
Hossain and Khan EURASIP Journal onWireless Communications and
Networking (2016) 2016:195
DOI 10.1186/s13638-016-0698-x

RESEARCH Open Access

Efficient consensus algorithm for the
accurate faulty node tracking with faster
convergence rate in a distributed sensor
network
Rajkin Hossain* and Muhidul Islam Khan

Abstract

One of the challenging issues in a distributed computing system is to reach on a decision with the presence of so
many faulty nodes. These faulty nodes may update the wrong information, provide misleading results and may be
nodes with the depleted battery power. Consensus algorithms help to reach on a decision even with the faulty nodes.
Every correct node decides some values by a consensus algorithm. If all correct nodes propose the same value, then
all the nodes decide on that. Every correct node must agree on the same value. Faulty nodes do not reach on the
decision that correct nodes agreed on. Binary consensus algorithm and average consensus algorithm are the most
widely used consensus algorithm in a distributed system. We apply binary consensus and average consensus
algorithm in a distributed sensor network with the presence of some faulty nodes. We evaluate these algorithms for
better convergence rate and error rate.

Keywords: Wireless sensor networks, Consensus algorithm, Distributed systems, Convergence rate, Faulty node
tracking, Binary consensus, Average consensus

1 Introduction
The miniaturization of electronic devices provide the
impact on the development of wireless sensor network
(WSN). WSNs consist of so many tiny sensor nodes capa-
ble of sensing, transmitting and receiving signals. Dis-
tributed sensor nodes are deployed in an ad hoc manner
and responsible for various applications such as monitor-
ing, surveillance, security and healthcare load balancing
[1]. Sensor nodes communicate with each other in amulti-
hop fashion. Nodes need to perform some tasks at each
time step and report a central base station. For large dis-
tributed sensor networks, it is difficult to deploy so many
central base stations in the surveillance area. But with
the central base stations, task management becomes cen-
tralized. The task management technique by distributed
sensor nodes cooperatively have been studied in recent

*Correspondence: rajkin69@gmail.com
Department of Computer Science and Engineering, BRAC University, Dhaka,
Bangladesh

years. It is not feasible to take decision by one indepen-
dent node. Consistent decision making using coopera-
tion among sensor nodes by some information exchange
mechanism is suitable for a distributed system. To reach
a decision collectively using cooperation is called to reach
consensus [2].
To reach consensus in a quicktime is a challenging issue

in a distributed sensor network. Consensus algorithms
help to reach on a particular decision in a way that the
globally optimal decision is reached in a distributed way.
Binary consensus and average consensus are two widely
used consensus algorithms. These are two distributed
iterative information exchange algorithms.
Basically consensus algorithms are used in control area.

Recently the consensus algorithm is also used in dis-
tributed network. This helps to achieve global optimal
decision in a distributed fashion without any central
controller. There are some works to reach consensus
using either binary consensus or using average consen-
sus algorithm. To our best knowledge, there is no work to

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-016-0698-x-x&domain=pdf
mailto: rajkin69@gmail.com
http://creativecommons.org/licenses/by/4.0/

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 2 of 18

evaluate these two consensus algorithms for convergence
rate comparison.
Consensus algorithm is acted as a way to achieve glob-

ally optimal decision in a totally decentralized way, with-
out sending all the sensors data to a fusion center [3].
Recently, the most attractive consensus algorithm is the
gossip algorithm, where pairs of nodes are selected at ran-
dom to exchange and update their values. Compared with
routing algorithm, it is robust and easily implemented. It
is not necessary to put much effort on route discovery and
route maintenance, and it is a distributed iterative infor-
mation exchange scheme. However, random information
exchange between neighbors also leads to overhead and
increases the time to reach consensus in the network.
In addition, the connectivity of the network affects the
accuracy of the final consensus value.
We apply binary and average consensus algorithms in

a distributed sensor network. No study has analyzed the
convergence rate for an irregular network topology with
the faulty nodes. Hence, in this paper, we investigate the
proposed algorithm in irregular network topology, such as
C-shaped, I-shaped, H-shaped, D-shaped, and O-shaped
topology with faulty nodes. An irregular sensor model is
introduced to evaluate the robustness of the algorithm.
We apply segment tree data structures to reach consen-
sus decisions at faster time. In addition we also investigate
the proposed algorithm in regular network topology by
creating random networks.
Actually, we use our own system model to apply binary

consensus and average consensus algorithm in a dis-
tributed network for reaching a consensus decision. Our
algorithm runs for a huge network. Initially we don’t have
any idea of the whole network besides there can be many
faulty nodes. Our main goal is to reach consensus deci-
sion as fast as possible. In few cases, randomly chosen
nodes will run faster but we are ignoring random choices
because random choices might get huge amount of time
to reach a consensus decisions. So, we can claim that
the probability of our algorithm runs faster than random
choice-based algorithm like gossip algorithm.
The rest of this paper is organized as follows. Section

2 discusses related work. Section 3 explains our network
model. In Section 4 we present background and our pro-
posed method. Section 5 is our proposed algorithms, and
Section 6 experimental results and evaluation for dis-
tributed sensor networks. Section 7 concludes this paper
with a brief summary.

