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Abstract

Coordinated multipoint (CoMP) technology utilizes simultaneous transmission/reception from/to different access
points, and it is considered as an important feature to exploit and/or mitigate intercell interference in
fourth-generation mobile networks. Yet, channel power imbalance at the receiver is experienced in CoMP systems
due to, e.g., spatially distributed transmissions. Traditional co-located multi-antenna systems may also experience
power imbalance among antenna branches due to inaccurate antenna calibration. This paper presents a bit error rate
(BER) analysis and derives asymptotic and approximate BER expressions for some practical CoMP transmission
techniques under channel power imbalance. Besides the analytical results, numerical analysis is made to thoroughly
capture the performance impact of channel power imbalance on the performance gain of the CoMP methods. The
results demonstrate that power imbalance considerably affects BER performance and applying long-term amplitude
information with fast phase feedback has insignificant benefit to effectively compensate the detrimental effect of
large channel power imbalance when base stations use a single antenna. In this case, exploiting both short-term
amplitude and phase information is a very good choice. On the contrary, for a large number of diversity antennas in
base stations, using long-term amplitude information with a sparsely quantized phase shows BER performance close
to the case where full channel state information is applied.

Keywords: Intercell interference, Coordinated multipoint, CoMP, LTE-advanced, Channel power imbalance, Transmit
beamforming, Bit error rate

1 Introduction
The inconsistent quality of experience across mobile net-
works is an important challenge of contemporary mobile
communications, the intercell interference being one of
the main causes of the inconsistency [1]. Coordinated
multipoint (CoMP) transmission has been recently pro-
posed to mitigate and/or exploit intercell interference
in mobile systems [2–6]. In CoMP, user data trans-
mission is dynamically executed either from all coor-
dinating base stations (BSs) or from one BS while
scheduling/beamforming decisions are made together by
coordinating BSs. CoMP transmission techniques have
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also been standardized for 3rd Generation Partnership
Project (3GPP) long-term evolution (LTE) [7, 8].
Various limited-feedback precoding methods with dif-

ferent implementation requirements for practical CoMP
scenarios have been studied [9–12]. Most analytical stud-
ies rely on the conventional assumption that antenna
branches are homogeneous and antenna channels seen by
the receiver admit the same statistical properties. Yet, in
many practical joint-transmission CoMP scenarios, mean
power imbalance occurs among signals received by a user
from different coordinating BSs. The power imbalance
is due to either spatially distributed transmissions in the
case of inter-site CoMP or different directions of sec-
tor antenna main lobes in the case of intra-site CoMP.
Besides CoMP, a similar channel power imbalance prob-
lem occurs in distributed antenna systems where transmit
antenna elements are geographically distributed but con-
nected to the same controlling BS [13]. For instance, for

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-016-0697-y-x&domain=pdf
mailto: beneyam.haile@aalto.fi
http://creativecommons.org/licenses/by/4.0/


Haile et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:212 Page 2 of 10

a 3GPP urban micro pathloss model (i.e., L = 34.53 +
38 log10(d) for a distance d [14]), a mobile station (MS)
located between two neighboring BS sites with an inter-
site distance of ISD experiences channel power imbalance
of σd = 38 log10((ISD + �d)/(ISD − �d)) dB due to dis-
tance difference �d from the sites. Also, for the 3GPP
three-sector antenna pattern (i.e., A(θ) = −12(θ/θ3dB)

2

for 3-dB beamwidth θ3dB [14]), a MS located between
two neighboring co-located sectors at an angle of θ from
the main lobe direction of one of the sectors experiences
channel power imbalance of σθ = 288(θ − 60)/(θ3dB)2.
An illustration for channel power imblance values is pre-
sented in Table 1 for ISD = 500m and θ3dB = 70◦. Chan-
nel power imbalance also occurs among antenna branches
in the conventional co-located multi-antenna systems
due to imperfect antenna calibration. For example, in
third-generation BS, the difference between reference
signals from two different antenna connectors must be
within ±2 dB [15].
In [16], we presented a detailed analysis for the opti-

