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Abstract

Intra-vehicular wireless sensor network (IVWSN) enables the integration of the wireless sensor network technology
into the vehicle architecture through either eliminating the wires between the existing sensors and the corresponding
electronic controller units (ECUs) or empowering new sensor technologies that are not currently implemented due to
technical limitations. Ultra-wideband (UWB) has been determined to be the most appropriate technology for IVWSNs
since it provides energy efficiency through the low duty-cycle operation and high reliability by exploiting the large
bandwidth. In this paper, we propose a time variation model for UWB-based IVWSN-based on the extensive amount
of data collected from the transmitter and receiver antennas at various locations and separation distances beneath
the chassis of a vehicle moving at different speeds on different types of roads. We adopt the commonly used
Saleh-Valenzuela (SV) model to represent the clustering phenomenon in the received power delay profiles (PDPs). The
proposed novel time variation model then determines the time evolution of the PDPs by representing the changes in
their cluster breakpoints, slopes, and break point amplitudes with the auto-regressive integrated moving average
(ARIMA) model. ARIMA(5,1,0) has been demonstrated to fit the breakpoint, cluster slope, and breakpoint amplitude
sequences collected at different vehicle speeds with different transmitter and receiver locations on asphalt and stone
roads by using Box-Jenkins procedure. This model is validated with diagnostic checking. The absolute values of the
model coefficients are observed to be mostly larger on asphalt road than their counterparts on the stone road while
exhibiting no dependence on the vehicle speed nor the location of transmitter and receiver antennas.

Keywords: Channel model, Ultra-wideband, Vehicle, Wireless sensor networks, Time-variation model,
Saleh-Valenzula model, ARIMA model

1 Introduction
Intra-vehicular wireless sensor network (IVWSN) is a
specific type of wireless sensor network between the vehi-
cle sensors and their corresponding ECUs deployed with
the purpose of either eliminating the currently existing
wires or enabling new sensor technologies that cannot be
integrated into the vehicle using wired means. The elimi-
nation of the wires provides savings in part, assembly and
maintenance cost together with fuel efficiency whereas
new sensor technologies enable new vehicle applications.
The full adoption of a IVWSN requires providing the
same performance and reliability as the wired equivalent
that has been tested for a long time with vehicles on the
road. The first IVWSN examples are therefore expected
to be in the integration of either new sensor technologies
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such as intelligent tire [1] or some sensor technologies for
non-critical vehicle applications such as park sensors and
steering-wheel angle sensors. Proving the robustness of
these applications on the vehicle will then pave the way for
the usage of IVWSN in more critical vehicle applications
such as the transmission of automotive speed data from
the wheel speed sensors to the ECU in an antilock braking
system [2].
Among various modulation techniques investigated for

IVWSN, ultra-wideband (UWB) has been demonstrated
to be the most suitable satisfying the high-reliability
requirement of vehicle control systems and the strict
energy-efficiency requirement of the sensor nodes at
short distance and low cost [3–5]. The vast literature
on UWB channel measurement campaigns performed in
such locations as indoor [6–8], outdoor [9, 10], around
the human body [11, 12], industrial environments [13],
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vehicle-to-vehicle, and vehicle-to-roadside [14–17] can-
not be applied to the IVWSNs since the intra-vehicular
environment is very different containing a large number of
metal reflectors and operating at extreme temperatures.
Although the locations of the transmitter and receiver

within the vehicle do not change over a short time scale
in IVWSN, the movement of the vehicle generates small
variations in the sensor locations due to vibrations and
considerable changes in the environment such as road
conditions and nearby vehicles. The development of an
efficient UWB communication system for IVWSNs there-
fore requires introducing these time variations into the
channel model. A time-varying channel model allows
optimizing system performance and robustness under
realistic radio propagation conditions. The time variations
of the wireless channel can also be used in the design
of channel estimation algorithms and rake receivers. The
UWB channel models developed for different parts of the
vehicle, including engine compartment [3, 4, 18], beneath
the chassis [3, 4, 19, 20], passenger compartment [21–26],
and trunk [27], all aim to represent the average behav-
ior and the variations around the average behavior of the
UWB channel without adopting time-series analysis. Even
when these works collect data on the vehicle moving on
the road, they still consider the distribution of the power
delay profiles (PDPs) around their average value with-
out considering the ordering of the data in time. Such
modeling therefore does not allow the regeneration of
the successive PDPs. Time-series analysis on the other
hand models the data as an ordered sequence of val-
ues. Embedding this ordering into the model allows the
representation of the temporal variations in the channel.
The goal of this paper is to provide the time-variation