2 Related works
The widely used consensus algorithm to reach a deci-
sion in a distributed environment is gossip algorithm [4].
In gossip algorithm, pair of nodes are chosen randomly
to exchange information and update their values. It is
easy to implement. But, the random information exchange

creates more overhead in the network and it takes more
time to reach consensus. Generally, those algorithmworks
for various irregular topologies like ring topology. Some-
times, randomized consensus algorithm can run faster but
there is guarantee. This algorithm terminates after a par-
ticular amount of time even if the consensus is reached
or not. Time limitation leads to lower efficiency and
higher sensitivity to disturbances. The average consensus
algorithm [5] helps to reach the consensus by updating
their local values using average values of their neigh-
bor’s values. Another widely used consensus algorithm
is binary majority consensus [6]. Connectivity between
nodes also affect the consensus value for the gossip algo-
rithm. Besides few randomized consensus algorithms [7],
[8] also exist. This consensus algorithm does not pro-
vide guaranteed consensus for the additive noise in the
network. Few papers used also gossip algorithm but the
iteration number is fixed [9]. Its an overview of the use
of consensus algorithm in cooperative control and those
consensus algorithms are also single and double integra-
tor dynamical systems. Those algorithms run for rigid
body attitude dynamics. Few papers focus on average
consensus algorithm on asymmetric interaction mech-
anisms, with time-varying weights on each edge, it is
possible to provide a substantial increase of convergence
rate with respect to the symmetric time-invariant case
[10]. There are some research works which are focus-
ing on energy efficiency and so they used cluster-based
distributed consensus algorithm in forms of both fixed
linear iteration and randomized gossip. Some rare works
found like working on autonomous vehicle [11]. As dis-
tributed algorithms are typically iterative and suffer from
time and energy consumption so they come up with
this idea. As standard gossip algorithms can lead to a
significant waste of energy by repeatedly recirculating
redundant information they propose and analyze an alter-
native gossiping scheme that exploits geographic infor-
mation. By utilizing geographic routing combined with a
simple resampling method, they demonstrate substantial
gains over previously proposed gossip protocols [12]. Few
paper works study distributed broadcasting algorithms for
exchanging information and computing in an arbitrarily
connected network of nodes. Specifically, they study a
broadcasting-based gossiping algorithm to compute the
(possibly weighted) average of the initial measurements of
the nodes at every node in the network. They showed that
the broadcast gossip algorithms converge almost surely
to a consensus [13]. Some paper works on greedy based
like that paper presents greedy gossip with eavesdropping
(GGE), a new average consensus algorithm for wireless
sensor network applications [14]. Some paper works inter-
ested in the problem of computing the average consensus
in a distributed fashion on random geometric graphs they
describe a new algorithm called Multi-scale Gossip which

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 3 of 18

employs a hierarchical decomposition of the graph to par-
tition the computation into tractable sub-problems [15].
Some paper works on superposition gossiping for aver-
age consensus in cluster wireless sensor networks where
the nodes in each cluster exploit the natural superpo-
sition property of wireless multiple-access channels to
significantly decrease local averaging times [16]. A paper
proposed an on-demand distributed clustering algorithm
for multi-hop packet radio networks. They try to keep the
number of nodes in a cluster around a pre-defined thresh-
old to facilitate the optimal operation of the medium
access control (MAC) protocol [17]. Few papers consider
the problem of organizing a set of mobile, radio-equipped
nodes into a connected network. They require that a reli-
able structure be acquired and maintained in the face of
arbitrary topological changes due to node motion and/or
failure [18].

3 Networkmodel
The considered network model is undirected. The net-
work model may have some faulty nodes but we do not
have any idea about that at first. We consider a clustered
network with a cluster head for each cluster. Cluster heads
can communicate with all the nodes in their respective
clusters. Cluster head of a particular cluster can com-
municate with the cluster heads in the other clusters.
Cluster heads also work as normal nodes with an addi-
tional characteristic is that they cannot be faulty which
is our assumption. We assume the connection between
the cluster heads form a complete graph and the graph is
completely connected.
Each node of the sensor network hold three classes of

values which are energy, binary states, and average states.
As we are working on both binary and average consensus,

we need to use it. When a node’s energy becomes zero or
less, it becomes a faulty node and cannot communicate
throughout the network.
Figure 1a defines a sample of network model where blue

bold circles define cluster heads; we may see each sen-
sor node’s neighbor, cluster area, and their network area.
Figure 1b defines a sample network model but here we
just show for single cluster area where a cluster head exist
which sensor id is 5.
In Fig. 1b, edge defines physical distances and double

circles define cluster heads. In Fig. 1a, we can see that
one cluster area nodes has not any communication link to
other cluster area sensor nodes.
The reason is one’s cluster area sensor nodes do not fall

under other cluster area sensor nodes generally. But, there
can be a communication link possible if their transition
radius crosses other sensor nodes.
We provide both regular and irregular networks. Both

network models are exactly the same as this network
model, but we did not mark the networks cluster head or
cluster area.

4 Background and proposedmethods
4.1 Segment tree
In Computer Science, a segment tree is a tree data struc-
ture for storing intervals, or segments. It allows querying
which of the stored segments contain a given point. It is,
in principle, a static structure: that is, its structure can-
not be modified once it is built. The node of a segment
tree takes a given priority- based value from a specific
range. Almost all methods generally use recursive process.
Segment tree has a single root/top node and every node
of a segment tree except leaves has two children which
are left and right. The left child’s id is TreeNode ID * 2

Fig. 1 Network model

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 4 of 18

and the right child’s id is TreeNode ID * 2+1. As segment
tree generally works in recursive process so every node
except leaves go to it is both left and right children recur-
sively. The base case of recursive process is stopped when
calling reaches leaf nodes. Generally a segment tree has
three methods which are build, query, and update. The
depth of a segment tree is log (number of nodes). The gen-
eral three methods of a segment tree described below. To
describe the below part, we considered the segment tree of
Fig. 2 and set priority as taking Max Value and N defines
number of nodes.

