Bao and Deng EURASIP Journal on Wireless Communications
and Networking (2016) 2016:190
DOI 10.1186/513638-016-0690-5

EURASIP Journal on Wireless
Communications and Networking

RESEARCH Open Access

FICTC: fault-tolerance-and-interference-

@ CrossMark

aware topology control for wireless

multi-hop networks

Xuecai Bao'“ and Chengzhi Deng '

Abstract

K-connectivity-based topology control can improve fault-tolerant performance of multi-hop wireless networks.
Existing algorithms mainly focused on preserving the same k-connectivity between any two nodes. However, in
practical network deployments, the algorithms enforcing k-connectivity degrade network performance, when the
topology requires heterogeneous nodal fault-tolerant requirements. In this paper, we aim to develop interference-
aware topology control based on the different k; connectivities between any two nodes and propose a fault-tolerance-
and-interference-aware topology control (FICTC) algorithm. It can be proved that FICTC can meet different
fault-tolerant requirements between any two nodes, and is the optimum solution for min-max network
interference. Simulation results show that FICTC not only leads to weaker interference, but also achieves
higher throughput and lower end-to-end (E2E) delay than existing fault-tolerant topology control schemes.
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1 Introduction
In wireless multi-hop networks (WMNs), source and
destination nodes leverage two or more hops for infor-
mation delivery. WMNs have several well-known exam-
ples, such as wireless mesh network, ad hoc networks,
and wireless sensor networks (WSNs). In these scenar-
ios, energy-efficiency and network capacity are the
most two concerned issues. Topology control tech-
niques, as highlighted in [1], are promising to address
both issues. Generally, topology control can be divided
into two classes, namely, connectivity-preserving top-
ology control and k-connected fault-tolerant topology
control, respectively. The connectivity-preserving top-
ology control aims to maintain network connectivity
via smaller nodal transmit powers. There also exist al-
gorithms concerning the trade-off between energy con-
servation and network connectivity [2—11].

However, under such a paradigm, nodes or link fail-
ures lead to performance degradation, even causing
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service interruption. In order to ensure fault-tolerance,
k-connectivity topology control has been studied [12-17].
These mentioned algorithms focused on finding a sub-
graph with k-node-disjoint paths between any two nodes,
wherein most of them aim to find k-connected sub-graphs
consuming minimum total power or minimized max-
imum power. Besides, some algorithms investigated the
topology control based on minimizing the maximum
interference rather than addressing the fault-tolerant re-
quirement [18-21].

However, in practical network deployments, it is not
required that each node has to be k-connected to other
nodes, i.e., only a few nodes requiring k-connected, while
remaining nodes are less k-connected, i.e., the practical
networks often require different k; connectivities be-
tween any two nodes.

Therefore, the purpose of this paper is to solve the
topology control problem that minimizes the maximum
node interference for WMNs with different k;; connect-
ivity requirements between any two nodes. In this
paper, we firstly analyze the differences between specific
kij connectivity and k-connected requirements and
present the problem formulation. Then, we propose a
fault-tolerance-and-interference-aware topology control
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(FICTC) algorithm, which not only satisfies different
fault-tolerance requirements between any two nodes
but also minimizes the maximum nodal interference.
The main contributions of this paper are as follows.

(1) We investigate the practical requirement of topology
control with different k; connectivity requirements
between any two nodes and the difference of network
performance influence between specific k;;
connectivity and k-connected requirements.

(2) We integrate the minimize the maximum node
interference into the topology control with different k;
connectivity requirements between any two nodes and
present the detail steps of our proposed algorithms.

(3) We achieve minimizing the maximum node
interference for attaining specific k; connectivity
between any two nodes and the finally extensive
experiments by simulations to evaluate the
performance of the proposed algorithms.

The rest of the paper is organized as follows.
Section 2 summarizes related works for k-connected
topology control. Section 3 defines the network and
interference model, and presents the problem formula-
tion of topology control with fault-tolerance con-
straints. We then present FICTC and theoretical
analysis of the proposed FICTC in Section 4. The dis-
tributed implementation of the proposed FICTC is
presented in Section 5. Performance evaluation of
FICTC and comparisons with other state-of-the-art al-
gorithms are given in Section 6. Section 7 concludes
our work and contributions.

