
RESEARCH Open Access

Investigation of taint analysis for
Smartphone-implicit taint detection and
privacy leakage detection
Rui Hou*, Zhigang Jin and Baoliang Wang

Abstract

Today’s Smartphone operating systems frequently fail to provide users with adequate control and visibility into how
the third-party applications use their private data. With TaintDroid realized on Android system, we can detect user’s
implicit taint and privacy leakage. But TaintDroid has some inherent defects. To better detect user’s implicit taint
and privacy leakage in the Android platform, this paper analyzes implicit taint detection and then proposes an
automated detection system based on dynamic taint tracking, called TaintChaser. Monitoring sensitive data with
TaintChaser provides informed use of third-party applications for phone users and valuable input for smart-phone
security service firms seeking to identify misbehaving applications. TaintChaser can detect behaviors of user’s data
leakage in Android applications at a fine granularity level and the system can also analyze and test massive Android
software in an automatic way. It uses TaintChaser to automatically analyze 38,268 popular Android applications and
finds that 34.41 % of them may leak user’s privacy.

Keywords: Dynamic taint track, Taint analysis, TaintDroid, Android system, Privacy leakage, Implicit Taint,
Automated test

1 Introduction
In recent years, the Android system spread very quickly
and became the most popular Smartphone system.
According to the IDC report at the end of the third
quarter of 2015, the Android operating system has
accounted for 53.54 % of the global intelligent mobile
phone market. It indicates an increase of 6.53 % compared
to the same period in 2014 [1, 2]. It means that among
every five Smartphone shipments to customers, four
Smartphones are based on the Android system. In China,
the occupation rate of the Android operating system is
close to 90 %, but this does not include copycat mobile
phones. In other words, more than 90 % of Smartphones
use the Android system in China [3]. However, with the
increasing popularity of the Android system, user data
privacy in mobile phones (e.g. mail list, personal informa-
tion, email, etc.) has become a prominent problem.
Beresford et al. [4] tested 200 pieces of software in the
electronics market and found that there were privacy

leakage problems in 45 % of the software. Since the
number of test samples is few and new Android applica-
tions are rapidly increasing, these studies cannot fully
reflect the real situation of applications of privacy infor-
mation leakage in Android electronic markets. Therefore,
this paper puts forward and realizes an automated privacy
leak detection tool which can automatically detect the
mainstream of domestic electronic market in large scale.

2 Current status
2.1 Reference study and shortage
In 2010, Enck et al. achieved the dynamic taint tracking
system TaintDroid (refer to Appendix D) [5] based on
the Android 2.1 operating system. In 2011, a series of
systems based on TaintDroid is also presented, including
AppFence and Mock Droid. They are extended based on
TaintDroid in different degrees [6], but some inherent
defects of TaintDroid have not been resolved. These
defects include the following five points:

* Correspondence: hankrui@aliyun.com
School of Electronic Information Engineering, Tianjin University, Tianjin
300191, People’s Republic of China

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Hou et al. EURASIP Journal on Wireless Communications
and Networking (2016) 2016:227
DOI 10.1186/s13638-016-0711-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-016-0711-4&domain=pdf
mailto:hankrui@aliyun.com
http://creativecommons.org/licenses/by/4.0/

(1)The types of privacy data which can be detected are
not comprehensive. IMEI, phone number, location
information, photos, and audio can be detected,
while phonebook, SMS, and other important
information cannot. A variety of privacy sensitive
information types is acquired through low-bandwidth
sensors, e.g. location and accelerometer. This
information often changes frequently and it is
usually used by multiple applications simultaneously.
Therefore, it is common for a smartphone OS to
multiplex access to low-bandwidth sensors using a
manager. This sensor manager represents an ideal
point for taint source hook placement. For our
analysis, we placed hooks in Android’s Location
Manager and Sensor Manager applications [5].
Device identifier information that uniquely identifies
the phone or the user is privacy-sensitive. Not all
personally identifiable information can be easily
tainted. However, the phone contains several easily
tainted identifiers: the phone number, SIM card
identifiers (IMSI,ICC-ID), and device identifier
(IMEI) which are all accessed through well-defined
APIs. We instrumented the APIs for the phone
number, ICC-ID, and IMEI.

(2)The privacy leak detection is not enough, only
contains the general network communication
(socket), and bluetooth, microphone camera, and
other means of communication are not monitored.
Privacy-sensitive information sources such as the
microphone and camera are high-bandwidth.
Each request from the sensor frequently returns a
large amount of data that is only used by one
application [5]. Therefore, the smartphone OS may
share sensor information via large data buffers, files,
or both. When sensor information is shared via files,
the files must be tainted with the appropriate tag.
Due to flexible APIs, we placed hooks in both data
buffer and file tainting for tracking microphone and
camera information.