Build We can build a segment tree from the given set of
elements in an array. For example the given array is [4, –9,
3, 7]. The segment tree for that array is given in Fig. 2.
While building, it will start from top node which starts
from 1 and it takes the max value of the ranges among 1
to 7. It is actually top-down processing. So from top node
1 to leave nodes 4, 5, 6, 7, it goes when its reached leaves
node it saves the corresponding array value. For exam-
ple leave node 7 which take the maximum value of ranges
[4-4] saves array value of four number index which is 7.
Then, it goes the parent node by backtracking as generally
segment tree processes are recursive. Besides, segment
tree every node parent can be found by divide its id by
two except the root node as root node has no parent exist.
When a node is not a leaf node, it considers its both left
and right child value which also can be got from back-
tracking. So, from its left and right child value, it takes the
maximum among them as both left and right child value
are computed when we ready to save values to that node.
For example: tree node id 1 will save value 7 because its

left child has 4 and right child has 7 so it takes the maxi-
mum. That is how segment tree build process works. The
complexity of build process is O(nlog(n)) as we updated
every leaf nodes individually.

Query The query process is just like searching from it.
For example, what is the max value from array index 2 to
4? The process is as follows: we start from root node if we
see that a node range is set under required query then we
will go to its left and right child node. For example, when
we are in root node, its range is [1 4] and required range
is [2 4] that means required ranges set under root node.
We should divide the root node to left and right child.
Then, we can see that the right child total range sets under
query range so instead of divide it by left and right child
we should take that node value which is 7. On the other
hand, root node’s left child take ranges [1–2] which set
under query range but not totally so we again divide it by
left and right child which are node id 4[1–1] and 5[2–2]
where node id 5 sets under totally to the queried range so
we will take its value which is –9 but node id 4[1–1] is out
of the queried range. So we need to just ignore that node.
At last, the required answer is the max value between 7
and –9 which is 7. Time Complexity is O(log(n)).

Update Its update operating is almost like its query oper-
ation. After searching the required range, its update that
leaf node because, we assume given range for update oper-
ation is like [i-i]. So, we will get to that leaf node by
recursively and update it from there. For example, let us
update three number index of that array and change it to
10. So, by recursively when we will reach to the leaf node
of 6[3-3], we will change it to 10. By backtracking, we will

Fig. 2 A segment tree

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 5 of 18

Fig. 3 Two graphs

reach tree node id 3. Now, the max value will be 10 instead
of 7. At last, we will reach the root node max value will be
10 instead of 7. That is how segment tree update process
works. Besides if the given range of update operation is [i-
j], where i! = j, then another process can be applied which
we call lazy propagation. In our problem, it is not needed.
So, we just skipped it. Time complexity is O(log(n)). In
our problem for update process, we implemented faster
bottom-up process instead of recursive top-down process.

4.2 Creating two weighted graphs
In our main graph, edge has many characteristics. That
particular edge hold many values which are Binary states,
average states, binary protocols weight/priority, average
weight, two end pointer energy, distance from peer to
peer node’s, unique id, node id of two end pointer. In
Fig. 1b, edge represents distance. So, we should make
more two weighted graphs, but here, edge represents not
only physical distances but also above described charac-
teristics. Here, actually Fig. 3a, b are same graphs. Tomake
it clear, we have drawn two graphs to view the edges for
binary and average consensus individually. We collected
the edge information from Table 1, sensor node informa-
tion, and link information from Fig. 1b. In both of the

Table 1 Table representation for both graphs

Sensor Id Binary states Average states Energy

1 Faulty Faulty 0

2 e1 30 250

3 e0 65 200

4 0 45 120

5 e1 65 500

6 1 56 129

7 1 45 300

figures, cluster head is defined as a 5 sensor node id by
drawing a double circle.

Binary consensus When we try to reach a consensus
decision in a distributed network, every node of the net-
work can hold initially one of the two values, 0 and 1.
When two nodes communicate and run the updating pro-
tocols, they compare their current state and then each
assume a new state based on what they have seen. When
binary consensus algorithm is running, a node may be in
one of the five states which can be described informally as:

0 - The node believes the majority opinion is most
likely false.

1 - The node believes the majority opinion is most
likely true.

e0 - The node believes the majority opinion might be
false.

e1 - The node believes the majority opinion might be
true.

F - The node is a faulty node. Convergence occurs
when all nodes have states 0,e0 or 1,e1.

Updating protocol for binary consensus:
For updating, we have to follow updating protocols [3].

The protocols are given below with an example:

1) (0,1) → (e1,e0)
2) (e0,1) → (1,e1)
3) (0,e1) → (e0,0)
4) (e0,e1) → (e1,e0)
5) (0,e0) → (e0,0)
6) (e1,1) → (1,e1)
7) (s,s) → (s,s),for s = 0,1,e0,e1
8) (s,F) → (s,F) here, F indicates faulty node

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 6 of 18

Table 2 Table representation binary consensus edge priority

Binary protocol ID Protocol priority or consensus weight

1 5

2, 3 4

4 3

5, 6 2

7 1

8 0

We introduce a new protocol here which is (s,F)→(s,F)
as mentioned at number 8 above. We must give priority
to these protocols. We assign priority based on decreas-
ing order serial from the updating protocols. We propose
serial no.1 as highest priority. Table 2 represents total
priority table for binary consensus.
Let us describe the situation in Fig. 4. First node B and

C run updating protocol. The states will become e0 and
e1. Then, A and B run updating protocol; their states will
become e1 and 1. Now, a consensus is reached because
all the states are either e1 or 1 . Actually in Fig. 4, we
did not consider any cluster head or faulty node we just
tried to show how updating protocols are used for binary
consensus.