2 Related work

Topology control can reduce interference and energy
consumption. Moreover, it can improve network per-
formance, such as network capacity, fault-tolerance, and
scalability [2—-24]. Typically, topology control algorithms
can be categorized by preserving 1-connectivity and k-
connectivity, respectively. For preserving 1-connectivity,
current works mainly focused on prolonging network
lifetime and increasing network capacity, without con-
sidering topology fault-tolerance [2—11, 25]. To achieve
fault-tolerance, algorithms that construct k-connected
topologies have been proposed [12-24]. In [12], the re-
lationship between k-connectivity and node degree was
described. Then, the authors presented an algorithm
that can preserve k-connectivity. However, the mini-
mum node degree was not given. Fukunaga et al. [22]
derived an analytical expression of minimum node de-
gree for constructing k-connected topology with a high
probability. Based on Yao structure (YAO,,,1), Li et al.
proposed an algorithm to sustain k-connectivity. The
key issue is to assume there are p equal cones around
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one node and choose k+ 1 closest nodes in each cone.
Li et al. [23] proposed the communications-based train
control (CBTC) algorithm. In CBTC, each node needs
to link at least one node in every cone of degree a cen-
tered at this node. Meanwhile, they proved that it can
preserve k-connectivity when a <2mn/3 k. Li et al. [13]
developed centralized FGSS; and localized FLSS; algo-
rithms, which both guarantee k-connectivity when a
unit disk graph (UDG) is k-connected. The FGSS; and
FLSS; are min-max optimal. Miyao et al. [14] gave out
a k-connectivity-preserving algorithm with lower time
complexity, called local tree-based reliable topology
(LTRT). However, it only guarantees k-edge connectiv-
ity while takes no account of k-node connectivity.
Wang et al. [15] proposed a k-connected energy-aware
algorithm and proved the total power consumption is
minimum. Bagci et al. [16] presented a distributed
fault-tolerant algorithm. Zhao et al. [17, 18, 24] studied
the schemes based on cooperative communication to
achieve topology control, and Guo et al. [19] present a
more efficient fault-tolerant topology control with k-
connectivity. By exploiting the advantage of cooperative
communications, it can achieve path energy-efficiency
and lower power consumption. Ao et al. [20] consider
topology control with opportunistic interference can-
celation. Luo et al. [21] provide the optimization prob-
lem of joint topology control and authentication design
in mobile ad hoc networks with cooperative communi-
cations. Burkhart et al. [26] revealed that the minimum
total power does not lead to minimum interference. Re-
cently, mobile crowd sensing-based method [27-29] is
proposed to process social sensing data.

Although the above algorithms can perform k-
connectivity with high energy efficiency, few researches
consider heterogeneous nodal fault-tolerant requirements,
i.e, node v; should be k;-connected to node v; and there
are different k;; connectivities between any two nodes.

3 Related model and problem formulation

3.1 Network model

We consider a WMN as an undirected physical topology
graph G(V, E), where V={vy, v5, ..., ViViy1,..., v} is the
set of u vertices, i.e., routers, and E = {e;} is the set of all
edges. The involved links are symmetric for simplicity,
i.e., for v; and v; in an obstacle-free environment; if there
exists a link between them, then the channel is recipro-
cal. Each node is equipped with an omnidirectional an-
tenna and the same maximum transmit POWer Pmax
associated with the maximum transmit range 7pax(Pmax)-
Let d(v;v)) be the distance between v; and v;. If d(v;,v)) <
r(p:), where r(p;) is the transmit range of v; with power
Pi (0<Sp;<pmax), then a link e; exists from v; to v;
Meanwhile, we use the unit disk graph (UDG) to model
our topology, i.e. all nodes have the same transmit
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range. It is noted that UDG is a topology derived via the
maximum transmit radius, which corresponds to a trans-
mit power of 0.28183815 W under free space propagation
model.

3.2 Interference model

Interference reduction is one of the major goals in top-
ology control, and most algorithms achieve so by min-
imizing the node degree, as small node degree leads low
interference. However, [26] found the minimum node
degree does not imply the minimum interference. Existing
interference models are divided into physical interference
models and protocol interference ones [25, 30, 31]. Phys-
ical interference model is defined by formula (1), where /3
is the minimum signal to noise ratio (SNR) for successful
receptions, N is the ambient noise power level, and a de-
notes the signal power decays with respect to d(v,v)), p«
and p; denote the power level chosen by node v; and v;,
respectively.

pid(viv;)
N+ Zke\/pkd (ve, ;)

=2 (1)

Although physical interference model is convenient for
analysis, it is affected by 5, N, 4, and py [30]. We thus need
to have these parameters to calculate the interference; in
turn, the parameters need to be adjusted by minimizing
the interference. In this regard, it is extremely difficult to
calculate the interference. In this work, we use protocol
model to describe interference [30, 32].