(3)The string trace granularity is not detailed enough,
which may cause possible excessive diffusion on
taint produced in tracking process, which results in
a false alarm. In TaintDroid, a string object is used
as a whole to get taint marks. When a tainted string
is split, all of its sub-string can be tainted. This can
lead to excessive diffusion of taint. For example,
suppose string A “This is a test” is normal data
without taint, and string B is a telephone number
“12345678901” marked with taint. Strings A and B
are put together to form string C, then string C is
tainted with its content “This is a test 12345678901.”
Then take the first four characters from string C
with the new string D “This,” string D is also tainted.
If string D is sent by privacy leak point, this kind of

behavior is called “privacy leak” because D is tainted
data. But string D should not be tainted from the
whole data process, this is actually a false alarm.

(4)The execution path information cannot be provided
in the program testing process. The TaintDroid
system cannot provide any path information
implemented in the software testing process and
cannot distinguish if the implementation of the
multiple tests have the same program path, thus
leading to a very large blindness.

(5)When testing requires manual participation,
automated testing is not conduced. A lot of human
resources will be requested in artificial participation,
it is a big cost with low efficiency.

2.2 Current detection and defect of privacy disclosure
Current taint analysis mainly has two kinds of information
flow: explicit flow and implicit flow [7]. Explicit flow will
correspond to program data dependency, i.e. stain infor-
mation of variable x which will be directly (by assignment
or arithmetic) transferred to variable y. Implicit flow
corresponds to control and dependence of a program, i.e.
stain information of variable x indirectly transfers to vari-
able y by the conditional expression which contains x.
Existing technology of detection of user privacy data

leakage according to performing procedures can be
divided into two categories: static method and dynamic
method. The static method mainly includes control flow
analysis, data flow analysis, structural analysis, etc. But
because Android programs are basically in Java code, the
Android program will be the existence of a large number
of implicit function calls (such as virtual function, etc. [8];
these implicit functions are always existed in implicit flow,
they are major sources of implicit taint. We will instruct
work process of implicit flow.). But with regard to this
kind of call, static analysis cannot deal with it effectively.
At the same time, through static analysis we can get the
specific path of execution procedure of privacy disclosure,
but could not confirm whether this path can be executed,
only via the dynamic method to validate it is possible.
Dynamic methods include traditional sandbox technol-

ogy, dynamic taint tracking technology, and so on. Sand-
box technology is applied to isolate the operating
mechanism of a program, which is currently widely used in
the fields of software testing and virus detection. For priv-
acy leak detection using sandbox technology, we need to
monitor system to read the user’s sensitive information,
network communication [9], and other important inter-
faces. When the interface is called by the program, it can
be timely recorded. Through this method, we can well
detect if the program reads the user-sensitive information
and whether or not the network sent data. As the monitor-
ing point of the system is not continuous, and there is a
lack of the necessary logic relationship and contextual

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 2 of 14

relevance between them, the sandbox technology can not
accurately determine whether the program reveals the
user’s private data.
Different from sandbox technology, dynamic taint track-

ing technology can continuously track data flow, which
effectively solves the defect of sandbox technology of con-
text information lack of association. At present, dynamic
taint tracking technology is widely used in vulnerability
discovery [10]. When dynamic taint tracking is used to de-
tect privacy data leakage, the privacy data are used as
tainted data and then track the spreading. When these
detected tainted data are sent through the network, the
program can judge the existing privacy problems.
For privacy data leakage behavior in the detection

program, dynamic taint tracing is a very effective method
[11]. Based on this method, this paper implements a
TaintChaser system which could perform fine-grained
tracking on information privacy. The system can produce
the path information when processing during testing and
realizes automatic testing.

2.3 Android system problem and interdependency

(1)Existing Protection Mechanism and Defects of
Android System (refer to Appendix A).
Android is an open source operating system based
on the Linux system and developed for mobile
phone platforms. The Android operating system
itself provides a series of mechanism for privacy data
protection. Android extends the Linux system which
allows each application program to operate in a
different identity (i.e. the original UID and GID in
Linux), so as to guarantee the relative independence
of program-run environment. Android provides a
permission system which provides a mechanism
that the user resources (mobile phone equipment
information, cyber source, etc.) could be controlled
if accessed. In this permission system, the important
resources in the mobile phone are divided into several
types, each type of resource corresponds to an
authority; and when the program accesses a type
of resource, it could get authorization if it has
corresponding permission. But this protective
mechanism has great limitation which cannot
effectively prevent leakage of user privacy information.
The permission for the system resources on the
realization of access control granularity is too
rough and cannot achieve the desired effect. The
implementation of the permission system is not
flexible. When a program is installed, the authority
is completely determined. When installing a program,
for the selection of the program authority, Android
also provides two possible ways. One is meeting all
the required permissions from procedures or entire

negation, rather than letting the user select only part
of authority according to their own actual needs [12].
If the program has the permissions it required at the
installation stage, in the operational phase it can
arbitrarily reveal user privacy while not subjecting
to system constraints. In summary, the mechanism
of Android itself cannot effectively prevent the
program from leaking user privacy data.