Average consensus For average consensus, every state
initially takes some value and here energy plays very
important role. While pair wise updating in average con-
sensus the new states value for both pair is its average
value. Besides, we propose its weight which is below:

A = Energy(u) - distance and B = Energy(v) - distance
weight(u,v) = A + B if A and B >= 0
otherwise weight(u,v) = 0

Updating protocol for average consensus: there is only
one updating protocol for average consensus which is sim-
ple its average by consideration of number of iterations
which is given below:

xi(k) = xj(k) =[xi(k − 1) + xj(k − 1)] /2 (1)

4.3 Edge array and edge graph
Now, we have to make an array which stores edges with
its information. In edge graph, we have neighbor edges
[hashed unique id] to every node. Figure 5 is the edge
array of our main graph, and Table 3 defines our edge

Fig. 4 Understanding binary consensus

Fig. 5 Edge array

graph. Algorithm 1 is based on creating Edge Array and
Algorithm 2 is based on creating edge graph.

5 Proposed algorithms
Here, we applied our proposed algorithm for consensus
in two different independent segment trees. We first build

Table 3 Table representation edge graph

Sensor node ID Neighbor Edge

1 [1,5]

2 [2,5]

3 [3,5][3,7]

4 [4,5][4,6]

5 [5,1][5,2][5,3][5,4][5,6][5,7]

6 [6,5][6,4]

7 [7,3][7,5]

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 7 of 18

Algorithm 1 Creating edge array
1: Model the network graph(G)

2: Initialize Edge Array Array(EA)

3: Initialize Edge − ID Array (Edge − ID)
4: id=1
5: for Each edge (u, v) ∈ G do
6: EA[id]=EDGE(u, v, id,BstateU ,BstateV,AstateU,

AstateV ,Bweight,Aweight)
7: Edge − ID[Hashed_Value(u, v)]= id
8: id = id + 1
9: end for

Algorithm 2 Creating edge graph
1: Model the network graph(G)

2: Initialize edge graph(EG)

3: for Each node u ∈ G do
4: for Each node v ∈ G.adj[u] do
5: EG[u] .add(Edge − ID[Hashed_Value(u, v)])
6: end for
7: end for

two segment trees from corresponding two edge arrays,
and by the help of edge graph, we track down both tree leaf
index id in STreeNode, S2TreeNode from edge arrays. We
did it for future bottom up processing and avoid unnec-
essary recursion. We also provide algorithms for creating
edge array and edge graph which we described earlier.
Modeling Edge graph proved great contribution tomake

fasten the algorithm. Without doing algorithm time com-
plexity, will be much more higher.
In Edge graph, we tracked the each node’s next neigh-

bor edges. We can easily walk from node to its perspective
neighbor edges which is very important in our algorithm.
Our main algorithm is basically algorithm 6 and 10

which are our main binary consensus and average con-
sensus. Algorithm 3, 4, 5, and 6 are for binary consensus
algorithm. In Algorithm 6, we used algorithm 3, 4, and 5.
Algorithm 7, 8, 9, and 10 are for average consensus

algorithms. In algorithm 10, we used algorithm 7, 8, and 9.
Creating edge array algorithm is really simple actually,

we just take an array class of edges, then put all the edges
in the array, but we need to put the edges all character-
istics in the array. In addition, we need to track the vice
versa Edge-ID to create edge graph in creating edge graph
algorithm.
After creating Edge array, we are ready to create Edge

Graph because we efficiently tracked down Edge-ID. We
also provide creating edge graph algorithm.
To create Edge Graph, we just iterate all the sensor

nodes and save their neighbor edges. We get their neigh-
bor edges from Edge-ID which we tracked earlier.

Algorithm 3 Building segment tree (for binary consensus)
1: Initialize Segment Tree(STree)
2: BUILD-TREE(node-id,i,j)
3: if i == j then
4: STree[i] .mainEdge = E[i]
5: STree[i] .dummyEdge = NULL
6: STreeNode[i] = node-id
7: end if
8: Left = node*2
9: Right = Left+1

10: Mid = (i + j)/2
11: BUILD-TREE(Left,i,Mid)
12: BUILD-TREE(Right,Mid+1,j)
13: STree[node-id] =HIGHEST(STree[Left] , STree[Right])

Algorithm 4 Tracking highest priority node (for binary
consensus)
1: HIGHEST(SNode l, SNode r)
2: Initialize a SNode(Node) which keep a mainEdge, a

dummyEdge and weight of them which are same
3: rBPID = r.mainEdge.BPId
4: lBPID = l.mainEdge.BPId
5: if r.Bweight == l.Bweight then
6: if rBPID == 1 and lBPID == 6 then
7: Node.mainEdge = r.mainEdge
8: Node.dummyEdge = l.mainEdge
9: else if lBPID == 1 and rBPID == 6 then

10: Node.mainEdge = l.mainEdge
11: Node.dummyEdge = r.mainEdge
12: end if
13: else if r.Bweight > l.Bweight then
14: Node=r
15: else Node=l
16: end if
17: return Node

Algorithm 5 Updating segment tree (for binary
consensus)
1: UPDATE(node-id)
2: i = node-id
3: while (i = i >> 1)!= 0 do
4: Left = i ∗ 2
5: Right = left + 1
6: STree[i]= HIGHEST(STree[Left] , STree[Right])
7: end while

There is a trick to use Edge-ID. First, we should traverse
each sensor nodes and their neighbor sensor nodes. So,
now it is become easier for us to use Edge-ID efficiently to
create Edge graph.