Before introducing the interference model, we present
the concept of transmission range and interference range.
Transmission range and interference range are two im-
portant radio ranges in wireless networks. Transmission
range represents the range within which a packet is suc-
cessfully received if there is no interference from other ra-
dios. The transmission range is mainly determined by
transmission power and radio propagation properties (i.e.,
attenuation). Interference range (Ri) is the range within
which stations in receive mode will be “interfered with” by
an unrelated transmitter and thus suffer a loss [31]. For a
node v; with a transmit range r(v; v;) and interference
range r/(v;, vj), v; sends data to v, then the number of
nodes within r/(v;, v)) is called unidirectional link interfer-
ence set, denoted as ULIS(v;, v)):

ULIS(vi,v;) = {vueVId(viy vi)<ri(viyvy) } (2)

Since link (z, v) is bidirectional, ULIS(v, u) can be de-
fined as

ULIS (vj, vi) = {vweV|d (v, v)<ri (v, vi) } (3)

Therefore, the interference set of (i, v) is
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LIS(vi,v;) = ULIS(vi,v;) -+ ULIS (v}, v;) (4)

where LIS(v;, v)) is the interference level. In order to build
an interference efficient spanning sub-graph, LIS(v; v)) is
used as the weight of edge (v;, v;). Moreover, we define the
LIS(G) as interference matrix, i.e., the LIS(G)={ LIS(v,,
v1), LIS(v1, vo), LIS(v1, v3),..., LIS(v1, v,,); LIS(v, v1), LIS(v5,
Vo), LIS(vo, V3),..., LIS(v5, v,));...; LIS(v,, v1), LISWv,, vs),
LIS(v,, v3),..., LIS(v,, v,,)}.

Furthermore, to ensure different weights between any
two edges, we use the id of the nodes [13]. The meaning
of id is the node number, such as, in Fig. 1, the id of
node v; is i. Specifically, given four different edges (v4,
Vo), (v3, v4), (v1, v3) and (vo, v3), the rules for comparing
the weight size of edges (v1, v,), (v3, v4) and edges (v,
v3), (v, v3) are defined as

w(vs, va) > w(vy, v2)
©LIS(vs,va) > LIS(v1,v7)
or LIS(v3,va) = LIS(v1,v2)
{max{id(vs),id(va)} = 4} > { max{id(v,),id(v1)} = 2}
w(va,v3) > w(vy, vs)
©LIS(va,v3) > LIS(v1,v3)
or LIS(vp,vs) = LIS(v1,vs)
{ max{id(v,),id(v3)} = 3} = { max{id(v1),id(vs)} = 3}
{min{id(v,),id(v3)} = 2} > { min{id(v;),id(v3)} = 1}

If the ids of end-nodes for each edge are different,
then each edge has different weight. Therefore, the
weight function will ensure the uniqueness in process of
adding edges.

3.3 Problem formulation

Preserving network connectivity or k-connectivity may
not meet network performance. For example, in Fig. 2a,
b, both networks are 2-connected graphs, while with dif-
ferent fault-tolerant requirements. Furthermore, trans-
mit powers of vy, v3, vy, and vs are different, causing
different interference. If we select Fig. 2b as the optimal

/— The id of vy is 1

Vi
V4

%)

Fig. 1 Description of the id of nodes
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topology, then the link interference between v; and vs is
stronger than that of Fig. 2a. Thus, for k-connectivity re-
quirement, it is a coarse-grained fault-tolerant constraint,
i.e., k-connectivity may not meet specific fault-tolerant re-
quirement. In some cases, there are different fault-tolerant
requirements between two nodes. Taking a 6-node net-
work as an example, when the fault-tolerance for vy, vy, v3,
and vs is 3-connectivity and the fault-tolerance between v,
and vg is 2-connectivity, then the topology in Fig. 3 both
work, while with different performance.

As mentioned, the k-connectivity requirement may
not satisfy specific topology fault tolerance. We thus
need to consider different connectivity requirement for
any two node pair. We use k; connectivity between any
two nodes to measure the specific fault tolerance.

