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Abstract

In network virtualization, one of its core challenges lies in how to map the virtual networks (VNs) to the shared
substrate network (SN) that is managed by an infrastructure provider, termed as the virtual network embedding
problem. Prior studies on this problem only consider one objective, e.g., maximizing the revenues by mapping more
VNs or minimizing the energy cost. In this paper, we addressed the virtual network embedding problem with these
two objectives. We leverage niche particle swarm optimization technique to design a meta-heuristic algorithm to
solve this problem. Extensive simulations illustrate that the efficiency of our proposed algorithm is better than the
state-of-the-art algorithms in terms of both revenue and energy cost.
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1 Introduction
Up to now, network virtualization has been put forward
as a fundamental attribute of diversification for the future
Internet by decoupling the service providers (SPs) from
the roles of infrastructure providers (InPs). SPs rent some
resources of the substrate network (SN) from InPs and
provided services to the end users. Embedding a sequence
of virtual networks (VNs) to the shared SN is defined as
the VN embedding problem, which has been extensively
studied [1–12].
In these previous works, the main goal is to design more

efficient approaches to maximize the revenue through
accommodating more virtual network requests (VNRs).
Recently, in [13, 14], they proposed to minimize the
energy consumption for the SPs by leveraging meta-
heuristics, i.e., particle swarm optimization. Neverthe-
less, the particle swarm optimization (PSO) model has
a high opportunity to converge to local optima. To fur-
ther optimize and improve the VN embedding issues, in
our works, we put forward an approach of niche par-
ticle swarm optimization algorithm (MO-NPSO) based
on the multi-objectives. The originality of this algorithm
is as follows. We first apply a discrete approach, which
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encodes the virtual node mapping solution as the position
of a particle to leverage PSO. We then apply an aggre-
gation strategy for the fitness function to transform the
multi-objective problem to a uni-objective problem. To
further improve the performance of this algorithm, we
leverage the niche technique for the enhanced algorithm.
By leveraging Niche PSO in our context, we can avoid
local optima and achieve a more revenue and energy-
efficient VN embedding solution in the evolution process,
which is the critical contribution of this thesis. Through
extensive simulations, the performance of our algorithm
is better than the state-of-the-art algorithm in terms of
revenue and energy cost.
The main contributions of this paper are as follows. (i)

Unlike most of the prior studies, we address the virtual
network embedding problem with these two objectives.
(ii) We leverage niche particle swarm optimization tech-
nique to design a meta-heuristic algorithm to solve this
problem. The niche technology can avoid PSO from local
optima. (iii) We perform extensive simulations to prove
that our proposed algorithm is better than the state-of-
the-art algorithms in terms of both revenue and energy
cost.
The roadmap of this thesis is as follows. In Section 2,

we revisit the related works. The network model and per-
formance metrics are presented in Section 3. In Section 4,
we give details of our proposed meta-heuristic algorithm-
based VN embedding which known as MO-NPSO. In

© 2016 Zhang et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-016-0669-2-x&domain=pdf
mailto: yaohaipeng@bupt.edu.cn
http://creativecommons.org/licenses/by/4.0/


Zhang et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:167 Page 2 of 9

Section 5, we compare our MO-NPSO algorithm with
other state-of-the-art algorithms. Finally, conclusions are
drawn in the last section.

2 Related works
The virtual network embedding (VNE) problem, which is
proved to be NP hard problem, is very hot and has been
extensively studied. The primary goal earlier is to increase
the long-term average revenues with certain substrate net-
work resources. Yu et al. [1] assumed that supporting path
splitting and reconfiguration can increase the opportu-
nity of acceptance ratio of VNR. Chowdhury et al. [2]
translated the VNE problem into the mixed-integer pro-
gramming (MIP) problems and took advantage of classical
integer programming solution to address the issue. How-
ever, this approach incurs a very high time complexity
and also suffers from poor performance. Cheng et al.
[10] leveraged Markov random walk theory and proposed
NodeRank, similar to PageRank which serves as the core
algorithm of Google’s web searching. The benefit of this
algorithm lies in that it incorporates the topology attribute
into the VN embedding algorithm.
Another line to solve this NP hard problem is leverag-