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 8 of 18

Algorithm 6 Binary consensus algorithm
1: Binary Consensus Algorithm ()
2: BUILD-TREE(1,1,edgeArray_Length) Build Segment Tree

for Binary Consensus
3: Energy of all sensor nodes stores in Energy Array(Energy)
4: topnode = 1
5: while True do
6: edge = STree[topnode] .mainEdge
7: if STree[topnode] .dummyEdge == NULL and

OneOrSix(STree[topnode] .BPId) then
8: Binary Consensus Reached..break
9: else if STree[topnode] .Bweight == 1 then

10: Binary Consensus Reached.. break
11: else if edge.Bweight == 0 then
12: Binary Consensus Will Never Reached..break
13: else
14: distance = physicalDistance(edge.u, edge, v)
15: EnergyU = Energy[edge.u]−distance
16: EnergyV = Energy[edge.v]−distance
17: if EnergyU<0 or EnergyV<0 then
18: Make just STree[STreeNode[edge.id]] as a

faulty edge by updating.
19: UPDATE(STreeNode[edge.id])
20: else
21: update both energy array to EnergyU and EnergyV
22: Change STreeNode[edge.id] mainEdge by

following binary updating protocols.
23: UPDATE(STreeNode[edge.id])
24: for Each edge e ∈ EG.Adj[edge.u] do
25: treeID = STreeNode[e.id]
26: if e.u == edge.u and e.v!= edge.v then
27: STree[e.id].mBU = edge.BU
28: Change STree[treeID] information of

edge-weight and protocol id
29: UPDATE(treeID)
30: else if e.v == edge.u and e.u!= edge.v then
31: STree[e.id].mBV = edge.BU
32: Change STree[treeID] information of

edge-weight and protocol id
33: UPDATE(treeID)
34: end if
35: end for
36: for Each edge e ∈ EG.Adj[edge.v] do
37: treeID = STreeNode[e.id]
38: if e.u == edge.v and e.v!= edge.u then
39: STree[e.id].mBU = edge.BV
40: Change STree[treeID] information of

edge-weight and protocol id
41: UPDATE(treeID)
42: else if e.v == edge.v and e.u != edge.u then
43: STree[e.id].mBV = edge.BV
44: Change STree[treeID] information of

edge-weight and protocol id
45: UPDATE(treeID)
46: end if
47: end for
48: end if
49: end if
50: end while

Algorithm 7 Building segment tree (for average
consensus)
1: Initialize Segment Tree(S2Tree)
2: BUILD-TREE2(node-id,i,j)
3: if i==j then
4: S2Tree[i].treeEdge = E[i]
5: S2TreeNode[i] = node-id
6: end if
7: Left = node * 2
8: Right = Left + 1
9: Mid = (i+j)/2

10: BUILD-TREE2(Left,i,Mid)
11: BUILD-TREE2(Right,Mid+1,j)
12: S2Tree[node-id] = HIGH-

EST2(S2Tree[Left],S2Tree[Right])

Algorithm 8 Tracking highest priority node (for average
consensus)
1: HIGHEST2(S2Node l, S2Node r)
2: Initialize a S2Node (Node) which keep a treeNode
3: if (l.AstateU == l.AstateV) then then Node=r
4: else if (r.AstateU == r.AstateV)or(l.Aweight >

r.Aweight) then Node=l
5: else Node = r
6: end if
7: return Node

Algorithm 9 Updating segment tree (for average
consensus)
1: UPDATE2(node-id,j)
2: i = node-id
3: if j == 1 then
4: au = S2Tree[i] .treeEdge.AU
5: av = S2Tree[i] .treeEdge.AV
6: S2Tree[i] .treeEdge.AU = (au + av)/2
7: S2Tree[i] .treeEdge.AV = (au + av)/2
8: end if
9: while (i = i >> 1)!= 0 do

10: Left = i * 2
11: Right = left + 1
12: treeLeft = S2Tree[Left]
13: treeRight = S2Tree[Right]
14: S2Tree[i]= HIGHEST2(treeLeft, treeRight)
15: end while

5.1 Segment tree for binary consensus
Now, we have to make a segment tree for the whole part
of the edge array. Here, every node of the segment tree
can take four elements which are main-Edge, dummy-
Edge, weight, and size. While considering the left child
and right child for the upper nodes, we will choose the

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 9 of 18

Algorithm 10 Average consensus algorithm
1: Average Consensus Algorithm ()
2: BUILD-TREE2(1,1,edgeArray_Length) Build

Segment Tree for Average Consensus
3: Energy of all sensor nodes stores in Energy

Array(Energy)
4: topnode = 1
5: while True do
6: edge = STree[topnode] .treeEdge
7: if edge.AU == edge.AV then
8: Highest Average Consensus Reached..break
9: else if edge.Aweight == 0 then

10: Average Consensus Reached.. break
11: else
12: distance = physicalDistance(edge.u, edge, v)
13: EnergyU = Energy[edge.u]−distance
14: EnergyV = Energy[edge.v]−distance
15: if EnergyU<0 or EnergyV<0 then
16: Make just S2Tree[S2TreeNode[edge.id]] as

a faulty edge by updating.
17: UPDATE2(S2TreeNode[edge.id],0)
18: else
19: Update both energy array to EnergyU and

EnergyV
20: Change S2TreeNode[edge.id] treeEdge by

following average updating protocols.
21: UPDATE2(S2TreeNode[edge.id],1)
22: Change current selected sensor nodes

LEFT-SIDED neighbor edges information
by the help of Edge graph

23: Update each neighbor edge ids tree edge
average U,V state to its neighbor edge U
state

24: UPDATE2(corresponding treeID,0)
25: Change current selected sensor nodes

RIGHT-SIDED neighbor edges informa-
tion by the help of Edge graph

26: Update each neighbor edge ids tree edge
average U,V state to its neighbor edge V
state