We define k; connectivity as fault-tolerant require-
ment between v; and v; Then, the fault-tolerant con-
straint Np(v;,v)) is

Nﬁ (Vi, Vj) Zki.j (i,jEV, i#], lski,jgk,j(max)) (5)

In a fully connected network with # nodes, there are n-1
disjoint paths between any two nodes. Thus, k;(max) is #-1.

Furthermore, the optimization objective of network gen-
erally is to maximize the network capacity. Since the inter-
ference level is the important factor of affecting network
capacity. As we know, radio channel capacity decreases as

the wanted signal carrier power to interference ratio (C/I)
decreases. The expected values of C/I also determine net-
work capacity and data throughput per node [33]. There-
fore, the optimization problem of topology control with
fault-tolerant constraints for WMNs can be defined as

min- max{LIS(v;,v;),vi€V(G),v,eND(v;) } (6)

subject to :

(7)

The objective (6) is to minimize the maximum link
interference, where ND(v;) denotes the neighboring set
of v;. Fault-tolerant constraints in (7) emphasize the top-
ology requirement between a specified node pair, which
provides the flexibility for topology fault-tolerant re-
quirement, and k; is the value of specific fault-tolerant
requirement.

Nﬂ(Vth)Zki’j (i,je\/,i:tj, lsk,;sk,‘,'(max))

4 Fault-tolerance-and-interference-aware
topology control

4.1 Description of FICTC algorithm

In this section, we present the proposed algorithm,
fault-tolerance-and-interference-aware topology con-
trol (FICTC). Before providing the FICTC, we first
introduce the idea of FICTC and then describe in
detail the procedure of FICTC.

Vi V4

V2
Ve
V3

(a) GV, E)

Fig. 3 Interference analysis of different 2-connected network topology

(b) GV, E)
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According to Section 4, our optimization objective is
to minimize the maximum of link interference LIS(v;, v))
under topology fault-tolerant requirement Npj(v;v;) > k;;
for any two different node pair, i.e., our proposed top-
ology control not only considers the link interference
but also considers the different fault-tolerance require-
ment for any two node pair in topology.

In order to achieve the different fault-tolerance require-
ment for any two node pair, according to Menger’s the-
orem in [34], the k;; connectivity between node v; and v; is
equivalent to having k;; disjoint paths between node v; and
v;. Therefore, the achievement of k; connectivity for any
two node pair means the solution of k;; disjoint paths for
any two node pair, that is, the key issue is how to effect-
ively calculate the disjoint paths. Furthermore, in a process
of calculating disjoint paths between any two nodes, the
maximum interference in these paths is minimized. Ac-
cording to [34], the number of disjoint paths is equal to
that of minimum vertex separation set. Unfortunately,
there are no solutions to the number of minimum vertex
separation set in a given graph. By the splitting operation
of each node, the minimum vertex separation set is ob-
tained via solving the minimum edge cut set. Then, ac-
cording to max-flow min-cut, the minimum edge cut set
can be solved by maximizing the integral flow in a unit
capacity network. For a k-node-disjoint paths problem, a
unit capacity network is obtained by the node-splitting
technique from the original network. In order to guaran-
tee minimized maximum link interference for each node,
we use Prim’s minimum spanning tree algorithm to obtain
the node-disjoint paths. In this context, the specific steps
for our proposed FICTC are described in Algorithm 1.

In Algorithm 1, the procedure in FICTC has five
phases, namely, setting the fault-tolerant requirement
ki, splitting operation, finding an augment path, updat-
ing link capacity on augment path, and merging the aug-
ment path into the output topology. The procedure of
finding an augment path is computed repeatedly until
the number of disjoint paths between any two different
nodes meets fault-tolerant requirement of the k;
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connectivity between any two different nodes. Detailed
descriptions are as follows:

1) Setting the fault-tolerant requirement of k;; connectivity
According the above description, we know the
fault-tolerant requirement of k; connectivity is
equivalent to the solution of k;; disjoint paths
between any two nodes. Therefore, the following
phases will define the k;; disjoint paths between
any two nodes as constraint condition.

