
i [ j]

}
t(M)
i [j]<t

.

(5)

This set allows to predict s(M)
i (t) using a causal predictor

ŝ(M)
i (t) = P

{
s(M)
i (t)

}
.

The prediction can also employ the instants of sample
measurements, t(M)

i (t) =
{
t(M)
i [ j]

}
t(M)
i [j]<t

, turning into

ŝ(M)
i (t) = P

{
s(M)
i (t), t(M)

i (t)
}
. (6)

Replacement of the superscript (M) by (R) provides a
predictor that can be applied at the sink node. It is impor-
tant to note that although the sets s(R)

i (t) and t(R)
i (t) are

defined similarly to s(M)
i (t) and t(M)

i (t), they are not the
same, since every measurement is neither transmitted by
the sensor nor received by the sink.

3.2.2 Error criterion
We impose the ratio between the predicted sample and its
actual value to be smaller than a fraction δ of the actual
value. This criterion at the node and at the sink translates
as

∣∣∣ŝ(M)
i (t) − s(M)

i (t)
∣∣∣ ≤ δ

∣∣∣s(M)
i (t)

∣∣∣ and∣∣∣ŝ(R)
i (t) − s(R)

i (t)
∣∣∣ ≤ δ

∣∣∣s(R)
i (t)

∣∣∣ . (7)
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Assuming the use of interpolators, the errors of the esti-
mated field in the sensor node and at the sink at a given
instant t are given by

e
(
s(M)
i , t

)
=

∣∣∣P {
s(M)
i (t), t(M)

i (t)
}

− s(M)
i (t)

∣∣∣ , and
(8)

e
(
s(R)
i , t

)
=

∣∣∣P {
s(R)
i (t), t(R)

i (t)
}

− s(R)
i (t)

∣∣∣ , (9)

while the error bounds in Eq. (7) impose

e
(
s(M)
i , t

)
≤ δ

∣∣∣s(M)
i (t)

∣∣∣ and e
(
s(R)
i , t

)
≤ δ

∣∣∣s(R)
i (t)

∣∣∣ .
(10)

Sensor nodes may estimate a future measurement
ŝ(M)
i [n]= ŝ(M)

i

(
t(M)
i [n]

)
from some known samples and

their measurement times. Similarly, we can use the
time interval between ŝ(M)

i [n] and s(M)
i [n − 1], given by

t̂(M)
i [n]−t(M)

i [n−1], for the node to sleep and save energy.
Putting this altogether, using the restriction e

(
s(M)
i , t

)
≤

δ|s(M)
i (t) , | we can estimate the inactivity period/sleeping

time of node i. This resembles the approach on “sig-
nal compression” in [12]; however, our approach neither
imposes nor assumes a uniform sampling (ti[n]= n�T).
The problem gets more interesting when one imposes

that the reconstruction (R) at the sink must closely match
the measured (M) process. This is described by∣∣∣ŝ(R)

i (t) − ŝ(M)
i (t)

∣∣∣ ≤ δ

∣∣∣ŝ(M)
i (t)

∣∣∣ , (11)

that is, we impose the reconstructed value at the sink
to be bounded by the error criterion with respect to the
measurement prediction at the sensor.
Considering that measurements are always posi-

tive (without any loss of generality), from Eq. (11),
two situations arise: (i) If ŝ(R)

i [n]> ŝ(M)
i [n], then

ŝ(R)
i [n]−ŝ(M)

i [n]≤ δŝ(M)
i [n] ⇒ ŝ(R)

i [n]≤ ŝ(M)
i [ n] (1 + δ)

and (ii) else if ŝ(R)
i [n]≤ ŝ(M)

i [n], then −ŝ(R)
i [n]+ŝ(M)

i [n]≤
δŝ(M)

i [n] ⇒ ŝ(R)
i [n]≥ ŝ(M)

i [n] (1−δ). These situations can
be easily combined into

1 − δ ≤ ŝ(R)
i [n]
ŝ(M)
i [n]

≤ 1 + δ. (12)

The parameter δ defines the error bounds (and may
be application dependent), as we show that it allows to
estimate for how long sensors can be put in sleepingmode.

3.2.3 First order predictor
A first order model for P {·} employs the last two samples
to estimate a future value: as the last two measured sam-
ples and instants of measurements, we have s(M)

i [ n − 1]
and s(M)

i [n−2], t(M)
i [n−1], and t(M)

i [n−2].We use t̂(M)
i [ n]

to denote an instant that has not passed yet, that is esti-

mated. Using these definitions, the predicted value (see
Fig. 2) is given by

ŝ(M)
i [n] = P

{
s(M)
i

(
t̂i(M)[n]

)
, t(M)
i

(
t̂i(M)[n]

)} = (13)

= s(M)
i [n − 1]+ s(M)

i [n − 1]−s(M)
i [n − 2]

t(M)
i [n − 1]−t(M)

i [n − 2]

×
(
t̂(M)
i [n]−t(M)

i [n − 1]
)
.