ing meta-heuristic. For example, Cheng and Zhang [11,
15] proposed to leverage the particle swarm optimization
technique to achieve a better and better solution by itera-
tively searching. The difference between these two studies
lies in that they did not consider the energy. Recently, due
to the importance of the energy issue, energy-aware VN
embedding problem also attracts several researchers. Su
et al. [13, 14] and Botero et al. [16] proposed two different
solutions for energy-efficient VN embedding algorithm.
The former focused on the heuristics while the latter
focused on the exact algorithm. However, for the heuristic
algorithm, it is easy while the quality of the solution is not
good; for the exact algorithm, it can achieve the optimal
solution while incurring a very high time complexity. We
bridge this gap in this paper and leverage the Niche PSO
to address these the limitations of these two branches of
algorithms.

3 The description of networkmodel and
performancemetrics

3.1 The introduction of network model
We model a substrate network (SN) to a weighted graph
which denoted as Gs = (Ns, Ls), in which Ns stands for
the collection of substrate nodes and Ls stands for the
collection of substrate links.
With regard to the attributes on the nodes and links, fol-

lowing most of the previous studies [1, 10–13], we take
the nodes’ CPU capacity and location and the links’ band-
width capacity into considerations. Similar to previous
studies, we model a VN to a weighted graph represented
by Gv = (Nv, Lv), in which Nv stands for the collection

of virtual nodes and Lv stands for the collection of virtual
links.
In Fig. 1, virtual network is presented on the left of dia-

gram which is marked by (a), and substrate network is
presented on the right of diagram which marked by (b).
For estimating the energy consumption of the SN, the
power state (with a value of on or off ) of the substrate
nodes is also considered. As shown in Fig. 1b, we draw
such substrate nodes in the on state in transparent and
such nodes in the off state in gray.
A VNR can be modeled as VNR(Gv,Ta,Td), in which Ta

stands for the arrival time and Td stands for the duration
of the VN request hosting in the SN. The VNE problem
can be described as a process which maps a VN to a SN,
meanwhile satisfying the resource constraints of node and
link. Naturally, the mapping process can be broken into
two sub-phrases: one is the node mapping phrase denoted
by Mn and the other is the link mapping phrase denoted
byMl. The part of (b) in Fig. 1 gives a VNE solution for the
VNR denoted by the part of Fig. 1a. From Fig. 1, we can
easily know that mapping solutions.

3.2 The performance metrics
From the InP’s prospective, there are two goals: (i) max-
imizing the revenue for serving the VN requests and (ii)
minimizing the corresponding energy cost.

3.2.1 Revenue
Similar to most prior work, we take the CPU capacity
revenue and bandwidth capacity of VNR as its revenue:

R(Gv) =
⎛
⎝ ∑

nv∈Nv

CPU(nv) +
∑
lv∈Lv

BW(lv)

⎞
⎠ · Td. (1)

For embedding a sequence of VNRs, we can calcu-
late the long-term average revenue by using the following
formula:

lim
T→∞

∑N
i=1 Ri(Gv)

T
, (2)

Fig. 1 Illustration of VN embedding. a Virtual network. b Substrate
network
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where N stands for the number of accepted VNRs in time
T and Ri(Gv) stands for the derived revenue for accepting
the ith VNR. We quantify the resource cost for mapping
Gv, denoted by C(Gv) in the following ways. C(Gv) con-
sists of two parts: the first part is the total consumed
CPU resource, denoted by C(Nv), and the total consumed
bandwidth resource, denoted by C(Lv).

3.2.2 Energy cost
As reported in previous works [13, 14], the energy cost for
mapping the ith VNR can be defined as:

E(Gv) =
⎛
⎝Pl

∑
u∈Nv

CPU(u) + (N)Pb

⎞
⎠Td, (3)

where Pl denotes a linear parameter, Pb represents the
baseline energy cost, and N stands for how many sub-
strate nodes have been powered up. Through the equation
above, it is of critical importance to consolidate the
VNs into substrate nodes as little as possible. To com-
pute the energy cost for embedding a sequence of VN
requests, we quantify the long-term average energy cost as
follows:

lim
T→∞

∑G
i=1 Ei(Gv)

T
, (4)

where G stands for the number of accepted VNRs in time
T and Ei(Gv) stands for ith VNR’s energy cost. In our
approach, we consider not only its long-term average rev-
enue but also its long-term average energy cost and take
both as our performance metrics.