mal amplitude weights, signal-to-noise ratio (SNR) gain,
and average capacity under channel power imbalance in
the case of selected CoMP techniques that are consis-
tent with standardized limited-feedback methods. The
paper [16] provides thorough insights on the performance
loss due to power imbalance in terms of coherent com-
bining gain. In this work, we study the impact of channel
power imbalance on the bit error rate (BER) performance
of the CoMP methods. To that end, we derive asymp-
totic and approximate BER expressions for the CoMP
techniques assuming single-antenna BSs. As the analyti-
cal computations are cumbersome for the multi-antenna
BSs, the channel power imbalance impact study in a more
general case is made through simulation. For benchmark-
ing purposes, we also recall BER results for transmitter
selection combining and the case where full channel state
information (CSI) is employed at the transmitter side. To
the authors best knowledge, this BER performance anal-
ysis for the limited-feedback CoMP techniques has not
been carried out in previous literature.
Our results illustrate how sensitive a limited-feedback

technique that exploits long-term CSI feedback to maxi-
mize the SNR is to the channel power imbalance in the
single-antenna case. We show the necessity of short-term

Table 1 Channel power imbalance values for a given �d or θ
when ISD = 500m and θ3dB = 70◦

σ (dB) �d (m) θ (◦)

0 0.0 60.0

3 45.4 65.1

6 90.0 70.2

10 147.1 77.0

amplitude feedback when channel power imbalance is
large. Furthermore, we note that the short-term ampli-
tude feedback is not important when a larger number of
transmit antennas are employed in BSs.
In terms of organization, Section 2 provides an overview

of the system model and the CoMP algorithms. In
Section 3, we compute analytical expressions for the
asymptotic and the approximate BERs when BSs use a
single antenna. In Section 4, we verify analytical results
and provide performance comparisons and simulation
results when BSs apply more than one antenna. Finally, we
present our conclusions in Section 5.

2 Systemmodel and CoMP schemes
2.1 SystemModel
The general system model is depicted in Fig. 1 where two
groups ofM antenna branches transmit identical informa-
tion to a single-antenna mobile station. Antenna groups
can be located either in different sites as in the case of
inter-site CoMP and distributed antenna systems or in the
same site as in the case of intra-site CoMP. We note that
CoMP involving two groups of antennas is an important
joint transmission scenario that can mitigate/exploit the
most dominant interference with the least overhead and
complexity.
A feedback system with low-rate CSI from a single-

antenna MS is used to select transmission weights for the
antenna groups and branches in Fig. 1. In this model, the
received signal at a given time instant can be written as

r =
2∑

m = 1
hm · xm + n =

2∑
m = 1

[(hm · um)wm] s + n, (1)

where xm ∈ C
1×M is the transmitted vector signal from

the mth BS antennas containing the information sym-
bol s of the active user, hm ∈ C

1×M is the channel gain
vector of the mth group, and n refers to zero-mean com-
plex additive white Gaussian noise with power Pn. We
note that xm comes from s via beamforming, where w
and um with normalized powers ‖w‖ = 1 and ‖um‖ =
1 represent complex weight vectors selected from given
codebooks according to applied precoding techniques.
The power constraint of the input signal implies that∑2

m = 1 E
{
x†m xm

} ≤ Pt, where Pt is the total transmit-
ted energy per channel use and (·)† denotes Hermitian
transpose. WhenM = 1, (2) is reduced to the form

r =[ h1,1w1 + h2,1w2] s + n = (h · w) s + n, (2)

where h = (h1,1, h2,1).
We consider a flat block fading channel model where

channel gains remain stationary during each block of
transmitted symbols, and channel responses from tempo-
rally separate transmission blocks are independent. Fur-
thermore, the complex channel gains hm,l are assumed to



Haile et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:212 Page 3 of 10

Fig. 1 General system model

be independent and identically distributed zero-mean cir-
cularly symmetric complex Gaussian random variables:
hm,l = √