Assuming that all transmissions are successful, i.e.,
s(R)
i ≡ s(T)

i [k], a similar equation holds for ŝ(R)
i [k]

(the impact of breaching this assumption is evaluated in
Section 6).
We can define the differences (a) between the two

last measured samples, (b) between their sample times,
(c) between the two last transmitted samples, and (d)
between their sample times, using

�s(M)
i [n − 1] = s(M)

i [n − 1]−s(M)
i [n − 2] , (14)

�t(M)
i [n − 1] = t(M)

i [n − 1]−t(M)
i [n − 2] , (15)

�s(R)
i [k − 1] = s(R)

i [k − 1]−s(R)
i [k − 2] , and (16)

�t(R)
i [k − 1] = t(R)

i [k − 1]−t(R)
i [k − 2] . (17)

From these, we can define the variation rates

α
(M)
i [n − 1] = �s(M)

i [n − 1]
�t(M)

i [n − 1]
and

α
(R)
i [k − 1] = �s(R)

i [k − 1]
�t(R)

i [k − 1]
. (18)

Using the above notations, the first order prediction
rules become

ŝ(M)
i [n] = s(M)

i [n − 1]+α
(M)
i [n − 1](

t̂(M)
i [n]−t(M)

i [n − 1]
)
and (19)

ŝ(R)
i [k] = s(R)

i [k − 1]+α
(R)
i [k − 1](

t̂(R)
i [k]−t(R)

i [k − 1]
)
. (20)

A future sample is guessed using linear interpolation
which requires very low computational complexity and
memory requirements. As depicted in Fig. 2, this rule
could be used to estimate for how long the sensor node
can sleep at most. Nevertheless, one wants to keep the
reconstruction error at the sink within the bounds in
Eq. (11). Therefore, the influence of the quantities known
at the sink on the sensor decision to sleep or not needs to
be addressed.

3.3 How does information cognized at the sink influence
sensor nodes?

All information that is available at the sink about the mea-
surements of a sensor is known by the sensor itself. On
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Fig. 2 First order prediction

the other hand, the contrary is hardly true. Let us resort
the indices of the last two transmitted (received) sam-
ples and their instants of transmissions with respect to
the sample indices at the sensor. In doing so, we have
s(R)
i [n − j] (a measurement taken j samples before the
current one) and s(R)

i [n − (j + l)] (j + l samples before
the current) and their corresponding measurement times
t(R)
i [n − j] and t(R)

i [n − (j + l)]. The lags j and j + l indi-
cate that not all measured samples are transmitted to (nor
received at) the sink. Using this indexing strategy one has
that �s(M)

i [n − 1]= si[ n − 1]−si[n − 2], �t(M)
i [n − 1]=

ti[n− 1]−ti[n− 2], �s(R)
i [ n− 1]= si[n− j]−si[n− j− l],

and �t(R)
i [n − 1]= ti[n − j]−ti[n − j − l].

The variation rates in Eq. (18) are now given by

α
(M)
i [n − 1] = si[n − 1]−si[n − 2]

ti[n − 1]−ti[n − 2]
and

α
(R)
i [n − 1] = si[n − j]−si[n − j − l]

ti[n − j]−ti[n − j − l]
. (21)

Therefore, we have that Eqs. (19) and (20) can be
expressed as

ŝ(R)
i [n] = si[n − j]+α

(R)
i [n − 1]

(
t̂i[n]−ti[n − j]

)
and

(22)

ŝ(M)
i [n] = si[n − 1]+α

(M)
i [n − 1]

(
t̂i[n]−ti[n − 1]

)
. (23)

The predictions in Eqs. (22) and (23) are illustrated in
Fig. 3. Equation (22) estimates the next measurement (of
node Si) ŝ(R)

i [n] to be received at the sink, from the last
received measurements si[n − j] and si[n − j − l] and
their times. Meanwhile, Eq. (23) provides an estimate of
the next sample to be collected ŝ(M)

i [n] from the two last,
si[n − 1] and si[n − 2] and their times. Equation (23)
is applicable only at the sensor and it describes the
“local” behavior of the first order predictor while the data
employed to compute ŝ(R)

i [n] is available at the sensor and
also at the sink.

Fig. 3 Illustration of the computed estimates and inactivity period
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3.3.1 Inactivity period computation
Let us define the time interval between the last transmit-
ted sample and the next sample to be collected (IPi[n]) and
the time interval between the last transmitted sample and
the last measured sample (LPi[n]) of node Si, i.e.,

IPi[n] = t̂i[n]−ti[n − j] , and (24)
LPi[n] = ti[n − 1]−ti[n − j] . (25)

With these definitions, Eqs. (22) and (23) become

ŝ(R)
i [n] = si[n − j]+α

(R)
i [n − 1] IPi[n] , and (26)

ŝ(M)
i [n] = si[n − 1]+α

(M)
i [n − 1] ( IPi[n]−LPi[n] ).

(27)

Replacing Eqs. (26) and (27) in Eq. (12) to guarantee
the desired error bound, after simple manipulations, we
obtain the two inequalities

IPi[ n] ≤
si[ n − j]−si[n − 1] (1 − δ) + LPi[n]

[
α

(M)
i [n − 1] (1 − δ)

]
α

(M)
i [n − 1] (1 − δ) − α

(R)
i [n − 1]

, and

(28)

IPi[ n] ≥
si[ n − j]−si[n − 1] (1 + δ) + LPi[n]

[
α

(M)
i [n − 1] (1 + δ)

]
α

(M)
i [n − 1] (1 + δ) − α

(R)
i [n − 1]

.