2) Splitting operation
As shown in Fig. 4, each node v; is replaced with
v and v;. Meanwhile, the link of e = (v;, v;.) is two
direct links € = (v{”, v3)) and €” = (vy”, v{). The
direct links (v/- > v"), (1;”- > v/), and (v,"- >v;) have
two weight values, which respectively are the unit
capacity and the value of link interference, that is,
(¢, L1S). For example, in Fig. 4, the c(v1] v1”), c(v2)
vy”), c¢(vi”, v5'), and ¢(v,”, v{’) are set to 1.
Furthermore, the value of LIS(v;, v;”) and LIS(v,,
vy”) are set to 0. The value of LIS(v;”, v5)) and
LIS(vy”, v{’) are both 8. In addition, c¢(v,”, v5)) =1
denotes the direct of link v;” — v,

3) Finding an augment path

Finding the augment path is a key step in obtaining k;
node-disjoint paths. As showed in Fig. 4, the augment
path is marked by a dotted line. Specifically, in Fig. 4,
the source and destination are, respectively, v,
and vo. As long as vy is selected as a node in
the minimum spanning tree (MST) found based
on the links weight LIS(G), the calculation of
the augment path is achieved, and the algorithm
enters next step.

4) Updating link capacity on augment path
After calculating the augment path, the unit
capacity of directed link is updated. For example,
in Fig. 5, for the link (v,”, v5'), c(vi”, v5') = c(v1”,

@nterference
4 value LIS(vy,v2)

Fig. 4 Example of calculating the augment paths

by Prim MST algorithm
based on interference value
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v5)-1=0, and c¢(vs,vy”) = c(vs,v;”) + 1 = 1, the link 4.2 Theoretical analysis of the proposed FICTC
changes to the reverse direction. The other links on To identify the theoretical performance of FICTC, we
the augment path execute the same operation. present some theorems to prove the performance.

5) Merging the augment path to the output topology
When the number of augment paths is not less than
k;, the disjoint paths between v; and v; are found. In
this context, we need to merger the augment path
into the output topology. As shown in Fig. 6, the
two augment paths between v; and vg are added into
the output topology. 4.2.0.2 Proof From max-flow min-cut theorem, the

Main procedure is summarized in Algorithm 1. maximum flow between v, and v, is equal to the sum

4.2.0.1 Theorem 1 Give a network G(VIE), let v,v,as
two different nodes in G(V,E) the min-edge-cut set be-
tween viand v,is equivalent to the maximum integer flow
in unit capacity network.

Algorithm 1: FICTC
Input: Initial topology G(V, E), links interference matrix LIS(G), k;;,
Output: Topology graph G’(V”,E”)
1. Initial the Visit(v;, v;)=0 for all pair (v;, vj) in G(V, E)

2. Setting the fault-tolerant requirement of of k; connectivity, i.e. the number of
specific disjoint paths k; between node v; and v;

3. Built the directed graph G,(}”,E”) by implementing splitting operation for G(V,
E)

4. Repeat

5. Select node pair (vi, vj)) € G(V,E) and set visit(v;, vj)=1;
6. Initialization: m=0, PFlag=True, P,- ¢

7. while (m< k; and PFlag=True)

8. Finding an augment path P,, using Prim algorithm between v; and v; based on
LIS(G)

9. IfPisNULL

10.  then PFlag=False;

11. else

12. Update c(v;”’, v/)=c(v:"’, v/)-1 and c(v;” ,v;")=c(v;" ,vi"")+1
13. endif

14. m=m+1;

15. End while

16. Merge all links of the m augment paths into G’(V”, E”)

17. Until all node pair Visit(v;, vj)=1
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i

Fig. 5 Example of updating the capacity of link

capacity of the minimum cut edge set. In addition, the
maximum capacity is equal to the number of the mini-
mum cut edge set, when the network is with unit cap-
acity. In a unit capacity network, the capacity of each
edge is 1; hence, the min-cut set between v, and v, is
equivalent to the maximum integer flow in a unit cap-
acity network.

4.2.0.3 Theorem 2 Given a network G(VE), let v,v,as
two different nodes in G(V,E) the number of node-disjoint
paths is equal to the maximum integer flow in a unit cap-
acity network obtained by the node-splitting technique.

4.2.0.4 Proof From Menger’s theorem [34], the number
of node-disjoint paths between any two nodes is equal to
that of minimum vertex separation. Since the network is
unit capacity obtained by node-splitting, the number of
minimum vertex separation is equal to the minimum
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edge cut set obtained via Theorem1. Thus, we prove the
theorem.

4.2.0.5 Theorem 3 Given an initial network G(V,E), the
maximum link interference of the topology G,V E’) con-
structed by the proposed FICTC is minimized.

4.2.0.6 Proof Suppose G(V,E) meet the fault-tolerant
constraint. According Section 6, FICTC achieves the op-
timal topology via node-disjoint paths set R between any
two nodes, which are obtained by Prim’s minimum span
tree algorithm. If we can prove the link maximum inter-
ference in path PeR in G4(V',E) is minimized, we can
conclude that the result is true.