4 Proposed solution
In particular, compared to other methods, the algorithm
of PSO can produce better optimal solution with less com-
putational time but stable convergence [17]. Furthermore,
it is easy to use fewer parameters to tune. The originality
of our work is to leverage these PSO benefits to con-
struct a revenue and energy-aware VNE solution. Before
that, we will give a brief introduction of particle swarm
optimization basics.

4.1 Particle swarm optimization basics
In 1995, particle swarm optimization technology is first
proposed by Kennedy and Eberhart, which is an emerg-
ing approach based on population optimization [18]. The
basic idea of PSO borrows from the birds’ flocking behav-
ior in the process of their hunting food. In the algorithm
of PSO, the problem of optimization can correspond to
the process of food hunting, and the solution of optimal
mapping correspond to the food’s position. Each solu-
tion, which is termed as a particle in PSO, corresponds
to a bird. We denote the position of ith particle by Xi =

(x1i , x2i , . . . , xDi ), in which D denotes the dimensionality.
Each particle has a position. The quality of its position
is better or worse, which can be determined by a fitness
function. The ith particle interacts with other particles in a
certain manner and adjusts its forward direction using the
velocity Vi = (v1i , v2i , . . . , vDi ) iteratively. The ith particle’s
velocity is determined by three factors: its current position
(Xi), its best obtained experience (pBesti), and the best
obtained group experience (gBest). During the process of
the iteration, their velocity and positions are updated by
the following formula:

vdi = Pi · vdi + Pc · rd1
(
pBestdi − xdi

)
+

Ps · rd2 (gBestd − xdi )), (5)
xdi = xdi + vdi , (6)

where Pi stands for the inertia weight, Pc stands for the
cognition weight, Ps stands for the social weight, and rd1
and rd2 stand for the two random variables which are uni-
formly distributed in [0, 1]. In such an iterative way, the
optional solution may be finally found.
It seems that we can leverage PSO to solve the VNE

problem. However, for the multi-objective optimization,
there still exist the following technical challenges.
1. Basic PSO only deals with the problems in con-

tinuous space. However, the VN embedding problem is
discretized.
2. Basic PSO only deals with single objective optimiza-

tion problem. However, this thesis can solve the multi-
objective VNE problems, i.e., minimizing the resource
cost and the energy consumption at the same time.
3. Basic PSO is easy to be trapped into local optima,

which significantly affects the performance of our algo-
rithm.
In the following three subsections, we will address these

challenges one by one.

4.2 Discrete PSO for VNE problems
The basic PSO cannot be directly applicable to the VNE
problems, since the space of VNE problem is discrete.
Through analyzing the characteristics of our problem, we
have put forward a discrete approach for the node map-
ping stage in [11, 14]. The main idea of this approach is as
follows.

Node mapping: We marked the virtual nodes and sub-
strate nodes; and then, we take the position of a particle
denoted by Xi = (x1i , x2i , . . . , xDi ) as the solution of node
mapping. The ith position of Xi can be assumed as the
solution of the virtual node vi mapping. That is, in this
node mapping solution, the substrate node marked x1i is
the mapping result of the first virtual node, the substrate
nodemarked x2i is the mapping result of the second virtual
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node, and the substrate node marked xDi is the mapping
result of the Dth virtual node.

Link mapping: We can also perform the link map-
ping in [11, 14] to compute C(Gv) and E(Gv). Then we
take advantage of the fitness function which denoted by
C(Gv) and E(Gv) for evaluating the quality of a par-
ticle. We also redefine the velocity and three opera-
tions for discrete PSO, including subtraction (�), addi-
tion (⊕), and multiplication (⊗). Please see details
in [11, 14].