(29)

The sensor is aware of its transmissions to the sink.
Therefore, one applies the sink reconstruction model at
the sensor for obtaining an acceptable range for its inac-
tivity period, IPi[n]. This range is guaranteed by choosing
the smallest case between Eqs. (28) and (29). The accept-
able range of IPi[n] for a given sensor node i guarantees a
reconstruction error within a prescribed error at the sink.
This ranges depends on (i) the relationship of the varia-
tion rates of the sensor at the sink α

(R)
i [n − 1] and at the

sensor itself α
(M)
i [n − 1]; (ii) the distortion bound δ; and

(iii) the time interval between the last transmitted sample
and the last measured sample, LPi[n].
Considering the use of a simple linear predictor, we

derived for how long a node can sleep while the recon-
struction is within an allowed distortion range. For that
each sensor compares the predictor model available at
the sink for its measurements against a predictor model
for the sensor, which is more frequently updated, i.e.,
it considers non-transmitted measurements. It is worth
noticing that other more sophisticated interpolators as
spline, cubic, or polynomial could also be evaluated. Next,
we use this linear predictor to propose DECA.

4 Distributed energy conservation algorithm for
wireless sensor networks – DECA

DECA works directly in the application layer of each
sensor node, regardless, for example, of the routing pro-
tocol used. The steps of the algorithm are showed in

Algorithm 1. The algorithm is presented for a node Si
and considers the sensor energy Ei and that the sensor
runs until its energy ends. That is, at each step of the
algorithm, Ei is decreased accordingly to the task that
is performed (see Section 5.1). The inactivity period is
initially set to Tgranularity seconds and it is updated by
DECA at each sensor. After that, the sensing–processing–
(eventual) transmission–sleeping procedure occurs. For
ease of understanding, Algorithm 1 is presented in two
parts: the first one describes the initialization of sensor
nodes (this takes two sampling to have the measurement
and transmission queues filled (lines 4–19); the second on
is the “main loop” (lines 20–35), in which nodes transmit

Algorithm 1: DECA running at node Si.
// INITIALIZATION:

1 n ← 1;
2 p ← 1;
3 IPi[ n]← Tgranularity;
4 while n ≤ 2 do
5 measure s(M)

i [ n] at t(M)
i [ n]

(s(M)
i [ n]= s(M)

i (t(M)
i [ n] ));

6 if n = 2 then
7 IPi[ n]← minimum between Eqs. (28) and (29);
8 if there are packets to forward from neighbors then
9 forward the data from the neighbors;

10 IPi[ n]← min
(
IPi[ n] , {IPk[ n] }k∈SNi

)
;

11 end
12 end
13 s(T)

i [ p] ← s(M)
i [ n];

14 t(T)
i [ p] ← t(M)

i [ n];
15 transmit s(T)

i [ p] and t(T)
i [ p] together with IPi[ n];

16 sleep for γ IPi[ n] seconds;
17 p ← p + 1;
18 n ← n + 1;
19 end

// MAIN LOOP:
20 while Ei > 0 do
21 measure s(M)

i [ n] at t(M)
i [ n]

(s(M)
i [ n]= s(M)

i (t(M)
i [ n] ));

22 IPi[ n]← minimum between Eqs. (28) and (29);

23 if
∣∣∣ŝ(M)
i [n]−s(M)

i [n]
∣∣∣

s(M)
i [n]

> δ then
24 if there are packets to forward from neighbors

then
25 forward the data from the neighbors;
26 IPi[ n]← min

(
IPi[ n] , {IPk[ n] }k∈SNi

)
;

27 end
28 s(T)

i [ p] ← s(M)
i [ n];

29 t(T)
i [ p] ← t(M)

i [ n];
30 transmit s(T)

i [ p] and t(T)
i [ p] together with IPi[ n];

31 p ← p + 1;
32 end
33 sleep for γ IPi[ n] seconds;
34 n ← n + 1;
35 end
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only if the error between the current measurement and
the predicted behavior of themonitored field is larger than
allowed.
In Algorithm 1, n indexes the current measurement

(s(M)
i [n] at t(M)

i [n]) and p the current transmission (s(T)
i [p]

at t(T)
i [p]). We use these two distinct indices because some

measurements are not be transmitted. Once a node wakes
up, it measures the quantity and compares the sampled
value against the predicted one, then the node transmits
the new value only if the error is larger than δ. This is
a basic procedure for saving energy, since unnecessary
transmissions are avoided. Following, the sensor node
updates its inactivity period and sleeps again.
The sleeping period reduction factor γ (0 < γ ≤ 1) is

used to increase the probability of Si to be awake to for-
ward packets from its neighbors. Experiments evaluating
the impact of γ on DECA are presented in Section 6.2.
More details on how DECA considers neighbors (when
the sensor has to route data from other sensors) and the
reasons for the use of γ are presented in the following.

4.1 Neighbors, routing, and their inclusion in DECA
A given node may act as router for others. The sleeping
period of node Si must consider the impact it may pro-
voke on the transmission of the neighbor sensors that use
it as a router. In lines 8–11 and 24–27 of Algorithm 1,
the node verifies if there are packets to be forwarded. If
not, then the inactivity period IPi[n] depends solely on the
quantities that the sensor measures and the ones already
available at the sink for reconstruction. Otherwise, the
actual inactivity period of the node must consider also the
sleeping period of its neighbors.
Therefore, for router nodes, the inactivity period IPi of

each network node Si must consider the inactivity periods

of its neighbors (nodes that use Si as a router), because
Si has to be awake to forward packets from them. DECA
considers that by making the inactivity period of a sensor
Si to be defined by

IPi[n]= min
(
IPi[n] , {IPk[n] }k∈SNi

)
, (30)

where each IPk[n] represents the inactivity period of each
neighbor of Si and SNi represents the set of neighbors of
Si. In this work, Eq. (30) is applied at each sensor node
in the WSN, since any of them can act as a router. The
impact and effectiveness of such an strategy are evaluated
in following sections. Figure 4 exemplifies a node scenario
with its neighboring nodes; node Si is assumed to have
#SNi neighboring nodes (in the example, there are four
neighboring nodes—Sj, Sk , Sl, and Sm—whose packets are
routed by node Si).