model for the UWB channel beneath the chassis of a
vehicle by employing time-series analysis on the data col-
lected from the vehicle moving at different speeds on
different types of roads with transmitter and receiver
antennas at different locations and separation distances.
Previous work on the modeling of the temporal variations
in the UWB channel mostly focus on the representation
of the non-stationary attenuation due to obstructing peo-
ple [28–31] and movement of a receiver along a linear
trajectory at a constant velocity [32] in indoor environ-
ment. The models describing non-stationary attenuation
due to obstructing people however cannot be applied to
the beneath the chassis channel. Only [29, 33] addition-
ally model small-scale signal variations due to scattered
propagation paths in indoor environment but again by
focusing on the distribution of the variations around the
average PDP without considering their ordering in time.
The original contributions of the paper are as follows:

• We employ auto-regressive integrated moving
average (ARIMA) model to determine the time

evolution of the parameters of the modified
Saleh-Valenzuela (SV) model derived for the beneath
the chassis UWB channel [20]. ARIMA model is a
flexible tool that provides a good understanding of
trends, correlation, and forecasting in time series. The
modified SV model aims to generate the clustering
phenomenon in the PDP by statistically determining
its parameters including cluster arrival times, cluster
amplitude, and ray amplitude decay rate. The
ARIMA model is then used to determine the time
evolution of the PDPs by representing the changes in
the time series of these parameters. This is the first
work to propose a time-varying UWB channel model
based on the time series analysis employing ARIMA
model on the SV model parameters, allowing the
regeneration of successive PDPs.

• We validate the proposed ARIMA model on the SV
model parameters as a time-varying UWB channel
model beneath the chassis of the vehicle based on the
analysis of the residuals between generated and
observed values and the sensitivity of the model
parameters to different vehicle speeds, road types,
and distances and locations of transmitter and
receiver antennas. This is the first work to analyze the
validity of a time variation model across a wide range
of scenarios.

The rest of the paper is organized as follows: Section 2
provides the experimental setup. Section 3 presents the
data processing required to derive the coefficients of the
ARIMA model. This includes deriving the PDP corre-
sponding to each received pulse, determining the param-
eters of the modified SV model based on the separation of
the PDP into clusters, and generating the ARIMA model
corresponding to the time series of the parameters of the
SV model. Section 4 provides and analyzes the coeffi-
cients of the ARIMA model at different vehicle speeds,
road types, locations, and separation distances of trans-
mitter and receiver antennas. Finally, Section 5 concludes
the paper and gives the future work.

2 Experiment setup
The datameasurements are conducted in the time domain
by using Picosecond Pulse Labs 3500D impulse genera-
tor and Agilent DSO91304 Infiniium high performance
oscilloscope, as shown in Fig. 1. The impulse generator is
used to periodically generate an ultra short pulse of 75 ps
width and peak amplitude of 8 V corresponding to a band-
width of 13.3 GHz. The repetition rate is set to 1 kHz. The
generated pulse is sent to the transmitter antenna via low-
loss coaxial cables. The UWB antennas used are roughly
the size of a playing card and display an omnidirectional
pattern having a near perfect circular polar antenna pat-
tern in azimuth plane and vertical-slice-of-a-bagel shape
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Fig. 1Measurement setup containing Picosecond Pulse Labs
3500D impulse generator and Agilent DSO91304 Infiniium
high-performance oscilloscope

in elevation plane with the beamwidth of 36.37◦. The
transmitter and receiver antennas are placed beneath the
chassis of a commercial vehicle Fiat Linea, as seen in Fig. 2.
These antennas provide good impedance matching with
return loss less than −10 dB for the frequency range 3.1–
10.6 GHz. Since the antennas act as filters and limit the
signal bandwidth in their application range, the frequency
range of our model is 3.1–10.6 GHz. The propagation
medium of transmitted signals consists of air, asphalt
surface, and chassis, which is a metal surface. Dielec-
tric properties of air, asphalt, and metals exhibit a steady