27: UPDATE2(corresponding treeID,0)
28: end if
29: end if
30: end while

highest priority-based edge as main-Edge and dummy-
Edge will be NULL but here if highest priority based edge
exist more than one and all of them follow protocol id [1
and 6 both] then we take two edges.
One edge is saved in main-Edge and another edge is

saved in dummy-Edge. Besides if all of their weights follow
same protocol (1 or 6 not both) then we save any single

edge to tree nodes main-Edge and dummy-Edge will be
NULL.
We consider every time top node from the segment tree

and if the top node has both edges, we take any node
from it and change its two endpoints value and update its
information according to the updating protocols.
Here, we might have to change many edges informa-

tion’s according to updating protocols. Because if the
edges end points connected to another edges, then we
have to change their information also.
For example, see the Fig. 6 (top node id 1). When we

will work on edge [4-6], we should make change edges
[4-5] and [6-5] information also. While updating we have
to make change their information inside the segment
tree by the help of Edge graph and as we track down
in STreeNode-array the leaf nodes index of the segment
tree so we can go to that node and update it from there
and by bottom up processing we make changes until we
reach to the root. While doing bottom up processing,
we will do the same thing what we did for building the
segment tree.
When we can see that there is only one edge mainEdge

in the top node of the segment tree and its priority is
third lowest priority which is 3 (updating protocol num-
ber 1 and 6), so that means the other nodes in the segment
tree are as same as top node or other nodes contain faulty
nodes or having second lowest or first lowest priority
edges so we do not need to consider those nodes in this
time. But if segment trees topNode contains faulty nodes
of the network, then as it follows lowest priority based
updating protocols. So consensus will never occur we can
claim that easily.
While updating, we must also minimize energy from

that edge two pointer node. Besides, binary consensus has
zero percent error rate. If segment trees topNode contains
faulty nodes of the network so it follows lowest priority-
based updating protocols. So, consensus will never occur
we can claim that easily.
Besides Binary consensus has zero percent error

rate. Figure 6 defines binary consensus algorithm sim-
ulation for a single iteration. In algorithms mBX
means mainEdges binary state X, BPId means binary
protocol ID.
Our binary consensus algorithm focus on how fast we

can reach a situation when all the sensor nodes value
states are e1 or 1 or all the sensor nodes value e0 or 0.
That is why we gave the priority of each node to node

states, and greedily, we try to reach a consensus situation.
The lower priority-based edges come late for processing
and higher priority edges come earlier for processing.

• Complexity: O(treeNodes *
(maxEnergy/minDistance) * treeNodes *
log(treeNodes))

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 10 of 18

Fig. 6 Segment tree for binary consensus

Fig. 7 Segment tree for average consensus

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 11 of 18

5.2 Segment tree for average consensus
Now, we have to make another segment tree for the edge
array. Here, every node of the segment tree can take only
single elements which we name treeEdge. To build a seg-
ment tree as it goes from top to bottom so when we reach
the leaf nodes of the segment tree, we mapped the leaf
node number to its corresponding edge to S2TreeNode-
Array (have to do it for future purposes) and while con-
sidering the left child and right child for the upper nodes
in segment tree we will choose the highest weight-based
edge for average consensus.
This algorithm runs for edges and implemented in

another segment tree data structure. For every time, we
will consider the top node from the segment tree and as
initially we have highest max weight edges based average
consensus weight in the top node. When Top node Aver-
age consensus weight is not zero, we will continue our
average consensus algorithm otherwise we should stop.
Figure 7 defines average consensus algorithm simulation
for a single iteration. Average consensus must have some
error rate. The formula for calculating error rate is given
below:

||x(k) − x̄||
||x(0) − x̄|| (2)

We will calculate this error rate after every single itera-
tions. If we reached the highest possible average consen-
sus point, we cant reduce error rate more. Few shortcuts
tAX means treeEdges average state X.
Our average consensus algorithm focuses on how fast

we can reach a situation when all the sensor nodes value
states are same and second focus is we should less reduce
the energy for the sensor nodes.
That is why we proposed the edge weight for aver-

age consensus. The lower priority-based edges comes late
for processing and higher priority edges come earlier for
processing. For average consensus, lower priority-based
edges mean lower edge weight.

Table 4 Table representation for random topology

Node 300 600 900 1200 1500 1800

I(A1) 5202 9015 17859 19363 24041 33782

I(B1) 756 1608 2105 3250 3889 4846

E(A1) 0.75 0.78 0.69 0.75 0.76 0.71

F(B1) 3 6 14 13 27 25

I(A2) 5202 9605 18937 24847 29498 44647

I(B2) 814 1566 2618 3011 3886 4553

E(A2) 0.73 0.77 0.68 0.67 0.70 0.59

F(B2) 4 5 19 23 17 31

E(B) 0.00 0.00 0.00 0.00 0.00 0.00

F(A) 0 0 0 0 0 0

• Complexity: O(treeNodes *
(maxEnergy/minDistance) * treeNodes *
log(treeNodes))

6 Experimental results and evaluation
We simulate our environment with the distributed sen-
sor nodes using Java programming language. We worked
for both random and various topologies. For random

Fig. 8 Iterations vs ErrorRate

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 12 of 18

topology, we considered random shaped but for shaped
topology we considered five shaped network models
which areC,D, I,H, andO. After reaching consensus deci-
sion, we get all sensor nodes average values from leaves
of the segment tree because leaves of the segment tree
stores single array updated values. We did it exactly like
howwe use build-tree for going leaves of the segment tree.
Here, actually iteration means howmany times we choose
an edge to update their protocol. So, the less number

Fig. 9 Iterations vs faulty nodes

Fig. 10 Graphical figure to generate irregular topologies

of iterations means the algorithm reaches on consensus
faster.We take data thrice for various topologies and twice
for random topologies to clearly see the results variations.
We described the defination and generation for various
selected five topologies.

6.1 Random topology
For random topology, we considered 300-1800 sensor
nodes. Their graphical shaped are randomly chosen. Both
times, we plot and draw table the graphs based on (i) Iter-
ations vs Error-Rate and (ii) Iterations vs Faulty-Nodes.
Table 4 represents two times iterations results. Here, for
example I(A1) means in first testing out of twice iteration
number in average consensus, I(B1) for iteration number
for binary consensus. E is for error rate, F for faulty node.