4.2 Some comments on DECA and its parameters
DECA aims at tracking the variation rate of the monitored
process. Nodes should sleep for shorter periods when the
monitored process varies more rapidly because they have
to transmit more packets. Otherwise, nodes tend to sleep
for larger periods when the variation of the monitored
process reduces.
DECA has a very low complexity, as each node Si basi-

cally computes the bounds on IPi from Eqs. (28) and (29)
and chooses the smallest value. If the node also acts as
router then it computes the minimum among that bound
and the inactivity periods received from neighbors. Each
sensor needs to store just the last two measurements
of the process and their corresponding measurements
instants as well as the two last transmitted measurements

Fig. 4 Example of a sensor role in a network
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and correspondingmeasurements instants. In the case the
node is a router, it is also required to store a list with the
inactivity periods of nodes that use it as a router.
As discussed, DECA employs three parameters: (1) an

initial sampling interval (Tgranularity) or inactivity period
(which is adjusted locally in each sensor regarding what
it measures); (2) δ, the acceptable maximum fraction of
distortion; and (3) the parameter γ used to augment the
probability of the node to be awaken to forward packets
from its neighbors.
The parameter Tgranularity is the initial sampling inter-

val. It is adjusted by DECA as time goes by. The inactivity
period is initially defined to be equal to Tgranularity. As the
nodes sleep during their inactivity periods, samples are
taken when the nodes wake up, and therefore it is inherent
to DECA sampling the process at a non-uniform sampling
rate whose elapsed time between samples is adaptively
adjusted. One should note that this time lapse is not the
period of the sensor clock, which, in actual deployments,
for an awake sensor, is orders of magnitude shorter than
this time lapse between successive samples. The param-
eter δ is defined considering the maximum percentage
error allowed in the reconstruction process. The parame-
ter γ is also defined for DECA deployment. The influences
of both on DECA are thoroughly evaluated in the sequel.

4.3 Some comments on sensors clocks and sampling
times

Synchronization of sensor nodes would require at least
some message exchange among them, consuming energy.

Therefore, sensor clocks may have small deviations from
one to another. However, in our approach, sleeping inter-
vals are computed neither in function of clock pulses
nor using time instants. This somehow mitigates drift
among sensors clocks. The sleeping interval is obtained
from counting clock cycles; therefore, mismatches among
sleeping periods are smaller than they would be if instead
one considers sensor clock counts since their turning-on
instants. Consequently, there is no large impairment on
the network connectivity when altering sensor duty cycles
as employed by DECA.
Figure 5 presents chronograms of sensor states

(between awake or asleep) for nodes in a WSN. More
specifically, the states in function of time for one relay
and its two neighbors are presented as time goes by. The
chronograms were obtained from a simulation run with
time granularity of 1 s (sensors stay active during the
granularity period). As presented in Algorithm 1, sensor
nodes transmit their measurements when in the active
state (if the variation of the measured quantity requires
that). A relay listens, receives, and forwards transmissions
from its neighbors and also acquires and transmits its own
measurements. One notes that a sensor node may only
transmit packets to its relay when in the active state. For
the packet to be received, the relay must also be active.
Consequently, only if there is an intersection (over time)
between the active periods of the sensor node and its cor-
respondent relay, the packet may be received (if there is
no collisions or other reasons for outage in the physical
layer). In addition, one readily notes from Fig. 5 that the

Fig. 5 Example of chronograms of the changes between active (awake) and inactive (asleep) states in a WSN with two sensors and one relay, for
time granularity of 1 s
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relay node sleeps for shorter periods than sensor ones, an
expected from Eq. (30) and Algorithm 1.

5 Performance evaluation
5.1 Energy model
We assume that each node operates switching between
two states: (i) inactive—an energy saving state (sleep
mode) [7], in which the sensor radio interface is switched
off or (ii) active. In active state, a node is in one of four
operation modes: (a) measuring, (b) processing, (c) trans-
mission, and (d) receiving. Therefore, a state-based energy
model is adopted in this work. We have extended the
energy model in [19] —an empirical model for TELOS
commercial hardware—to consider the different opera-
tion modes.
The energy consumption of a node is estimated as a

function of the period of time in which the node stays
in the inactive and the active state and in the different
operation modes. Therefore, one can use

ÊC =tI × CI + tA × CA + tM × (CA + CM) + tP
× (CA + CP) + tR × (CA + CR) + tT × (CA + CT ),

(31)

to evaluate energy consumption, in which tI , tA, tM, tP, tR,
and tT are, respectively, the cumulative sum of intervals
in which the node remains in inactive and active states,
and in measuring, processing, receiving, and transmitting
operation modes.
In the active state, a fixed consumption of 10 mJ/s is

taken into account; this consumption does not consider
performing any specific task. In the transmission mode, a
linear relationship between energy consumption and the
payload size of the transmitted packet was observed, while
for reception, energy consumption was observed to be
independent of payload size [20]. Moreover, a consump-
tion of 0.034mJ for transmitting 1 byte during 0.58ms was
observed [19]. Meanwhile, for reception and sleep modes,
62.4 and 1.8 mJ/s of consumption are reported [19],
respectively. Summarizing, the associated consumptions
to each state and mode of the energy model employed are
presented in Table 1.