γm,l ejψm,l . Hence, the branch power γm,l fol-
lows exponential distribution with mean γ̄m = E{γm,l},
and the branch phase ψm,l is uniformly distributed on
(−π ,π). Spatially uncorrelated channel assumption is
considered as for the different groups we have anten-
nas spatially well separated, and within the same group,
both polarization and spatial separation of antennas can
be effectively used especially in urban environments [17].
Of course, when the number of antennas becomes large,
it will be increasingly difficult to obtain configuration
where mutual correlation between antennas is small. We
consider negligible power imbalance between antenna
branches within the same group as they are co-located
and directed in the same fashion and inexpensive calibra-
tion can be applied. We also assume that MS has perfect
CSI and provides both short-term and long-term feedback
to the distributed antenna transmitter. The short-term
quantized CSI is available at the transmitter side with-
out errors or latency while perfect time synchronization is
assumed between transmission points such that coherent
combining is possible. The long-term channel statistics is
perfectly known at the transmitter side.

2.2 CoMP algorithms
This work investigates three joint processing CoMP algo-
rithms. The algorithms are briefly defined to choose the
best weight ŵ when M = 1. If M > 1, the definitions
are used by replacing hm,1 with the signal hm · ûm where
ûm is the best weight vector selected for the mth antenna
group [16].

2.2.1 Transmitter selection combining (TSC)
This is a simple classical method where the antenna
branch providing the largest signal power is selected.
Selection of better weight ŵ is made according to |h · ŵ| =
max{|hm,1| : m = 1, 2}. Only a 1-bit feedback overhead
is required for this method which makes the algorithm
attractive from an implementation perspective although
its performance is inferior when compared to the more
sophisticated CoMP algorithms, and it is also very sensi-
tive to errors in feedback signaling [18]. TSC is included in
the 3GPP CoMP category under the name dynamic point
selection [7].

2.2.2 Quantized co-phasing (QCP)
In this CoMP scheme, MS reports the quantized relative
phase of the channel gains. Thus, when using the Nw bit
feedback, we have

|h · ŵ| = max
{∣∣h1,1v1 + h2,1v2ejφn

∣∣ : 1 ≤ n ≤ 2Nw
}
,

(3)

where φn = πn/2Nw−1 and v1, v2 refer to selected transmit
weights that determine the ratio of transmit power in each
antenna group/branch. We select either equal weights
(v1 = v2 = √

1/2) or long-term weights maximizing SNR
based on the long-term CSI feedback [16]. If Nw = 2
and there is no mean power imbalance between channels,
then (3) resembles closed-loop transmit-diversity that is
applied in 3GPP high-speed downlink packet access and
LTE [19, 20].
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2.2.3 Ordered quantized co-phasing (OQCP)
This algorithm is a natural extension of QCP formed by
using short-term order information of channel amplitudes
in addition to the phase difference. In OQCP, the receiver
first ranks instantaneous SNRs, |h(1)| = max{|h1,1|, |h2,1|},
and |h(2)| = min{|h1,1|, |h2,1|} before deciding the phase
feedback using criteria (3). Both order and phase differ-
ence information are signaled to the transmitter using
Nw + 1 feedback bits. After precoding, the received signal
is of the form

|h · ŵ| = |h(1)v1 + h(2)v2ejφ̂n |, (4)

where φ̂n refers to the best phase and the normalized
amplitude weights are selected based on the channel order
statistics. In the case of Rayleigh fading under channel
power balance, it has been shown that v21 = (1 + (1 +
(πρ/2))2)−1/2)/2, ρ = sinc(π/2Nw) and v22 = 1 − v21 [21].
If M > 1, the best weight vector ûm is selected accord-

ing to QCP. We let the first antenna branch of the mth
group as a reference, and the best phase for each remain-
ing antenna branches is chosen and reported using Nu
feedback bits.
We note that although amplitude weights maximizing

expected SNR are presented in [16] for both QCP and
OQCP, the following BER analysis is valid for any transmit
amplitude weights.