Now, we prove by contradiction that each node-disjoint
path P in G,4(V;E) is minimized. Let 7" be the minimum
span tree and P be a augment path between v, and vy,
where PeT and PeR. Assume the link maximum interfer-
ence in path P in G,(V;E’) is not minimized. Then, there
exist links e and e, where ecE(T), €€E(G-T), LIS(€) <
LIS(e), and LIS(P- e +¢€’) = LIS(P) -LIS(e) + LIS(¢’) < LIS(P).
Since P<T and there is only one path between any two
nodes in T, the number of paths between v, and v, is 1.
Hence, LIS(T- e+¢€’)=LIS(T) -LIS(e)+ LIS(e’) < LIS(T)
leads to a contradiction.

Then, we analyze the computational complexity of
FICTC. For a given G(V,E) with n nodes and m links, we
use a adjacency list to store the network graph G(VE).
Consider the gateway node already collects all node in-
formation. FICTC mainly includes procedures of split-
ting operation and seeking the k;; disjoint paths between
v; and v;. For the procedures of splitting operation, v; is
replaced with v;” and v;” and each link is replaced with
two directed link ¢ = (v,”, v/) and e” = (v/", v/), and the
total time complexity is O(#n + m). In procedure for seeking
the k; disjoint paths, since the network includes 7(r-1)/2
different node pairs, the time of solving k; node-disjoint
paths are n(n-1)/2. For each procedure of solving k;

rTecan

~--
S

4

’_/v_'\

Fig. 6 Example of merging the augment paths




Bao and Deng EURASIP Journal on Wireless Communications and Networking (2016) 2016:190

Page 8 of 13

(C) Topology constructed by LTRT

(d) Topology constructed by our proposed FICTC

Fig. 7 Topologies constructed by UDG, FLSS, LTRT, and FICTC. a Original network topology with UDG. b Topology constructed by FLSS.
¢ Topology constructed by LTRT. d Topology constructed by our proposed FICTC
A

node-disjoint paths, it needs to compute k; node-
disjoint paths. In the process of computing, an augment
path between any two nodes is found by Prim’s mini-
mum spanning tree algorithm. If the graph G(VE) is
stored in the adjacency list, the complexity of Prim’s
minimum spanning tree algorithm is O(m + n). After
finding the augment paths, these paths are used to up-
date the flow. The flow updating of each path in worst
case take n-1 times addition operation and subtraction
operation, then the total time of finding the k;; augment
paths is O(k;n). k;; is various for different node pairs;
we thus use max(k;;) to represent it. Therefore, the total
computational complexity of FICTC is O(2n(n-1)
max(ky) (m + n + k;n)).

5 Distributed implementation of the proposed FICTC
In wireless multi-hop network, the practical implementation
is generally in a distributed way. In this section, we present
the distributed implementation of the proposed FICTC.

The topology of distributed implementation is derived
by its neighbor nodes’ information of each node. The
implementation procedure includes three phases. In first
phase, each node v first calculates the interference level
ULIS(v, u) based on locally collected neighbor informa-
tion and the formula (2) in section 3.2. Then, each node
sent their the interference level ULIS(v, u) to their neigh-
bor nodes. Finally, according to the formulas (3) and (4),
each node calculate the LIS(u, v) based on ULIS(u, v)
and the received ULIS(v, u) from their neighbor nodes.
In second phase, according to the k; connectivity fault-
tolerant requirement, the k; disjoint paths between any
two nodes pair are required to be solved in disturbed
way. Therefore, in the process of solving k; disjoint
paths, the augment path is achieved based on distributed
minimum spanning tree (MST) algorithm [35]. In the
final phase, these links that included in all augment
paths are merged into the constructed topology. The de-
tailed procedure is summarized in Algorithm 2.
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Algorithm 2: The distributed algorithm of FICTC

Phase 1:

1. Each node v; calculates the interference value ULIS(v;, v;) based on locally collected
neighbor information and the formula (2) and broadcast the message of the interference

value .

2. Each sensor node v; receives a broadcast message with the interference value form

neighbor nodes N(v;).

3. Each node calculates the L/S(u, v) based on broadcast message with the interference

value.