Iterations vs error rate If we see in Fig. 8a, b, Iterations
vs Error rate graph we can see that for binary consen-
sus relative error rate become zero for any number of
iterations which we already described in our algorithm
analysis but Error Rate for average consensus in various
over iterations but generally maximize iterations mini-
mizes error rate like Fig. 8b.
In irregular topology, we may see that after consensus,

reaching point for average consensus error rate became
stable and for binary consensus error rate is zero as usual.

Iterations vs faulty nodes Lets see Fig. 9a, b, Iterations
vs Faulty Nodes graph for average consensus number of
faulty nodes is always zero the actual reason is if we see
our average consensus algorithm the edge taking priority
includes energy left in a sensor node. So, we gave lowest
priority to those nodes.While running the algorithm, they

Table 5 Table representation for C topology

Iterations 200 400 600 800 1000 1200 1400 1600 1800 2000

ER(1) 0.978 0.955 0.929 0.900 0.872 0.838 0.809 0.809 0.809 0.809

ER(2) 0.978 0.952 0.925 0.896 0.866 0.832 0.796 0.765 0.765 0.765

ER(3) 0.980 0.960 0.951 0.937 0.910 0.882 0.851 0.820 0.784 0.747

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 13 of 18

do not come generally to reach consensus for a fixed iter-
ation. But in rare cases for average consensus, there might
be some faulty nodes on the other hand for binary consen-
sus; we did not give edge taking priority based on energy
in a sensor nodes, so normally, we get some faulty nodes.

6.2 Various topology
We have implemented our algorithm in C [90 sensor
nodes],O [130 sensor nodes],I [80 sensor nodes], H[80

Fig. 11 Topology and Iterations vs ErrorRate

sensor nodes] and D[80 sensor nodes]. We represented
three times their iteration vs Error-Rate plots and tables
with their accurate graphical representations. We also
provided their definitions and generations with the use of
Fig. 10. We showed here [A-L] 12 regions with boundary
boxes. We can set any number of sensor nodes in the
box and connect some regions to some regions to graphi-
cally represent our desired shaped topology. In each plot,

Fig. 12 Iterations vs ErrorRate

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 14 of 18

Table 6 Table representation for D topology

Iterations 200 400 600 800 1000 1200 1400 1600 1800 2000

ER(1) 0.969 0.936 0.900 0.859 0.813 0.761 0.731 0.731 0.731 0.731

ER(2) 0.967 0.932 0.890 0.846 0.809 0.809 0.809 0.809 0.809 0.809

ER(3) 0.967 0.930 0.887 0.845 0.799 0.754 0.754 0.754 0.754 0.754

Fig. 13 Topology and Iterations vs ErrorRate

figures HACP mean highest possible average consensus
reaching point. We may see that after that, line error rate
for average consensus is unchanged. BCP means binary
consensus reaching point which is always zero, as we
claimed error rate for binary consensus is always zero.

C topology We created C topology by connecting sensor
nodes in Fig. 10 (i) fromD to B (ii), from B to E (iii), from E
to F (iv), from F to G (v), from G to L and (vi), and from L

Fig. 14 Iterations vs ErrorRate

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 15 of 18

Table 7 Table representation for H topology

Iterations 200 400 600 800 1000 1200 1400 1600 1800 2000

ER(1) 0.988 0.977 0.963 0.949 0.949 0.949 0.949 0.949 0.949 0.949

ER(2) 0.989 0.978 0.964 0.949 0.934 0.932 0.932 0.932 0.932 0.932

ER(3) 0.987 0.975 0.960 0.943 0.942 0.942 0.942 0.942 0.942 0.942

Fig. 15 Topology and Iterations vs ErrorRate

to I. In total, we used 90 sensor nodes to generate C topol-
ogy. Table 5 represents C topology. Figures 11b and 12a,
b represents plots for C topology, and Fig. 11a is actual C
topology we examined.

D topology We created D topology by connecting sensor
nodes in Fig. 10 (i) from B to D, (ii) from D to H (iii), from
H to I (iv), from I to L, and (v) fromL to B . In total, we used
80 sensor nodes to generate D topology. Table 6 represents
D topology. Figures 13b, and 14a, b represents plots for D
topology and Fig. 13a is actual D topology we examined.

Fig. 16 Iterations vs ErrorRate

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 16 of 18

Table 8 Table representation for I topology

Iterations 200 400 600 800 1000 1200 1400 1600 1800 2000

ER(1) 0.986 0.972 0.957 0.952 0.952 0.952 0.952 0.952 0.952 0.952

ER(2) 0.989 0.976 0.962 0.962 0.962 0.962 0.962 0.962 0.962 0.962

ER(3) 0.989 0.975 0.959 0.951 0.951 0.951 0.951 0.951 0.951 0.951

Fig. 17 Topology and Iterations vs ErrorRate

H topology We created H topology by connecting sensor
nodes in Fig. 10 (i) from A to J, and (ii) from F to H
and (iii) from C to K. In total, we used 80 sensor nodes
to generate H topology. Table 7 represents H topology.
Figures 15b and 16a, b represents plots for H Topology
and Fig. 15a is actual H topology we examined.

I topology We created I topology by connecting sensor
nodes in Fig. 10 (i) from B to L , (ii) from A to C, and (iii)
from J to K. In total, we used 80 sensor nodes to gener-
ate I topology. Table 8 represents I topology. Figures 17b

Fig. 18 Iterations vs ErrorRate

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 17 of 18

Table 9 Table representation for O topology

Iterations 200 400 600 800 1000 1200 1400 1600 1800 2000

ER(1) 0.985 0.969 0.951 0.932 0.910 0.887 0.864 0.840 0.814 0.793

ER(2) 0.985 0.967 0.948 0.929 0.908 0.885 0.860 0.837 0.827 0.827

ER(3) 0.984 0.968 0.949 0.928 0.906 0.881 0.856 0.836 0.836 0.836

Fig. 19 Topology and Iterations vs ErrorRate

and 18a, 18b represents plots for I topology and Fig. 17a is
actual I topology we examined.