5.2 Simulation scenario
WSNs monitoring environmental data (temperature and
humidity signals) are considered. Data comes from the
WSN of the Intel Berkeley Research lab, where for
more than a month, 54 nodes sensed environmental data
[21, 22]. These data correspond to temperature and
humidity signals (among others), which indeed depend on
the sensor node coordinates xi and yi and on time t (i is
the index of a given node Si); we use sTi(t) = sT (xi, yi, t)
and sHi(t) = sH(xi, yi, t), to refer to them, respectively.

Table 1 Energy consumption parameters employed in the
simulations
Node initial energy (J) 2.00

Transmission power (dBm) −5

Reception sensibility (dBm) −66

Radio range (m) 40

CI : Inactive state consumption (mJ/s) 1.80

CA : Active state consumption (mJ/s) 10.00

CM : Measuring mode consumption (mJ/s) 18.00

CP : Processing mode consumption (mJ/s) 18.00

CR : Rx mode cConsumption (mJ/s) 62.40

CT : Tx mode cConsumption (mJ/s) 58.62

Payload size (byte) 1

Amulti-hop communication model is considered, using
the ad-hoc on demand distance vector (AODV) routing
protocol [23, 24], in order to forward packets hop-by-hop
from sources to the sink. Initially, aWSNwith 15 of the 54
nodes of the Berkeley WSN is considered. The sink node
is located in the position of node S20 of [21], (0.5,17) in
meters. Coordinates are relative to the upper right corner
of the lab. In each simulation run, the positions of the 14
sensor nodes are drawn from the remaining 53 nodes.
The presented simulations consider as benchmark a

WSN at which nodes sample and transmit the sensed vari-
able at Rs = 1/Tgranularity. DECA starts with the same
value for sensors inactivity periods. However, this value is
adjusted for each and every sensor, as samples are taken
and packets are transmitted. In addition, sensors are con-
sidered to have an initial energy of 2J stored in their
batteries.
We consider that all sensor values are correct, with-

out noise. As the sensed process is reconstructed at sink,
DECA imposes that the reconstruction error has to be
kept within an acceptable distortion criterion, defined
by δ.
Simulations were performed using TrueTime 1.5 [25], an

environment based in MatLab/Simulink, and the network
standard was the IEEE 802.15.4 [26, 27]. The CSMA/CA
MAC sublayer protocol with no beacons is employed,
and therefore, packet losses can occur due to collisions.
We also consider a log-distance path loss model as a
propagation model.

5.3 Evaluation criteria
The criteria used to evaluate the results obtained with
DECA are:

• Reconstruction error: This is defined in Eq. (4). In
addition, to obtain a more precise evaluation of the
reconstruction error, we employ the cumulative
distribution function (CDF) of it in our analyses.
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• Transmission decrease: This evaluates the reduction
in the amount of transmissions (in %) as compared to
a network without any energy management—for
identical node positions and operation starting times.

• Lifetime: As pointed out in Section 1, we adopt as
network lifetime the elapsed time until the first node
exhaust its energy.

• Lifetime increase: This evaluates the increase of the
network lifetime in percentage, by comparing the
network lifetime using DECA against the lifetime of
the network (for identical node positions and
operation starting times) without any energy
management scheme.

• Packet delivery ratio: This is the ratio between the
amount of received packets and the amount of
transmitted packets.

• Success ratio: This is the ratio between the amount of
packets that a node Si has forwarded to the sink Sr
and the amount of packets that its neighbors
forwarded to it, that is, the success ratio considers all
packets that Si has to forward, even if it is sleeping.
Therefore, one defines

SRi =
∑N

j=1 forwarded packetsj...Ni∑N
j=1 forwarded packetsij...N

, (32)

in which i is the index of a relay node Si, and j . . .N
are the indexes of each neighbor of Si. This metric
aims at evaluating the amount of packets that may
have been lost by a given relay Si.

The success ratio of Si in forwarding packets from its
neighbors may vary with its inactivity period IPi. If Si
sleeps for a long period, in order to save energy, then a
reduction in the success ratio may be observed due to pos-
sible packet losses. Then, a direct influence of γ on the
success ratio is expected. Another relevant issue that must
be investigated is the influence of the quantity of neigh-
boring nodes #SNi that use Si as relay node on the success
ratio. One can expect the success ratio to be affected by
#SNi. Figure 4 presents an example in which node Si for-
wards packets from its neighbors SNi = {Sj, Sk , Sl, Sm} to a
sink node Sr . We employ such scenarios both to evaluate
the success ratio and to analyze the network connectiv-
ity. More specifically, the effects caused by (1) the factor γ

and (2) the amount of nodes using Si as a router in both
success ratio and packet delivery ratio are addressed.