3 Bit error rate analysis
In the following, we characterize the impact of power
imbalance on the average BER—denoted by Pe—for M =
1. We start the analysis by recalling that the average BER
can be computed from the formula

Pe =
∫ ∞

0
Pmod(z)f (z)dz, (5)

where z = |h ·ŵ|2 represents the instantaneous SNR when
feedback algorithm is used and Pmod(·) is the error rate
of the applied modulation scheme. For simplicity, we con-
sider here only the BPSK modulation: Pmod (z) = 1/2 ·
erfc(

√
z). It is also known that the symbol/bit error rates

for the higher order modulation methods like M-QAM
can be approximated or even in some cases expressed
exactly by using the very same complementary error func-
tion erfc(

√
z), after some simple scaling. Therefore, BER

results for many modulation methods over the fading
channel are easily obtained once BER has been computed
for the BPSK modulation.
Closed-form expression for BER can be derived so long

as the distribution f (z) is known and (5) is analytically
integrable. This is the case if perfect CSI is available or
TSC is applied. On the other hand, for QCP and OQCP
algorithms, the distribution f (z) is difficult to obtain but
we compute for both algorithms the asymptotic BER in
closed form. We note that asymptotic analysis has been

previously presented in [22] for the special case γ̄1 = γ̄2.
Then we formulate approximate BER expressions that can
be used in the low-to-moderate SNR region based on the
asymptotic BER expressions.
Although mean SNRs are not equal, we can assume that

γ̄1 and γ̄2 grow at the same rate in the asymptotic SNR
region. Then γ̄1γ̄2 = σ0γ̄

2
1 , where σ0 denotes the channel

power imbalance between the antenna branches. Now the
asymptotic BER can be written in the form

log10 Pe(γ̄1, γ̄2) ≈ E(σ0)−d · log10 γ̄1, γ̄1 
 1, (6)

where the slope d is the diversity gain. To validate the for-
mula (6), we show that diversity gains of the investigated
methods are equal to two despite the mean power imbal-
ance. Furthermore, we deduce closed-form expressions
for the constant E(σ0) in the case of the CoMP methods
of Section 2.

3.1 Asymptotic BERs for reference methods
If perfect CSI is available in the transmitter, then the
distribution of received SNR is of the form f (z) =
1/ (γ̄1 − γ̄2)

(
e−z/γ̄1 − e−z/γ̄2

)
[23] and the computation of

BER can be carried out using (5). The result is well known,
and with the aid of notation σ0, we can express it as
follows [24]:

Pe =
1
2

[
1 − 1

1 − σ0

√
γ̄1

1 + γ̄1

(
1 − σ0

√
σ0(1 + γ̄1)

1 + σ0γ̄1

)]
. (7)

Furthermore, after utilizing Taylor series expansion on
the square roots, we obtain the asymptotic formula

lim
γ̄1→∞ γ̄ 2

1 · Pe = 3/(16 · σ0). (8)

When comparing this formula with (6), we find that d =
2 and E(σ0) = log10(3/(16σ0)).
The TSC has been well examined in the literature

[25, 26]. Using the adopted notations, the BER of TSC can
be written in the form

Pe =
1
2

[
1 −

√
γ̄1

1 + γ̄1
−

√
γ̄1σ0

1 + γ̄1σ0
+

√
γ̄1σ0

1 + σ0(1 + γ̄1)

]
.

(9)

After applying the Taylor series expansion on the square
roots, we obtain

lim
γ̄1→∞ γ̄ 2

1 · Pe = 3/(8 · σ0). (10)

Comparing (10) with (6), we find now that d = 2 and
E(σ0) = log10(3/(8σ0)).
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3.2 Asymptotic BER for QCP
For the computation of BER, we write the formula (5) as

Pe =
∫
R3
Pmod

(
z(γ1,1, γ2,1,ϕ)

)
f (ϕ, γ1,2, γ2,1)

dγ1,1dγ2,1dϕ, (11)

where ϕ = ψ2,1 − ψ1,1 + φ̂n. Since random variables ϕ,
γ1,1, and γ2,1 are independent, we have f (ϕ, γ1,1, γ2,1) =
UN (ϕ)f (γ1,1)f (γ2,1), where UN refers to the uniform dis-
tribution in the interval