Fig. 2 Transmit and receive antennas beneath the chassis

behavior over the frequency of interest, as demonstrated
in [34], [35], and [36], respectively.
The receive antenna is connected to the oscilloscope via

low-loss coaxial cables. The oscilloscope is used to record
the received signal. The segmented memory feature of
the digital oscilloscope is used to increase the number
of pulses that can be captured with the limited memory:
The oscilloscope stores information only during the active
periods so that the memory is not used during the inactive
periods. We capture 1024 successive pulses by sampling
200 ns long signal at 40 G samples/s for each pulse. The
output of the impulse generator is also connected to the
trigger input of the oscilloscope via another low-loss cable
for synchronization. The distance between the antennas
and the road is around 20 cm. The data was collected at
low vehicular traffic on asphalt and stone roads within
the Koc University campus on mostly sunny or cloudy
days. We have chosen Koc University campus to have full
control on the speed of the vehicle and road conditions.
On the other hand, we have chosen sunny or cloudy days
to avoid the damage of the antennas on the wet roads.
Moreover, we have collected the data over roads without
any impulsive interference, which is ensured as a result of
measuring the signals in the data collection environment
without any pulses transmitted. We have also checked
the collected data to guarantee that there is no impul-
sive interfering noise other thanwhite noise. The collected
data are provided in [37].

3 ARIMA-based time variationmodel
ARIMA model is used to represent the variation of the
subsequent received pulses over time in relation to each
other. Since each received pulse is a noisy time domain sig-
nal itself, first, the PDP associated with the received pulse
is separated into clusters to determine the parameters of
the modified SV model. The time evolution of the PDPs
are then represented by the time evolution of each param-
eter of the SV model separately by using ARIMA model.
The outline of the algorithm is given in Fig. 3. Next, we
provide the procedures followed for the derivation of the
PDP associated with the received signal, estimation of the
SV model parameters corresponding to the PDP, and esti-
mation of the ARIMA model coefficients corresponding
to each parameter of the SVmodel in Sections 3.1, 3.2, and
3.3, respectively.

3.1 Derivation of PDP
The received signal at the oscilloscope corresponding to
each transmitted pulse is first clipped from the beginning
and end to extract the signal part with significant energy.
As an example, Fig. 4 shows the received signal corre-
sponding to the pulse transmission from 25-cm distance
beneath the chassis of the vehicle moving on the stone
road at 20 km/h. The signal part with significant energy is
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Fig. 3 Flowchart for the derivation of the ARIMA-based time variation
model

determined by identifying the time interval with starting
point as the first zero crossing prior to the peak, around
35 ns and end point as 60 ns after which the received
energy is at the noise floor. Following the clipping, the sig-
nal is passed through the low pass filter to smooth out
the noise. The resulting signal, denoted by y(t), is then
processed to eliminate the effect of the cables and anten-
nas. The signal representing the response of the cables
and antennas is collected by locating the antennas at
2-cm separation distance in an open area to prevent the
effect of reflections on the channel impulse response and
denoted by x(t) (we have also located the antennas at 1-m
separation distance for the representation of the response
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Fig. 4 Received signal corresponding to the pulse transmission from
25-cm distance beneath the chassis of the vehicle moving on the
stone road at 20 km/h

of the cables and antennas to verify the effects of mutual
coupling and near-field antenna are negligible on the final
derived parameters). Assuming that y(t) is the sum of
attenuated and delayed copies of x(t), CLEAN algorithm
is used to derive the channel impulse response through
deconvolution [38].
The CLEAN algorithm is a serial interference cancel-

lation algorithm. The algorithm first finds the largest
attenuated and delayed copy of x(t) contributing to y(t)
by determining the correlation of the received signal y(t)
with x(t) and identifying the highest peak in that corre-
lation. The contribution of the identified contribution is
then subtracted from the total signal. The process con-
tinues with the resulting cleaned up signal. At the ith
iteration, the correlation of the cleaned up signal y(t) and
x(t) is calculated. The value and delay index of the peak
correlation are then recorded as Ki and τi, respectively.
y(t) is then updated by subtracting the effect of the ith
path signal, i.e., Kix(t − τi), from y(t). This process con-
tinues until the energy of the updated y(t) drops under a
certain threshold. The value of the threshold is found to be
0.001 by trial and error so that we can obtain a nice PDP.
Figure 5 shows the deconvolution output of the received
signal in Fig. 4.