Iteration process: After that, we renew the particle’s
velocity and its position with the help of the following
equations.

vdi = Pivdi ⊕ Pc(pBestdi � xdi ) ⊕
Ps(gBestd � xdi )), (7)

xdi = xdi ⊗ vdi , (8)

where Pi stands for the inertia weight, Pc stands for the
cognition weight, and Ps stands for the social weight. Gen-
erally, Pi, Pc, and Ps meet the following constraints: 0 <

Pi ≤ Pc ≤ Ps < 1 and Pi + Pc + Ps = 1.

4.3 Aggregation strategy for fitness function
Basic PSO only deals with single objective optimization
problem. The main reason lies in that, in basic PSO, the
fitness function f, which is used to evaluate the quality
of a particle, is usually a simple uni-objective function.
To solve the multi-objective optimization problem, the
most common approach is aggregation. In this approach,
the core idea is that all the objectives are summed to a
combination. The benefit of the aggregation is that the
multi-objective optimization problem can be easily trans-
formed into uni-objective optimization problem, which
helps reduce the complexity of this problem. However,
this approach cannot be directly applied in our context,
since C(Gv) and E(Gv) denotes different performance
metrics and they cannot be summed directly together.
Towards this end, we first normalize these two metrics as
follows.

C(Gv)n = C(Gv) − C(Gv)min
C(Gv)max − C(Gv)min

, (9)

E(Gv)n = E(Gv) − E(Gv)min
E(Gv)max − E(Gv)min

. (10)

Based on Eqs. 9 and 10, we then define our goal as
follows:

Algorithm 1 Niche PSO Algorithm
1: InitialM particles as main particles.
2: Use basic PSO (as shown in Algorithm 2) to train M

particles, generally in N iterations.
3: Those main particles whose degree of change of fit-

ness is smaller than S will be regarded as the center
of a niche. And the radius is the distance between the
center and another closest solution.

4: For each niche
5: Use basic PSO with one iteration as shown in

Algorithm 2.
6: Update radius of each niche.
7: Allow a niche to absorb particles that moved into and

niches merge together.
8: If the end criteria is met, go to step 9; otherwise, go to

step 4.
9: Output the VN embedding solution and stop.

Minimize f (Gv) = αC(Gv)n + (1 − α)E(Gv)n.
Here, α ∈[ 0, 1]. Note that, if this solution is infea-

sible, C(Gv)n, E(Gv)n and f (Gv) will be set to +∞
directly.

4.4 Niche PSO
In this subsection, we will introduce how to use niche
PSO into our virtual network embedding problem. Firstly,
we will discuss niche technology. As well as we know,
basic PSO is suffering from local optimum. To avoid this
problem to some extent, Brits et al. proposed niche PSO
[19]. Generally speaking, niche PSO divides the whole
searching space into several small subspaces. In each
subspace, we use basic PSO algorithm concurrently and
independently. Besides, the niche includes absorption and
merge strategy. In virtual network embedding problems,
some definitions need to be discussed firstly.
The center of a niche is the best solution within that

niche.
The radius Ri of a niche I is defined as:

Ri = max{||Xib − Xis||}, (11)

where Xib is the best solution in ith niche, and Xis is
another common solution where b 	= s. ||Xib − Xis||
denotes the Euclidean distance between the two solutions

which should be calculated as
√

n∑
k=1

(Xibk − Xisk )
2. Here,

Xibk is the kth dimension of Xib. The same rule holds for
Xisk .
Absorption of a particle into a niche is performed when:

||Xjs − Xib|| ≤ Ri, (12)

where Xib is the best solution in niche i, Xjs is another
solution which comes from niche j, and Ri is the radius of



Zhang et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:167 Page 5 of 9

niche i, which means when a particle move into the space
of another niche, it will belong to the new niche.
Merging niche is performed when the following condi-

tion is satisfied:

||Xib − Xjb|| ≤ (Ri + Rj), (13)

where Xib and Xjb are the best solutions of niche i and
j, respectively, and ||Xib − Xjb|| is the Euclidean distance
between the two solutions. Here, Ri and Rj are radius
of niche i and j, which means when two niche get close
enough, they will become one niche.