(−π/2Nw ,π/2Nw
)
and f (γm,1) =

e−γm,1/γ̄m/γ̄m, m = 1, 2. Let us substitute γ1,1 = y and
γ2,1 = ty. Then z = y |v1 + v2

√
t ejϕ |2, and we can write

the BER of QCP in the form

Pe = 2Nw

π

∫ π/2Nw

0

∫ ∞

0

I(t,ϕ) dt dϕ

γ̄1γ̄2|v1 + v2
√
tejϕ |4 , (12)

where for c(t,ϕ) = (1/γ̄1 + t/γ̄2)
/|v1 + v2

√
tejϕ |2,

I(t,ϕ) = 1
2

∫ ∞

0
erfc(√η)ηe−c(t,ϕ)η dη. (13)

In Appendix 1, we have shown that limγ̄1→∞ I(t,ϕ) =
3/16. Using this result and (12), we obtain

lim
γ̄1→∞ γ̄ 2

1 · Pe = 3/(16σ0) · ANw(v1, v2), (14)

where

ANw(v1, v2) = 2Nw

π

∫ π/2Nw

0

∫ ∞

0

dt dϕ

|v1 + v2
√
tejϕ |4 . (15)

Furthermore, utilizing equality (3.252.4) from [27], we
achieve a closed-form expression

ANw(v1, v2) =
1

2v21v22

[
csc2

( π

2Nw

)
−2Nw

π
cot

( π

2Nw

)]
. (16)

Let us compare (14) and (16) with the asymptotic BER in
the case of full CSI in (8). We conclude that the degrada-
tion of asymptotic BER due to quantized channel informa-
tion is characterized by a constant which depends on the
number of phase bits and long-term transmit weights v1
and v2. Furthermore, by comparing (14) with (6), we find
that d = 2 and E(σ0) = log10

(
3/(16σ0) · ANw(v1, v2)

)
.

Moreover, optimal asymptotic BER is achieved when v1 =
v2 = √

1/2 irrespective of the value of σ0 as can be
deduced from (14) and (16).

3.3 Asymptotic BER for OQCP
In this case, the average BER is of the form

Pe =
∫
R3
Pmod

(
z(γ(1), γ(2),ϕ)

)
f (ϕ, γ(1), γ(2))

dγ(1)dγ(2)dϕ, (17)

where f (ϕ, γ(1), γ(2)) = UN (ϕ)f (γ(1), γ(2)); channel gains
γ(1), γ(2) are ordered; and f (γ(1), γ(2)) is the corresponding

joint PDF. In Appendix 2, we have shown that (17) reduces
to

Pe = 2Nw

π

∫ π/2Nw

0

∫ 1

0

(I1(t,ϕ) + I2(t,ϕ)) dt dϕ

γ̄1γ̄2
∣∣v1 + v2

√
t ejϕ

∣∣4 . (18)

Similarly with (13), notations I1(t,ϕ) and I2(t,ϕ)

refer to definite integrals for which limγ̄1→∞ I1(t,ϕ) =
limγ̄1→∞ I2(t,ϕ) = 3/16, and we obtain

lim
γ̄1→∞ γ̄ 2

1 · Pe = 3/(8σ0) · BNw(v1, v2), (19)

where

BNw(v1, v2) = 2Nw

π

∫ π/2Nw

0

∫ 1

0

dtdϕ∣∣v1 + v2
√
t ejϕ

∣∣4 . (20)

By changing variables, we find as expected that
BNw(v1, v2) = ANw(v1, v2)/2 when v1 = v2 irrespective of
power imbalance. Let us now compute BNw(v1, v2) when
v1 �= v2. Exploiting the Taylor expansion of (1 + x)−2, we
can write BNw(u1,u2) in the form

BNw = 2Nw

π

∫ π/2Nw

0

∫ 1

0

1(
1 + 2v1v2

√
t cosϕ

v21+v22t

)2 dtdϕ

(v21 + v22t)2

=
∞∑

n = 0

2Nw(−1)n(n + 1)
π

∫ π/2Nw

0
cosn(ϕ)dϕ

∫ 1

0

(
2v1v2

√
t
)n(

v21 + v22t
)n+2 dt.