3.2 Estimation of SVmodel parameters
In the PDPs recorded beneath the chassis, the multipath
signals arrive in the form of clusters. The arrival time of
the PDP clusters is determined by using the automatic
clustering algorithm [39] and validated by visual inspec-
tion. Based on the assumption that the slope changes at
the beginning of each cluster, automatic clustering algo-
rithm identifies the change points of the partial slopes of
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Fig. 5 PDP corresponding to the pulse transmission from 25-cm
distance beneath the chassis of the vehicle moving on the stone road
at 20 km/h (Fig. 4)

the PDP. The clustering is exemplified for the PDP corre-
sponding to the pulse transmission from 25-cm distance
beneath the chassis of the vehicle moving on the stone
road at 20 km/h in Fig. 5.
The clustering behavior in the PDPs has been mod-

eled by using the modified SV model in [20]. SV model
describes the impulse response as

h(t) =
L∑

l=0

K∑

k=0
al,kejθl,kσ(t − Tl − τl,k) (1)

where al,k and θl,k are the gain and phase of the kth com-
ponent in the lth cluster, respectively; Tl is the delay of the
lth cluster; τl,k is the delay of the kthmultipath component
in the lth cluster relative to the l-th cluster arrival time
Tl; K is the number of the multipath components within
a cluster; and L is the number of clusters. The phases θl,k
are uniformly distributed in the range [0, 2π ].
Similar to the PDP in Fig. 5, we observed that 99 % of the

PDPs beneath the chassis fit three cluster SV models with
root-mean-square error (rmse) below 4.51 dB. The his-
togram of rmse is shown in Fig. 6. Therefore, the list of the
parameters of the SV model that will be used in the time
series analysis include the cluster breakpoints, slopes, and
breakpoint amplitudes representing these three clusters as
given in Table 1.

3.3 Estimation of ARIMAmodel coefficients for SV
parameter sequences

3.3.1 Description of ARIMAmodel
ARIMA models are the most general class of models for
understanding and forecasting a possibly non-stationary
time series.
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Fig. 6 Histogram of the rmse between the observed PDPs and their
three-cluster SV models

ARIMA(p, d, q) is mathematically described as

�p(B)(1 − B)dZt = θ0 + �q(B)at , (2)

where d is the degree of differencing; θ0 is the determinis-
tic trend term; B and its superscript represent shift oper-
ator and the amount of shift to be applied, respectively, as

BdZt = Zt−d; (3)

�p(B) and �q(B) are AR and MA operators with degrees
of p and q, respectively, and given as

�p(B) = 1 − φ1B − φ2B2 − . . . − φpBp (4)

and

�p(B) = 1 + θ1B + θ2B2 + . . . + θqBq, (5)

where φi and θi represent the ith AR and MA coefficients,
respectively; and at is zero mean white Gaussian error
term with standard deviation σa.

3.3.2 Determination of ARIMAmodel coefficients
Box-Jenkins procedure is widely used to determine the
coefficients of the ARIMA model corresponding to time
series data [40, 41]. The summary of the procedure is

Table 1 List of SV parameters used in time-series analysis

Abbreviation SV parameter

B1 First break point (ns)

B2 Second break point (ns)

S1 First cluster slope (dB/ns)

S2 Second cluster slope (dB/ns)

S3 Third cluster slope (dB/ns)

X1 First break point amplitude (dB)

X2 Second break point amplitude (dB)
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given as a flowchart in Fig. 7. The description of each step
of the procedure is given next.

3.3.3 Convert time series data to a stationary process
The stationarity of the process is determined by using
Dickey-Fuller test. In this test, the existence of a unit root
in the AR model corresponds to the non-stationarity of
the model. The test provides a p value, which is used
whether to reject or accept the null hypothesis of the
existence of the unit root (the p value is the probability
of obtaining a test statistic result at least as extreme or
as close to the one that was actually observed, assuming
that the null hypothesis is true. A researcher will often
reject the null hypothesis when the p value turns out to be
less than a predetermined significance level, often 0.05 or
0.01).
If the time-series data is stationary, we can skip this

step. Otherwise, it must be reduced to a stationary pro-
cess. Generally, there are two types of reasons for the
non-stationarity of time series: non-constant mean and
variance. If the mean is not constant, the time series can
be reduced to stationary process by applying differencing.
The number of differencing operations is denoted by d in
the ARIMAmodel given in Eq. (2). Although theoretically
there is no limit on the number of differencing opera-
tions, applying it more than twice is not recommended.
On the other hand, if the variance is not constant, then
power transformation should be applied to the original
data to make the time series stationary. If the power

Fig. 7 Flowchart of determining ARIMA model parameters

transformation is needed, it should be performed before
differencing.