6 Results
Initially, we consider a fifteen-node WSN used to sense
temperature and humidity real data that uses a multi-hop
communication to forward packets from sensor nodes to
the sink. For the presented results, γ = 0.5 (the effects of
γ are investigated in Section 6.2) and threshold δ values of
1, 2, 5, and 8 % are used. Each simulation scenario is run

ten times (randomly selecting the 15 nodes composing the
WSN from the 54 possible ones), and 95 % confidence
intervals for the mean are used when applicable in result
graphs, where these intervals are represented by vertical
bars.
Results are presented in four subsections, aiming at

evaluating different aspects. In the first subsection, the
objective is to evaluate the proposed algorithm in aug-
menting network lifetime, while keeping the error within
a predefined fraction. In the second subsection, one aims
at evaluating how relay nodes behave when executing the
algorithm. In the third, it is investigated how the algo-
rithm behaves in terms of network scalability; networks of
different sizes are considered. In the fourth, one aims at
investigating the impact of the time granularity in the sim-
ulations with DECA, so that possible bias in the evaluation
criteria can be overcome.

6.1 Overall algorithm evaluation
Figure 6 presents the percentage reduction in the amount
of transmissions and the network lifetime increase, in
function of δ, for the monitored environmental data: tem-
perature and humidity. The percentages are computed
with respect to networks without any energy manage-
ment strategy; nodes take measures and transmit them
periodically at Tgranularity. We consider a Tgranularity of 0.1
s. It should be noted that the actual sampling rate used
in the WSN in [21] was 31 s. Here, we assume that the
data from [21] is originally sampled at 0.1 s instead of
31 s, that is, as if the process were faster than it origi-
nally is. The results for other sampling rates are presented
in Section 6.4. Figure 6 shows that increasing δ leads
to a reduction of transmissions and therefore augments
the network lifetime. Increasing δ makes nodes transmit
measured samples with greater variation rates because a
larger reconstruction error is allowed. Therefore, nodes
may have larger sleeping periods and then transmit fewer
measurements. Figure 6 shows gains in the network life-
time of up to 1000 % as compared to a WSN without any
energy management.
Figure 7 shows the cumulative distribution function

(CDF) of the reconstruction error of the monitored sig-
nals (temperature and humidity) for the different δ. These
curves allow to evaluate if the reconstruction error is kept
within the desired threshold δ. The increase of δ leads
to the increase of the largest reconstruction error. This
behavior is in consonance with results presented in Fig. 6
and derives from the fact that as δ increases, fewer samples
are used to reconstruct the monitored signals. However,
more important is to observe in Fig. 7 that the reconstruc-
tion error is always smaller than the set threshold (δ). In
order to show that explicitly, Table 2 shows the maximum
percentage reconstruction error, in function of the param-
eter δ, for the two monitored fields. It can be verified
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Fig. 6 Transmission decrease and lifetime increase × δ

that the imposed constraint (reconstruction error within
a desired fractional margin) is satisfied in all cases.
We can observe from Fig. 7 and from the data in Table 2

that the reconstruction error for humidity is greater than
for temperature. In order to understand this, we evalu-
ate the variation rate of the monitored signals. Using their
partial derivatives, we have

sT ′
i (t) = ∂sTi(t)

∂t
and sH ′

i(t) = ∂sHi(t)
∂t

. (33)

This provides an idea of the process variation rates.
Considering all sensor nodes and sensoring time, for the
temperature field, the maximum of this rate is 0.0294 °C/s,
and for the humidity field, the maximum is 0.202 %/s.
The means of these variation rates are 0.00002 °C/s and
0.00051 %/s, respectively. The humidity signal presents a
larger variation rate than the temperature signal, being
thus a faster process. As DECA considers the variation
rate of the signal, the greater the variation rate, the higher
the number of required transmissions. Thus, DECA

requires more transmissions for monitoring humidity
than for temperature, an inherent feature of the adaptive-
ness of DECA. This explains the less significant lifetime
increase (LI) when monitoring humidity, as shown in
Fig. 6. In addition, when using DECA, as the variation
rate decreases, nodes tend to sleep for larger time peri-
ods. For example, considering δ = 2 %, the means of the
inactivity periods over all nodes and times are 3.7118 and
1.1659 s when DECA is applied for monitoring temper-
ature and humidity, respectively; the maximum values of
the inactivity periods are 14.6594 and 10.4643 s, respec-
tively. These values show that DECA correctly adapts the
sleeping periods of sensor nodes according to the behavior
of the physical quantity being monitored.
Table 3 shows the packet delivery ratio (PDR) for differ-

ent δ when considering the monitoring of both signals. A
95 % confidence interval for the mean is also presented.
PDRs above 90 % were obtained in all cases. For larger
δ, nodes sleep more, impacting more severely network
connectivity. Moreover, we verified smaller values of PDR

Fig. 7 Reconstruction error CDF of temperature and humidity signals
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Table 2 Maximum percentage reconstruction error (emax) × δ

δ (%) Emax (%)—temperature Emax (%)—humidity

1 0.1987 0.5430

2 0.2526 0.7615

5 1.9479 2.6297

8 3.0879 4.2182

for the case in which the nodes were monitoring humid-
ity. Since this signal presents a larger variation rate, then
more transmissions are required for it, which may cause
more contention to access the medium and consequently
collisions.