We solve the remaining integrals using equations
(2.513.3), (2.513.4), and (3.194.1) of [27]. Then BNw(v1, v2)
becomes

BNw =
∞∑
n=0

2(Nw+1)(−2)n(n + 1)vn2
π(n + 2)vn+4

1

[
An + 1

2n−1

Bn∑
k = 0(

n
k

)sin (
(n−2k)π

2Nw

)
n − 2k

⎤⎦2F1

(
n + 2,

n
2

+ 1;
n
2

+ 2;
−v22
v21

)
,

(21)

where 2F1 is the confluent hypergeometric function, An =( n
n/2

)
π/2N+n and Bn = n/2 − 1 for even n and An = 0

and Bn = (n − 1)/2 for odd n. We see from (19) and (6)
that d = 2 and E(σ0) = log10 (3/(8σ0) · BNw(v1, v2)), for
OQCP.
Before we close the asymptotic BER analysis, in Table 2,

we revise results of E(σ0) obtained for the CoMP tech-
niques.

3.4 Approximation for the BER of QCP and OQCP
Let us now formulate BER expression in the low-to-
moderate SNR region for both QCP and OQCP based on
their asymptotic BER and expected SNR expressions. We
approximate the SNR distribution fz of QCP and OQCP
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Table 2 Achieved results for E(σ0)

CoMP method Result for E(σ0)

TSC E(σ0) = log10(3/(8σ0))

QCP E(σ0) = log10
(
3/(16σ0) · ANw (v1, v2)

)
OQCP E(σ0) = log10 (3/(8σ0) · BNw(v1, v2))

Full CSI E(σ0) = log10(3/(16σ0))

by using the distribution fz̃ of variable z̃ = ξ1 + ξ2, where
ξm, m = 1, 2 follow the exponential distribution fm(ξ) =
exp(−ξ/ξ̄m). Here means ξ̄1 and ξ̄2 are selected such that
the following requirements hold the following:

(i) The first moments of z̃ and z are equal, i.e., E{z̃} =
E{z}.

(ii) The asymptotic BERs, computed using fZ̃ and fZ , are
equal, i.e., following the results (14) and (19), we require

lim
ξ̄1→∞

ξ̄21 P̃e = lim
γ̄1→∞ γ̄ 2

1 Pe, (22)

where P̃e = ∫ ∞
0 Pmod(z)fz̃(z)dz refers to the BER approx-

imation and Pe = ∫ ∞
0 Pmod(z)fz(z)dz is the BER of

QCP/OQCP, and it is assumed that ratios ξ̄1/ξ̄2 and γ̄1/γ̄2
are both fixed and larger than one. Requirement (i) using
(50) and (54) in [16] and E{z̃} = ξ̄1 + ξ̄2 leads to formula

ξ̄1 + ξ̄2 = γ̄1L, (23)

where

L = 1
2

⎡⎣1 + σ0 +
√

(1 − σ0)2 + σπ2

4
sinc(

π

2Nw
)

⎤⎦ ,

(24)

for QCP and

L = 1
2

⎡⎣1 + σ0 +
√

(
1 + σ 2

0
1 + σ0

)2 + σπ2

4
sinc(

π

2Nw
)

⎤⎦ ,

(25)

for OQCP. Furthermore, requirement (ii) using the
asymptotic BER formulas in (8), (14), and (19) provides

ξ̄1/ξ̄2 = γ̄1/γ̄2 · CNw(v1, v2), (26)

where CNw(v1, v2)=ANw(v1,v2) for QCP and CNw(v1, v2)=
2BNw(v1, v2) for OQCP. After combining (23) and (26), we
find that

ξ̄1 = CNw · L · γ̄1
σ0 + CNw

, ξ̄2 = σ0 · L · γ̄1
σ0 + CNw

, (27)

where we have shortened notations by dropping out
arguments of CNw . Then the BER approximation P̃e for
QCP/OQCP is obtained by combining (27) and (7). After
some elementary manipulations, we find that

Pe =1
2

[
1 − 1

1 − σ0/CNw

√
Lγ̄1

1 + σ0/CNw + Lγ̄1(
1 − σ0

CNw

√
1 + σ0/CNw + Lγ̄1
1 + CNw/σ0 + Lγ̄1

)]
. (28)

We note that this formula is valid if σ0 < CNw . Yet, this
is not a limitation sinceANw and 2BNw are both larger than
one. According to our knowledge, this approximation has
been previously used only in [22].