3.3.4 Examine the ACF and PACF
Autocorrelation function (ACF) measures the similar-
ity between the observations as a function of the time
lag whereas partial autocorrelation function (PACF) is
defined as the correlation between Zt and Zt+k after the
linear dependence of the lags [t + 1, t + k − 1] is removed.
ACF and PACF are used in predicting the orders of

the ARIMA model. The AR order p and MA order q
are predicted by the visual inspection of PACF and ACF,
respectively. If PACF or ACF exhibits either exponential
or damped sinusoidal behavior, then no order is assigned
to p or q, respectively. On the other hand, if either PACF
or ACF cuts off at a certain lag, then the cutting lag is
assigned as the value of p or q, respectively.

3.3.5 Estimate the coefficients of the ARIMAmodel
The coefficients of the ARIMA model are determined by
using maximum likelihood estimation.
The maximization of the exact likelihood function

should be determined numerically. Here, we use Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm to iteratively
solve the resulting unconstrained nonlinear optimization
problem [18, 42]. The accuracy of the calculated coef-
ficients is checked by using their p values. If a p value
is larger than the significance level of 0.05, then this
coefficient is omitted.

3.3.6 Diagnostic check
Diagnostic check aims to determine the suitability of the
selected ARIMAmodel by checking whether the distribu-
tion of the residuals between the generated and observed
data is white Gaussian. Whiteness of the residuals is mea-
sured by using Ljung-Box test on the ACF whereas their
normality is tested by using chi-square test. The Ljung-
Box test is a type of statistical test of whether the ACF
of a time series except the zero lag is different from zero.
Instead of testing randomness at each distinct lag, it tests
the overall randomness based on a number of lags. The
null hypothesis in this test is the whiteness of the resid-
uals. Chi-square test is a statistical hypothesis test used
to determine whether there is a significant difference
between two distributions. The null hypothesis used in
this test is the normality of the residuals. A researcher will
often accept the null hypothesis when the p value turns
out to be greater than a predetermined significance level,
often 0.05 or 0.01.

4 ARIMAmodel analysis results
The ARIMA model is determined for the time series data
of B1, B2, S1, S2, S3, X1, X2 at vehicle speeds of 20, 40, and
60 km/h on asphalt and stone roads for the transmit and
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receive antennas at 25, 50, and 100 cm distance in different
locations beneath the chassis by following the procedure
given in Section 3. The main results are summarized as
follows:

• ARIMA(5,1,0) consistently fits the data collected over
different types of roads, speeds, antenna locations,
and antenna separation distances. The suitability of
the selected ARIMA model is tested by checking
whether the distribution of the residuals between the
generated and observed data is white and Gaussian
based on Ljung-Box and chi-square tests,
respectively, as explained in detail in Section 3.3.
Since all the p values of Ljung-Box and chi-square
tests are greater than 0.1, the residuals are white
Gaussian with 90 % confidence. This confirms
ARIMA(5,1,0) model. Table 2 shows the ARIMA
model coefficients for the parameters of the PDPs
collected on asphalt road for the transmit and receive
antennas at 25-cm distance as an example.

• The absolute values of the ARIMA coefficients are
mostly larger on asphalt road than their counterparts
on the stone road whereas the standard deviation of
the innovation is larger on stone road than the

asphalt road. Although this trend is not seen very
clearly on all of the results, considering that this holds
for the majority of the data, we conclude that the
absolute value of the ARIMA coefficients decreases as
the roughness of the road increases. Smaller absolute
value of the coefficients means lower partial
correlation between delayed elements of the time
series. If the experiment was conducted on a perfectly
smooth road, the consecutive PDPs would be very
similar to each other resulting in the highest
correlation between the delayed elements of the time
series. As the roughness of the road increases, the
shape of the PDPs are distorted in a random manner,
decreasing their correlation to the previously
received PDPs with increasing power of the
innovation component. The general trend of the
model coefficients as a function of the road
roughness is exemplified for the ARIMA model
coefficient φ1 on different types of roads under
various scenarios in Fig. 8.