O topology We created O topology by connecting sensor
nodes in Fig. 10 (i), from B to E , (ii) from E to F, (iii) from F
to G, (iv) from G to L, (v) from L to I, (vi) from I to H, (vii)
from H to D, and (viii) from D to B. In total, we used 130
sensor nodes to generate O topology. Table 9 represents

Fig. 20 Iterations vs ErrorRate

Hossain and Khan EURASIP Journal onWireless Communications and Networking (2016) 2016:195 Page 18 of 18

O topology. Figures 19b and 20a, b represent plots for O
Topology and Fig. 19a is actual O topology we examined.

7 Conclusions
In a distributed sensor network, where robustness is an
important issue for finding out the faulty nodes efficiently.
Consensus algorithms help to reach on a decision by
which we are able to track the faulty nodes. Accuracy of
knowing the right information about the faulty nodes is
very challenging in a distributed environment. We con-
sider different shapes of topology for applying the binary
and average consensus algorithm. We also apply binary
and average consensus algorithms in a random graph. We
observe that average consensus algorithm provides faster
convergence by giving less number of iterations. On the
other hand, binary consensus is more accurate to find out
the faulty nodes. So, using the appropriate consensus algo-
rithm depends on the topology we are using and depends
on the application.
In the future, we will consider the robustness issue in

details considering some noisy nodes in the environment
which provide misleading value. We will choose a discrete
event simulator for our work for making the simulation
more cognitive.

Competing interests
The authors declare that they have no competing interests.

Received: 7 April 2016 Accepted: 13 August 2016

References
1. IF Akyildiz, W Su, Y Sankarasubramaniam, E Cayirci, Wireless sensor

network: a survey. Comput. Netw. 38, 393–422 (2002)
2. F Benezit, AG Dimakis, P Thiran, M Vetterli, in Allerton Conference on

Communication, Control, and Computing. Gossip along the way:
order-optimal consensus through randomized path averaging (EPFL,
Allerton, USA, 2007), pp. 26–28

3. M Draief, M Vojnovic, in Annual joint conference of the IEEE computer and
communications societies (INFOCOM 2010). Convergence speed of binary
interval consensus (SIAM, San Diego, California, 2010), pp. 15–19

4. ADG Dimakis, AD Sarwate, MJ Wainwright, Geographic gossip: efficient
averaging for sensor networks. IEEE Trans. Signal Process. 56(3),
1205–1216 (2008)

5. Y Li, Z Zhou, T Sato, A cluster-based consensus algorithm in a wireless
sensor network. Int. J. Distributed Sensor Netw. Hindawi. 60(547124),
1–15 (2013)

6. N Al-Nakhala, R Riley, TM Elfouly, in International Wireless Communications
andMobile Computing Conference (IWCMC). Binary consensus in sensor
motes (IEEE, Sardinia, 2013), pp. 1337–1342

7. D Culler, D Estrin, M Srivastava, Overview of sensor networks. Computer.
37(8), 41–49 (2004)

8. A Gogolev, L Marcenaro, Randomized binary consensus with faulty
agents. Entropy. 16, 2820–2838 (2014)

9. WJ Li, HY Dai, Cluster-based distributed consensus. IEEE Trans. Wireless
Commun. 8(1), 28–31 (2009)

10. S Sardellitti, M Giona, S Barbarossa, Fast distributed average consensus
algorithms based on advection-diffusion processes. IEEE Trans. Signal
Process. 58(2), 826–842 (2010)

11. W Ren, RW Beard, Distributed Consensus inMultiVehicle Cooperative Control:
Theory and Applications. (Springer, London, UK, 2010)

12. A Dimakis, AD Sarwate, MJ Wainwright, Geographic gossip: efficient
averaging for sensor networks. IEEE Trans. Signal Process. 56(3),
1205–1216 (2008)

13. TC Aysal, ME Yildiz, AD Sarwate, A Scaglione, Broadcast gossip algorithms
for consensus. IEEE Trans. Signal Process. 57(7), 2748–2761 (2009)

14. D Ustebay, BN Oreshkin, MJ Coates, MG Rabbat, Greedy gossip with
eavesdropping. IEEE Trans. Signal Process. 58(7), 3765–3776 (2010)

15. KI Tsianos, MG Rabbat, in International Conference on Distributed
Computing in Sensor System. Fast decentralized averaging via multi-scale
gossip (ACM, Santa Barbara, Calif, USA, 2010), pp. 21–23

16. M Zheng, M Goldenbaum, S Stanczak, Y Haibin, in IEEEWireless
Communication and Networking Conference. Fast average consensus in
clustered wireless sensor networks by superposition gossiping (IEEE, Paris,
France, 2012), p. 14

17. M Chatterjee, SK Das, D Turgut, Wca: a weighted clustering algorithm for
mobile ad hoc networks. J. Cluster Comput. 5(2), 193–204 (2002)

18. DJ Baker, A Ephremides, The architectural organization of a mobile radio
network via a distributed algorithm. IEEE Trans. Commun. 29(11),
1694–1701 (1981)

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Keywords

	Introduction
	Related works
	Network model
	Background and proposed methods
	Segment tree
	Build
	Query
	Update

	Creating two weighted graphs
	Binary consensus
	Average consensus

	Edge array and edge graph

	Proposed algorithms
	Segment tree for binary consensus
	Segment tree for average consensus

	Experimental results and evaluation
	Random topology
	Iterations vs error rate
	Iterations vs faulty nodes

	Various topology
	C topology
	D topology
	H topology
	I topology
	O topology

	Conclusions
	Competing interests
	References