4 Validation and performance evaluations
4.1 Validation and performance results forM = 1
The asymptotic and approximate BER expressions pre-
sented in Section 3 are validated in Fig. 2. Markers refer
to the simulated BER while dashed and solid curves refer
to the analytical asymptotic and the approximate BERs,
respectively. Results are presented for power balance and
6-dB imbalance cases assumingNw = 3 for both QCP and
OQCP. ForOQCP, we use the SNRmaximizing long-term
weights presented in [16]:

v21,2 = 1
2

⎡⎢⎢⎣1 ± 1 + σ0 − 2σ0
1+σ0√(

1 + σ0 − 2σ0
1+σ0

)2 + π2σ0
4 sinc2

(
π

2Nw

)
⎤⎥⎥⎦ ,

and for QCP we set v1 = v2 = √
1/2. As expected, we see

that the CoMP techniques are negatively impacted when
the power imbalance increases from 0 to 6 dB.
The impact of channel power imbalance on the BER

of the studied schemes is shown in Figs. 3 and 4 where
average BER results are presented as a function of power
imbalance assuming γ̄1 = 10 dB and γ̄1 = 15 dB, respec-
tively. The results are obtained for Nw = 3, and note
that QCP is plotted with equal weights (diamond marked)
and SNR maximizing weights (circle marked) that are
formulated in [16]:

v21,2 = 1
2

⎡⎢⎢⎣1 ± 1 − σ0√
(1 − σ0)

2 + π2σ0
4 sinc2

(
π

2Nrp

)
⎤⎥⎥⎦ . (29)

We observe from both figures that OQCP performs
close to the case where full CSI is applied irrespective of
the value of power imbalance. Interestingly, we also see
that TSC outperforms QCP applying the SNRmaximizing
long-term weights when there is large power imbalance.
As can be seen from Figs. 3 and 4, TSC outperforms the
QCP after a power imbalance value of around −6 and
−5 dB when γ̄1 = 10 dB and γ̄1 = 15 dB, respectively. On
the other hand, QCP applying the asymptotic BER min-
imizing weights (v1 = v2) performs close to OQCP at a
large imbalance.
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Fig. 2 Bit error rate as a function of γ̄1 when σ0 = 0 dB and σ0 = 6 dB. Dashed curves refer to the analytical asymptotic BER results; solid curves refer
to the approximate BER results; andmarkers refer to the simulated BER results

Fig. 3 Analytical BER as a function of σ0 for QCP, OQCP, TSC, and full CSI schemes when γ̄1 = 10 dB
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Fig. 4 Analytical BER as a function of σ0 for QCP, OQCP, TSC, and full CSI schemes when γ̄1 = 15 dB

4.2 Numerical results forM > 1
To observe impacts of using more numbers of transmit
antennas in BSs, we present simulated BER results in Fig. 5
when two antennas are applied in each BS. The results are
obtained for γ̄1 = 10 dB, Nw = 3, and Nu = 2. We see
from the figure that unlike theM = 1 case, QCP applying
SNR-maximizing long-termweights outperforms the TSC
throughout the power imbalance range. This comes from

the diversity gain achieved from the multiple antennas
utilized in the BSs. More performance improvement is
achieved by the QCP when more numbers of antennas
are employed by the BSs as illustrated in Fig. 6 where we
depict the BER results for M = 4, γ̄1 = 3 dB, Nw = 3,
and Nu = 2. In this case, QCP applying SNR-maximizing
weights performs very close to OQCP, particularly for
large power imbalance.