4.5 Description of niche PSO
In the niche PSO algorithm (Algorithm 1), the inputs are
the SN, Gs and a VN request Gv, and the output is the cor-
responding revenue- and energy-aware VN embedding
solution. We first initialize M particles as main parti-
cles. Then, we use basic PSO to train main particles. We
hope to construct initial niches in this step. main parti-
cles, whose degree of change of fitness is smaller than S
will be regarded as the center of a niche. And the radius is
the distance between the center and another closest solu-
tion. Then in each niche, we use basic PSO concurrently
and independently with on iteration to train each parti-
cle. We update the fitness and radius of each niche and
allow a niche to absorb particles into and different niches
merge together. If the end criteria is met, output the VN
embedding solution and stop. The details of this algorithm
are presented in Algorithm 1 and Fig. 2. The Algorithm 2
gives the details of the basic PSO algorithm.

5 Performance evaluation
In this section, we compare our proposed algorithm
known as MO-NPSO to the prior algorithms. In
Subsection 5.1, we describe our simulation settings and
present our evaluation results in Subsection 5.2.

5.1 Evaluation settings
Network topology: Similar to most of previous studies
[1, 10–13, 15], we use the GT-ITM tool to generate the

Algorithm 2 The steps of basic PSO
1: Initialize position and velocity for theseM particles.
2: Calculate pBest and gBest.
3: For each particle
4: Update positions and velocity of these particles

according to Eqs. 5 and 6.
5: Update fitness of each particles and update the

pBest and gBest.
6: If the end criteria is met, go to step 7; otherwise, go to

step 4.
7: Output the VN embedding solution and stop.

Fig. 2 Illustration of MO-NPSO

topologies of substrate network and virtual network. Sim-
ilar to [12, 13], the SN topology contains 50 nodes and
we initialize each of them to inactive state. For the capac-
ity settings, the CPU capacity is uniformly distributed
between 50 and 100, and the bandwidth is also uniformly
distributed between 50 and 100. Between each pair of the
substrate nodes, it have a probability of 0.5 to connect
each other. The number of nodes in a VNR has the uni-
form distribution of U[ 2, 10]. The average probability of
link connectivity is also set to 0.5. We follow the literature
[12], and each of virtual node’s CPU capacity requirement
obeys to the uniform distribution of U[ 0, 20], and each of
virtual node’s bandwidth capacity requirement obeys the
uniform distribution of U[ 0, 50]. The process of VNR’s
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Table 1 Compared algorithms

Notation Algorithm description

MO-NPSO The approach of multi-objective and meta-heuristic VNE
which based on particle swarm optimization, aiming at
bothmaximizing the revenues andminimizing the energy
consumption. It adopts the adaptive weighted strategy.

EA-PSO An energy-aware VN embedding algorithm proposed in
our previous work [14]. It is also based on particle swarm
optimization.

D-ViNE-SP The single-objective VN embedding algorithm proposed
in [12], aiming at maximizing the revenues by optimizing
the resource cost. Take the shortest path algorithm to
determine the link mapping solution after node mapping
stage.

arrival can be simulated as a Poisson process, and its aver-
age arrival rate is set to 4 VNRs per 100 time units, and its
residence time obeys to the exponential distribution with
its average value to be 500 time units. To map a sequence
of 2000 VN requests, our simulation may last for about
50,000 time units.

Parameter settings: The values of Pb and Pl are assigned
to 165 and 1.5W per CPU unit, respectively, following the
previous work [20, 21]. The initial value of α is set to 0.5.
Following the literature [11], the value ofM is set to 5, and
the threshold of maximum count of iteration is set to 30.
According to our experiences, the initial values of Pi, Pc,
and Ps are set to 0.1, 0.2, and 0.7, respectively.

Performance metrics: We adopt the long-term average
revenue and long-average energy cost as our main per-
formance metrics. We also calculate the resource cost of
SN and the quantity of active substrate nodes, aim to
explain the reason of revenue and energy cost. In addition,

the running time is also another important metric in the
online VN embedding.