6.2 Relay nodes
We now analyze how DECA impacts WSN nodes that
route packets for other nodes. In this scenario, the topol-
ogy considered is exemplified in Fig. 4, in which node
Si has to forward packets from its neighbors to the sink
node Sr . We consider cases in which Si has 1, 5, and
13 neighbors. The WSN is monitoring temperature and
δ is set as 2 %. Since γ makes nodes sleep for a frac-
tion of the computed inactivity periods, the values in the
set {0.1, 0.3, 0.5, 0.7, 0.9} are examined. Figure 8 shows the
evaluation of network connectivity in two perspectives: (i)
micro, by analyzing the local connectivity of the relay with
the success ratio metric and (ii) macro, by analyzing the
packet delivery ratio metric. In each case, the presented
results are means for ten runs and the 95 % confidence
intervals are also shown.
As γ increases, the node Si sleeps for a period of time

closer to the minimum inactivity period among the ones
of its neighbors. It is expected to augment the probability
of Si not to forward packets from its neighbors because
it may sleep for longer periods. In Fig. 8, we can see
this behavior. As γ increases, there is a decrease in suc-
cess ratio (SR). Furthermore, if Si has to forward packets
from a larger number of neighbors, this situation wors-
ens. For the same reason, it is also observed that as γ

increases, PDR decreases, meaning that the network is
losing connectivity.
Since in this work one aims at the energy-efficient

reconstruction of a monitored process by a WSN, it is
important to evaluate how γ affects the energy consump-
tion of sensor nodes. For the topology exemplified in

Table 3 Packet delivery ratio (PDR) × δ

δ (%) PDR (temperature) PDR (humidity)

1 0.9774 ± 0.0045 0.9546 ± 0.0050

2 0.9750 ± 0.0045 0.9500 ± 0.0030

5 0.9420 ± 0.0050 0.9333 ± 0.0100

8 0.9180 ± 0.0150 0.9166 ± 0.0080

Fig. 4, where Si has to forward packets from its neigh-
bors, one knows that the IP of Si (IPi) is a function of the
inactivity period of its neighbors and also of γ , as pre-
sented in Eq. (30). As γ ∈ (0, 1), Eq. (30) implies that
the smaller the γ value, the shorter the IPi. As a conse-
quence, the smaller the γ , the lower the energy savings
because the node wakes up more frequently and makes
more transmissions. Figure 9 shows LI in function of γ ,
for δ = 2 % when 1, 5, and 13 neighboring nodes (#SNi)
are served by Si as router. As expected, one observes that
increasing γ leads to an increase of the network lifetime
independently of #SNi because nodes can sleep for longer
periods. When #SNi increases, the sleeping task becomes
more critical as there are more packets to forward and the
gain in network lifetime decreases, although these gains
are still significant.
However, one should still ponder if connectivity and

network lifetime are somehow related. Let SRγ , PDRγ ,
and LIγ be vectors containing the values of SR, PDR, and
LI, respectively, for a given γ obtained with different runs.
One can compute the correlation coefficient between SRγ

and LIγ , between PDRγ and LIγ , and between PDRγ and
SRγ , to evaluate the joint behavior of each variable pair.
The correlations coefficients are given by

Corrγ (SR, LI) =
〈
SRγ ,LIγ

〉
‖SRγ ‖ ‖LIγ ‖ , (34)

Corrγ (PDR, LI) =
〈
PDRγ ,LIγ

〉
‖PDRγ ‖ ‖LIγ ‖ , and (35)

Corrγ (PDR, SR) =
〈
PDRγ , SRγ

〉
‖PDRγ ‖ ‖SRγ ‖ . (36)

In these, 〈x, y〉 is the inner product between x and y and
‖x‖ is the norm of x.
Figure 10 shows these correlations for DECA with δ =

2 % with different neighboring nodes. The solid and
dashed curves present the correlations between the suc-
cess ratio and lifetime and between packet delivery ratio
and lifetime, respectively. In these curves, it is observed
that the absolute value of the correlation reaches the max-
imum at γ = 0.5, where the statistical relationship is
stronger.
The dotted curves in Fig. 10 show the correlations

between the packet delivery ratio and success ratio. Since
both metrics decrease in function of γ (as seen in Fig. 8),
their correlation is positive.

6.3 Network scalability
The increase in the number of nodes in a WSN may
cause more transmissions and more contention for the
physical medium. This may influence energy conservation
by sensor nodes and network connectivity and also the
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Fig. 8 Success ratio and packet delivery ratio × γ for δ = 2.0 %

reconstruction of the monitored process. Thus, we evalu-
ate network lifetime, packet delivery ratio, and reconstruc-
tion error of the sensed field, considering WSNs having
different quantities of sensors. The impact of the network
scalability on DECA is evaluated considering the monitor-
ing of temperature [21] with 15, 30, and 50 nodes; which
translate into varying node density, since the monitoring
area is unaltered.
Figure 11 shows LI in function of δ for the 15-, 30-,

and 50-node WSNs. As expected, in the three cases, as
δ increases also does LI (this was already observed in
Fig. 6). One can also observe that for a given δ there is
an increment in LI as the sensor density increases. Since
network lifetime is defined here as the time period until
the energy of the first node ends, the energy of routers
may end sooner as the sensor density diminishes. If the
WSN has more nodes then its sensor density increases
and packet forwarding tasks can be shared among more
routers, resulting in a better balance of energy consump-
tion, redounding in the network lifetime increase.

Another aspect that can be impacted by sensor density
is network connectivity. The greater the number of nodes
in themonitored area, the greater the number of transmis-
sions, which could lead to an increase in the contention
for the medium. This behavior may result in more colli-
sions, thus affecting network connectivity. In Fig. 12, this
is addressed by presenting the PDR for the three differ-
ent network densities, where a decrease in the PDR can
be observed as the quantity of nodes (network density)
increases.
Moreover, the impact of the scalability in network con-

nectivity may affect the reconstruction of the monitored
field. As packets are lost, there are fewer samples available
to reconstruct the field. Corroborating this, one observes
in Fig. 13 that the reconstruction error increases with the
quantity of sensors in the network—the network density
(Fig. 13 considers δ = 1 %). However, from the graphs in
Fig. 13, it is also verified that the constraint imposed by
the algorithm of keeping the reconstruction error within a
prescribed fraction is satisfied, even for the 50-nodeWSN.