Phase 2:

1. While each node v; established the store of augment path information for node pair (v,
v,) € G(V,E), and selects a neighbor node with minimum LIS(v;, v;), v;& N(v;) and sent a

message of constructing augment path based on distributed minimum spanning tree

(MST) algorithm.

2. If each node v, receives a constructed message from its neighbor node v;, then

3. If(L(se) TLIS(vi, v)))< Li(s,) then updating the parent node PN(sy, j)=i, where s
denotes the source of node pair, L (s, )denotes the sum of interference value

between source s and v;.

4. If v==t, then node v, sents a reverse constructed message of augment path to the

parent node.

5. If node v, receives a reverse constructed message, then

6. Node v; updating the transmission power according to the maximum the LIS(v;, v)) in

all augment paths.

7. If the number of augment paths for each node pair(v;, v;) is more than or equal to the

k

;» then end

8. End while

6 Performance evaluation

First, we take an example to detail FICTC and compare
with other k-connected algorithms, such as FLSS and
LTRT. Consider a network with 50 nodes randomly
placed in a 1000 m x 1000 m field; transmit range of all
nodes is 250 m. We randomly generate 10 nodes and as-
sume that the fault-tolerant constraints k; among them
are 3, and that among others nodes are 2, i.e., Ng(v,vj) 2
3, 1j€{0,4,7,8,15,18,25,35,37,43}, i=j, and Ng(vsvy) =2,
i'je{v-{0,4,7,8,15,18,25,35,37,43}}, i'#j. The topologies
constructed by UDG, FLSS, LTRT, and FICTC are re-
spectively shown in Fig. 7a—d.

From Fig. 7, Fig. 7a is original topology constructed by
unit disk graph (UDG), i.e., unit disk graph is a network
topology derived by using the maximum the transmis-
sion radius of 250 m. In Fig. 7b, the topology con-
structed by the FLSS algorithm. This algorithm first
sorts all edges in ascending order of weight, then judges
the k-connected between two terminate nodes of each
edge in the order. If it is k-connected, the edge is
inserted into output topology graph G;. For the topology
derived by LTRT in the Fig. 7(c), the LTRT algorithm is
a topology control algorithm combining two different al-
gorithms, TRT and LMST. TRT is basically an algorithm
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The number Number of Number of The k; connectivity between two nodes The corresponding k
of nodes(N) the first the second The first group nodes The second group nodes conngcnwty degree'olf
group nodes group nodes meeting k; connectivity of
two group nodes for the
FLSS and LTRT algorithms
50 to 100 N/10 N-N/10 2 3 3

to efficiently construct 2-edge connected topologies. How-
ever, it can be extended for constructing k-edge connected
networks by just recursively repeating the same proce-
dures. The topology constructed by our proposed FICTC
is shown in Fig. 7d. In Fig. 7, our proposed FICTC shows
the number of disjoint paths between any node pair in 10
nodes {0,4,7,8,15,18,25,35,37,43} is 3, while others are 2,
showing the constructed topology satisfies the specific
fault-tolerant requirement k. Furthermore, we can easily
know from Fig. 7, the FICTC present smaller transmit ra-
dius and node degree than FLSS and LTRT. The perform-
ance of FLSS is better than LTRT.

Then, in order to show the validation of our proposed
algorithm, we consider a network with 50 to 100 nodes
randomly placed in a 1000 m x 1000 m field. Transmis-
sion range of all nodes is 250 m. Table 1 lists the fault-
tolerant requirement. The nodes are divided into two
groups. We compare our FICTC with FLSS and LTRT.
The graph parameters of comparison among FLSS, LTRT,
and FICTC include node degree and transmit radius. The
node degree is referred as the number of nodes within the
transmission radius of a node. Figures 8, 9, and 10 demon-
strate a comparison among these topology control algo-
rithms. Here, the NONE denotes the original topology
constructed by UDG in Figs. 8, 9, and 10.

Figure 8 shows the average node degree of the topolo-
gies derived by FLSS, LTRT, FICTC, and NONE. The
NONE in Fig. 8 is defined as the network topology de-
rived by using the maximum transmit radius. The node
degree of NONE linearly increases with the number of

nodes, while node degrees of FLSS, LTRT, and FICTC
are almost constant. Meanwhile, the average node de-
gree of FICTC is smaller than other algorithms. In
Fig. 8b, the average transmit radius of FICTC is smaller
than FLSS, LTRT, and NONE, indicating better network
performance in terms of interference.