Comparison: We evaluate three algorithms as shown in
Table 1. We compare our algorithm to two prior algo-
rithms, D-ViNE-LP and EA-PSO. Note that we assume
that our proposed algorithm does not support path
splitting; hence, we did not compare the algorithm of
MO-NPSO which supports the path splitting [12]. We
also want to compare our solutions to the optimal one
achieved by exact algorithm (e.g., GLPK [22]). Never-
theless, our experimental results have proved that GLPK
will take several hours to calculate the global optimal
solution when a VNR contains a few of nodes. It is not
practical, and thus, we also exclude this comparison. The
whole of our simulation experiments are conducted on the
server, and its configuration is dual-core CPU with Intel
3 GHz, the memory and disk space are 2 GB and 160 GB,
respectively, and the operation system is Linux 2.6.

5.2 Experimental results
We summarize our experimental results in terms of rev-
enue comparison, energy comparison, and running time
comparison.

Revenue comparison: The results of average revenue
comparison are shown is Fig. 3. We can observe that
from the point views of long-term average revenue, our
algorithm (MO-NPSO) is much better than other algo-
rithms (The Algorithm of D-ViNE-SP and EA-PSO). From
the results, we can see that the average revenues of EA-
PSO and D-ViNE-SP are 4000 and 3592, respectively; the
average revenue of our algorithm known as MO-NPSO
is 4670. That means that our algorithm can obtain up to
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Fig. 3 The long-term average revenue over time
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Fig. 4 The long-term average R/C ratio over time

30 % more revenue than the algorithm of D-ViNE-SP and
can obtain up to 17 % more revenue than the algorithm
of EA-PSO. The reason lies in that: (i) the technique of
VN consolidation can improve the efficiency of substrate
resources utilization, and can increase the number of
VNRs. (ii) In the evolutionary process of PSO, MO-NPSO
can achieve a better and better embedding solution with
the help of other particles’ experiences. (iii) The niche
technique effectively avoids the local optima of PSO. MO-
NPSO can save huge amounts of resources for the SN,
accommodate more VNRs, and thus the revenues of InP
will naturally increase. Comparatively speaking, the tech-
niques of linear programming relaxation and rounding
which D-ViNE-SP adopted are likely to some impractical
VNE solutions, the revenues of InP will naturally decrease.

Demonstrated by Fig. 4, MO-NPSO achieves 33 %
higher R/C ratio than D-ViNE-SP. Consequently, MO-
NPSO generates much higher long-term average revenues
than D-ViNE-SP.

Energy comparison: We report the energy comparison
result in Fig. 5. We can observe that while generating
much more revenues, the algorithm MO-NPSO still con-
serves up to 17 % energy consumption than D-ViNE-SP,
which ignores the energy issue and 5 % than EA-PSO,
by avoiding powering up inactive substrate nodes. From
Fig. 6, we can also note that MO-NPSO uses less number
of substrate nodes than D-ViNE-SP. This helps demon-
strate why MO-NPSO achieves more energy-efficient VN
embedding solution.
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Fig. 5 The long-term average energy cost over time
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Fig. 6 The number of active substrate nodes over time

Running time comparison: The average running time
of compared algorithms for mapping a VNR is shown
in Table 2. From this table, we see that, the time that
D-ViNE-SP algorithm consumes is more than EA-PSO
algorithm andMO-NPSO algorithm due to its solving lin-
ear programming [12]. The running time of MO-NPSO
algorithm is a little more than EA-PSO algorithm, while it
is worth for the revenue gain and energy saving.

6 Conclusions
Network virtualization is a promising technique with the
purpose of overcoming the ossification of the Internet
by means of supporting multiple VNs to cohabit on a
shared substrate infrastructure. In the environment of
network virtualization, VNE issue is proposed as one of
the most important issues. In this paper, we put for-
ward MO-NPSO algorithm to solve the multi-objective
VNE problem by means of trading off the revenue and
the energy cost. To be specific, we design an enhanced
revenue and energy-aware VNE algorithm termed asMO-
NPSO, by leveraging niche particle swarm optimization.
Through extensive simulations, we prove the efficiency of
our proposed algorithm.
In the future, we plan to focus on how to use path

division to optimize the revenue and energy cost, and
optimize energy cost while considering a variety of node
types.

Table 2 The running time of compared algorithms

Algorithm Running time

D-ViNE-SP 4 s

EA-PSO 100 ms

MO-NPSO 110 ms
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