8

Fig. 9 Lifetime increase × γ for δ = 2.0 %
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Fig. 10 Correlations between SR and LI, between PDR and LI, and between PDR and SR. NN refers to the number of neighboring nodes

Fig. 11 Lifetime increase × δ

Fig. 12 Packet delivery ratio × δ
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Fig. 13 Reconstruction error CDF for δ = 1.0 %

Fig. 14 Transmission decrease and lifetime increase × δ, for a time-base value of 1 s

Fig. 15 Reconstruction error CDF of temperature signal, for a time-base value of 1 s
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6.4 Time granularity
In the previous analyses, time granularity was 0.1 s; the
process is assumed to be sampled at this rate, and the
nodes of the WSN that we have compared DECA against
simply sample the signal of interest at 0.1 s and transmit
it to the sink. In this section, we investigate the perfor-
mance of DECA when other time bases are considered.
The aim of such study is to evaluate the performance of
DECA for processes having different speeds in function of
time. We do that by using three scenarios of different sig-
nal sampling rates 0.1, 1, and 31 s. For this experiment,
one reconstructs the temperature signal and a fifteen-
node WSN is used. We also set γ = 0.5 and thresholds
δ ∈ {1 %, 2 %, 5 %, 8 %} are employed.
Figure 14 shows the percentage reduction in the amount

of transmissions and the network lifetime increase, in
function of δ, with respect to a WSN in which the sen-
sors simply sample and transmit measurements to the
sink, with Tgranularity = 1 s. A significant reduction in the
amount of transmissions on the network and a significant
lifetime increase (of more than 120 %) are observed. These
are similar to the results observed for Tgranularity = 0.1 s.
Albeit the transmission decrease is very similar in both
cases, the gains in network lifetime are now smaller. This
reduction in the gain of network lifetime is explained by
the fact that the initial energy of nodes is the same (2J) for
the two values of Tgranularity.
The cumulative distribution function (CDF) of the

reconstruction error of the monitored temperature signal
for different δ is presented in Fig. 15. It can be observed in
Fig. 15 that the reconstruction error for Tgranularity = 1 s is
always smaller than the threshold, obeying the proposed
constraint.
We increased the time granularity up to 31 s obtain-

ing similar results. Table 4 shows the PDR for time-base
values of 0.1, 1, and 31 s and different δ. Ninety-five
percent confidence intervals for the mean are presented.
PDRs around 90 % and above are obtained, showing that
the network connectivity is sustained for the different
scenarios.

7 Conclusions
In this work, we proposed a distributed energy conser-
vation algorithm (DECA) for WSNs, in order to increase

Table 4 Packet Delivery Ratio (PDR) × δ, for time-base values of
0.1, 1, and 31 s

δ (%) PDR PDR PDR

(Tgranularity = 0.1 s) (Tgranularity = 1 s) (Tgranularity = 31 s)

1 0.9774 ± 0.0045 0.9579 ± 0.0018 0.9182 ± 0.0013

2 0.9750 ± 0.0045 0.9543 ± 0.0012 0.8959 ± 0.0017

5 0.9420 ± 0.0050 0.9341 ± 0.0020 0.8944 ± 0.0013

8 0.9180 ± 0.0150 0.9106 ± 0.0033 0.8815 ± 0.0014

the network autonomy in monitoring applications. DECA
uses data about the sensed process that is available at
a node to estimate measured values and sleeping peri-
ods. By design, DECA imposes the reconstruction error
of the monitored process to be lower than a prede-
fined value. This is done by using linear predictors; these
allow to easily find bounds on the sleeping periods for
each node.
In DECA, the decision of how long a node can sleep is

taken locally by each sensor node, that is, it is distributed
and decentralized. To consider data routing, nodes trans-
mit their sleeping periods together with the monitored
process data so that routers can account for that in their
decisions to sleep or not. A sleeping period factor is used
in DECA to increase the probability of a routing node to
be awake to forward packets from its neighbors. Network
relay is a key challenge for energy conservation is WSN.
In order to investigate if relay nodes manage their rout-
ing and sleeping tasks appropriately when running DECA,
we proposed to evaluate the success ratio, which accounts
for network connectivity in a micro perspective (locally).
We should notice that DECA can be used together with
energy-aware routing algorithms to further improve the
WSN autonomy.
DECA was evaluated by simulation using actual sig-

nals. The reconstruction error, the transmission decrease,
and the network lifetime were obtained. Results corrob-
orate (i) that the error of the reconstructed process at
the sink is kept within the desired fraction imposed and
also (ii) that network lifetime is increased as compared
to WSNs were the nodes simply transmit data periodi-
cally. The results indicate that for larger networks, the
network lifetime increases more. The larger the network,
the more possible the emergence of energy balancing,
as there are more relays for forwarding packets from
sources to the sink. In addition, we observed a decrease
in both success ratio and packet delivery ratio with the
increase of the sleeping factor and also with the increase
of the amount of neighboring nodes. At last, we observed
that as the sleeping factor increases, energy conservation
also increases because nodes can sleep for larger periods
of time.
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