• There is no trend in the variation of the absolute
values of the ARIMA model coefficients with vehicle
speed, antenna locations, and antenna separation
distances, as exemplified for the ARIMA model

Table 2 ARIMA model coefficients for the parameters of the PDPs collected on asphalt road for the transmit and receive antennas at
25 cm distance

φ1 φ2 φ3 φ4 φ5 σa

B1 20km/h −0.8104 −0.6506 −0.4808 −0.3280 −0.1566 0.650994

40km/h −0.8381 −0.6912 −0.4898 −0.3181 −0.1630 0.636613

60km/h −0.8642 −0.6856 −0.5320 −0.3255 −0.1779 0.642207

B2 20km/h −0.8436 −0.7004 −0.5297 −0.3380 −0.1837 0.899330

40km/h −0.8661 −0.6628 −0.5457 −0.3553 −0.1911 0.895680

60km/h −0.8048 −0.6866 −0.5021 −0.3288 −0.1591 0.911310

S1 20km/h −0.8192 −0.6428 −0.4871 −0.2890 −0.1454 0.016715

40km/h −0.8605 −0.6842 −0.5309 −0.3393 −0.1492 0.014427

60km/h −0.8391 −0.6696 −0.4850 −0.2903 −0.1323 0.014853

S2 20km/h −0.8078 −0.6075 −0.4413 −0.3359 −0.1624 0.017013

40km/h −0.8354 −0.6547 −0.4905 −0.2903 −0.2102 0.014947

60km/h −0.7861 −0.6470 −0.4743 −0.3162 −0.2086 0.016607

S3 20km/h −0.8750 −0.6981 −0.5230 −0.3539 −0.1496 0.003219

40km/h −0.8655 −0.7276 −0.5553 −0.3257 −0.1873 0.003046

60km/h −0.8224 −0.6789 −0.5569 −0.3797 −0.1903 0.003065

X1 20km/h −0.7905 −0.6445 −0.4843 −0.3139 −0.2069 0.205739

40km/h −0.8106 −0.6493 −0.4490 −0.2330 −0.1196 0.193656

60km/h −0.8518 −0.7431 −0.5953 −0.3325 −0.1785 0.187573

X2 20km/h −0.8426 −0.6957 −0.4771 −0.3073 −0.1255 0.120691

40km/h −0.8578 −0.6502 −0.5158 −0.3853 −0.1886 0.112629

60km/h −0.8168 −0.6746 −0.4728 −0.3047 −0.1573 0.108991
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Fig. 8 ARIMA model coefficient φ1 on different types of roads under various scenarios
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Fig. 9 ARIMA model coefficient φ1 at different vehicle speeds under various scenarios
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Fig. 10 ARIMA model coefficient φ1 at different transmitter-receiver distances under various scenarios
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Fig. 11 ARIMA model coefficient φ1 at different locations of transmitter and receiver antennas for different transmitter-receiver distances on asphalt
road
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Fig. 12 ARIMA model coefficient φ1 at different locations of transmitter and receiver antennas for different speeds on asphalt road

coefficient φ1 under various scenarios in Figs. 9, 10,
11 and 12. The main reason for this behavior is the
independence of the ARIMA model coefficients from
the values of the SV model parameters. As the
distance between the transmitter and receiver
antennas and the location of these antennas vary, the
shape of the PDP hence the corresponding SV model
parameters change. However, the time variation of
these parameters only depends on the variation of the
environment around the transmitter and receiver
therefore exhibits similar behavior independent of
the distance and location. Likewise, as the vehicle
speed increases, the distance the vehicle travels
between the PDPs increases. Unless the vehicle stays
at the same location, the variation in the environment
depends on the random changes in the road,
independent of the speed.

5 Conclusions
We build a time variation model for the beneath the
chassis UWB channel. The clustering phenomenon in
the PDPs collected beneath the chassis of the vehicle
has been previously represented by using modified SV
model. We propose a novel ARIMA-based time varia-
tion model for the time series data corresponding to
the parameters of the SV model including cluster arrival
times, cluster amplitudes, and ray amplitude decay rates.
ARIMA(5,1,0) has been demonstrated to fit the time
series of all the SV parameters corresponding to the
data collected at different vehicle speeds and locations of

transmitter and receiver antennas at different separation
distances on asphalt and stone roads. The absolute val-
ues of the ARIMAmodel coefficients are demonstrated to
be mostly larger on asphalt road than their counterparts
on the stone road. On the other hand, these coefficients
do not exhibit any dependency on vehicle speed, antenna
locations and antenna separation distances. We are plan-
ning to investigate the usage of smaller channel bandwidth
on the time variation of the channel as future work.
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