But, as we know from [32], the minimum node degree
does not imply the minimum interference. In order to
further validate the performance of total interference, we
evaluate the performance of our proposed algorithms in
above random network using the interference metric in
section 3.2. In Fig. 9, we plot respectively the maximum
links interference and average links interference for a
varying number of nodes.

Figure 9 shows FICTC and distributed FICTC enjoy
better maximum link interference performance over
FLSS, LTRT, and NONE. Meanwhile, in Fig. 9b, the aver-
age link interference of FICTC is weaker than NONE,
LTRT, and FLSS. Since FICTC considers the interference
metric as link cost, thus we can achieve the minimal of
maximum interference.

Then, we evaluate the average expended energy ratio
(EER), where is defined in [13, 14]. The definition is as
follows.

EER = EAVE + Emax X 100[%} (8)
In (8), the Eayg denotes the average transmission

power over all the nodes, and E;4x is the maximal
transmission power. We compare the EER performance

-
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of our FICTC with FLSS and LTRT. The result of per-
formance is shown in Fig. 10.

In Fig. 10, we know the proposed FICTC and distrib-
uted FICTC both performs better than other algorithms
and the difference of performance reduce with the in-
crease of the number of nodes.

In order to fully understand FICTC, we evaluate the
performance of different algorithms by ns-2 simulations.
The parameters are shown in Table 2. We utilize UDP
connection and constant bit rate (CBR) flow for each
pair. The length of packet is 512 bytes and the sending
rate of each CBR flow is fixed at 2 Mbps. All transmis-
sions are unicast following the 802.11 MAC protocol.
The routing scheme is AODV for MCMR-WMN. As for
the fault-tolerant requirements, we use UDG, FLSS,
LTRT, distributed FICTC, and FICTC. We compare the
performance by measuring the throughput and average
E2E delay.

Figure 11 shows that the throughput of FICTC and
distributed FICTC are higher than NONE, LTRT, and

80 \ :
i =) & & = i
70t 1
—E— NONE
60 g | TRT b
—0— FLSS
;\3 501 ==V~ Distributed FICTC ]
T -~ FICTC
o 40} ]

50 60 70 80 90
Number of nodes

100

Fig. 10 Expended energy ratio

FLSS; meanwhile, its average E2E delay is the lowest.
Unlike FLSS and LTRT, FICTC not only considers the
length of the shortest path, but also uses the link inter-
ference as link weight in solving the topology. Import-
antly, only FICTC achieves the fault-tolerant constraint
between any two nodes.

7 Conclusions

In this work, topology optimization of considering the
fault tolerance and network interference in WNMs was
investigated. We proposed a fault-tolerance-and-inter-
ference-aware topology control (FICTC) algorithm for
WNMs. We first analyzed the network performance
under the requirement of k-connectivity. Then, the
interference model and the problem formulation of im-
proving the network performance for k-connectivity
topology were presented. By the analysis of FICTC
algorithm, we proved that FICTC not only meets the
fault-tolerant requirement, but also minimizes the max-
imum node interference. Moreover, the distributed im-
plementation of the proposed FICTC was proposed.
The proposed FICTC algorithm plays an important role
for improving network and fault tolerance performance
in WNMs. We integrate the disjoint paths between any

Table 2 Simulation parameters

Field size 1000 mx 1000 m
Maximum transmission range 250 m
Interference range 550 m

Number of nodes 50-100

MAC protocol 802.11

Traffic pattern CBR

Trans. protocol ubp

Routing protocol AODV

Length of packet 512 bytes
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two nodes into topology optimization with fault toler-
ance requirement. For different fault tolerance require-
ment, graph-based simulations results indicated that
FICTC outperforms the state-of-the-art fault-tolerant
topology control algorithms in terms of average node
degree, maximum transmit radius, and maximum link
interference. Furthermore, the ns-2 simulations showed
FICTC achieves higher throughput and lower E2E
delay. In term of energy consumption, we use the aver-
age expended energy ratio (EER) to evaluate the energy
performance of our proposed FICTC. The result indi-
cated the proposed FICTC achieve lower EER than
other algorithms. These results demonstrate that the
proposed solutions are promising for specific fault-
tolerant requirement in practical network deployment.
However, There are several problems for further re-
search on fault-tolerance-and-interference-aware top-
ology control. The proposed FICTC does not analyze
the network performance of considering sophisticated
model for the radio signal propagation. Moreover, the
FICTC algorithm needs to deal with mobile WNMs. In
future study, we plan to investigate the network per-
formance for these problems.
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