Fig. 5 Simulated BER as a function of σ0 for QCP, OQCP, TSC, and full CSI schemes whenM = 2 and γ̄1 = 10 dB
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Fig. 6 Simulated BER as a function of σ0 for QCP, OQCP, TSC, and full CSI schemes whenM = 4 and γ̄1 = 3 dB

5 Conclusions
We studied the impact of mean channel power imbal-
ance on CoMP transmission. Specifically, we investigated
CoMP techniques called QCP and OQCP where the for-
mer scheme applies quantized channel phase feedback
while the latter technique applies order information in
addition to the quantized phase at the transmitter side.We
derived closed-form expressions for the asymptotic and
the approximate BERs and verified analytical results using
numerical simulations when base stations apply a single-
transmit antenna. For complete understanding of channel
power imbalance impacts, we also presented numerical
analysis for cases where base stations employ more than
one transmit antenna. Even with few feedback bits and
presence of channel power imbalance, the OQCP pro-
vides performance that is very close to the performance
achieved with the case where full CSI is applied. Unlike
the average capacity performance, presented in [16], using
SNR maximizing long-term amplitude weights for QCP
under power imbalance worsens the BER performance
when a single-transmit antenna is utilized in BSs due to
limited diversity gain. This is not the case when BSs apply
more than one diversity antenna. In future work, ana-
lytical analysis will be extended for general M and other
modulation schemes.

Appendix 1
We show here that limc→0

1
2

∫ ∞
0 ηe−cηerfc(√η)dη =

3/16. Utilizing equations (7.1.2) and (7.4.19) in [28], the
integral can be written as

∫ ∞

0
ηe−cηerfc(√η)dη =

− d
dc

∫ ∞

0
e−cηerfc(√η)dη = − d

dc

[
1
c

(
1 −

√
1

1 + c

)]
.

Using Taylor expansion of (1 + c)−1/2, we obtain

1
c

(
1 −

√
1

1 + c

)
=

∞∑
k=0

(−1)k(2k + 1)!
22k+1k! (k + 1)!

ck =
∞∑
k=0

Dkck ,

whereDk = (−1)k(2k+1)!
22k+1k!(k+1)! . Combining the last two formulas

yields the desired result.

Appendix 2
Our goal is to prove (18). Applying basic theory of order
statistic, we find the joint PDF f (γ(1), γ(2)) as

f (γ(1), γ(2)) = 1
γ(1)γ(2)

[
e−

(
γ(2)
γ̄1

+ γ(1)
γ̄2

)
+ e−

(
γ(1)
γ̄1

+ γ(2)
γ̄2

)]
.

With this joint PDF, we can easily deduce from (17) that

P̄e = 2Nw

2π

∫ π

2Nw

0

∫ γ(1)

0

∫ ∞

0
erfc

(|v1√γ(1) + v2
√

γ(2)ejϕ |)
e−

(
γ(2)
γ̄1

+ γ(1)
γ̄2

)
+ e−

(
γ(1)
γ̄1

+ γ(2)
γ̄2

)
γ̄1γ̄2

dγ(1)dγ(2)dϕ.
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First, we set γ1,1 = y, γ2,1 = ty, and then, we substitute
η = y|v1 + v2

√
tejϕ |2. Finally, we get

P̄e = 2Nw

π

∫ π

2Nw

0

∫ 1

0

(I1(t,ϕ) + I2(t,ϕ))dtdϕ

γ̄1γ̄2|v1 + v2
√
tejϕ |4 ,

where I1(t,ϕ) and I2(t,ϕ) refer to the integrals

I1(t,ϕ)= 1
2

∫ ∞

0
erfc(√η)ηe−cηdη, c =

t
γ̄1

+ 1
γ̄2

|v1 + v2
√
tejϕ |2 ,

I1(t,ϕ)= 1
2

∫ ∞

0
erfc(√η)ηe−dηdη, d =

1
γ̄1

+ t
γ̄2

|v1 + v2
√
tejϕ |2 .
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