(2)Dalvik Virtual Machine
In essence, the Dalvik virtual machine is a Java virtual
machine, but it is very different from the general Java
virtual machine. The main differences are: (1) the
system architecture of the Dalvik virtual machine is
different from the Java virtual machine. The Dalvik
virtual machine is based on virtual registers and the
Java virtual machine is based on stack. (2) The
instruction set of the Dalvik virtual machine (Dalvik
byte code) is also completely different from the Java
virtual machine (Java byte code). The Dalvik virtual
machine is the key part of the whole system. In the
process of dynamic taint tracking, most taint
communication happens in this part.
DEX is a register-based machine language, as opposed
to Java byte code, which is stack-based. Each DEX
method has its own predefined number of virtual
registers (frequently referred to as “registers”). The
Dalvik VM interpreter manages method registers
with an internal execution state stack. The current
method’s registers are always on the top stack frame
[5, 13]. These registers loosely correspond to local
variables in the Java method and store primitive
types and object references. All computation occurs
on registers, therefore values must be loaded from
and stored to class fields before use and after use.
Note that DEX uses class fields for all long-term
storage, unlike hardware register-based machine
languages (e.g. x86), which store values in arbitrary
memory locations.

(3)Java Native Interface
Java Native Interface (JNI) is a kind of mechanism
of Java program and native code library interaction.
Through this mechanism, Java code can easily call
other databases written with other languages
(typically C and C++). For dynamic taint tracking,
when carrying on the JNI call, the code would transfer
from the Java layer to the C/C++ layer, it will affect
the normal tracking of tainted data which needs to
appropriate process to C/C++ library involved.

3 Principle of dynamic taint tracking
3.1 TaintDroid on Android
Figure 1 shows an overview of TaintDroid architecture, so
that we can better understand dynamic taint tracking tech-
nology. It is also based on Enck’s achievement [5, 12, 13].

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 3 of 14

3.2 Implicit flow and implicit taint
At the same time, we can look at the implicit flow working
process to have a clear view of implicit taint on theory
against dynamic taint tracking technology. Then the back-
ground of privacy information is very much obvious. The
example code of implicit flow is as follows:

In the code shown in program 1, program reads and
user inputs variables x, then it will generate msg submit-
ted by post methods. Taint x is marked as a tainted attri-
bute, in accordance with the taint analysis method of
explicit flow, msg is assigned const {‘a’, ‘b’} and marked as
an untainted attribute. But msg values depend on T and
F values of the judgment of L3 and L7 conditions, that is

having control and dependency relationship with x (also
known as implicit stream pollution), here will produce a
failure alarm, msg should be marked as tainted attribute;
and the value of uri is not affected by L3 and L7, labeled
as an untainted attribute. The code segment has a secur-
ity risk because msg is submitted by the post; the at-
tacker can infer the value of x input by the user after
capturing msg. According to the explicit taint analysis
method, in program 2, the code L4 and L5 msg are
tainted by x directly, but the value of msg is a constant
‘a’ after tainted, then it will generate false alarm, msg
should also be marked as an untainted attribute.
The judge sentence is abstract expressed as:

S0 ¼ e : S1; S2;…Sn;

Implicit taint will be existed in the following three
conditions:

(1)The conditional expression e of S0 is a tainted
attribute.

(2)There is control dependence between judge statement
S0 and assignment statements S1, S2…Sn.

(3)There is a difference in assignment value of the
same variable in multiple branches of assignment
statements S1, S2…Sn.

The three features above are described in two aspects
including control flow (corresponding to condition (2))
and data flow (corresponding to conditions (1) and (3)).
The implicit taint test, based on taint analysis of data
flow, diagnoses implicit taint problems and amends

Fig. 1 TaintDroid architecture within Android

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 4 of 14

relevant variables. There may have multiple nested state-
ments in the program (as shown in Fig. 2a). This paper
detects variable values in all code blocks of the program
point between judging statement and all subsequent as-
signment statement. If one variable has more than one
different value before confluent point (Fig. 2b), the vari-
able should be marked as tainted attribute; if all the
values of the variable are the same, it should be marked
as untainted attribute.

3.3 Principle of dynamic taint tracking technology
The basic principle of dynamic taint tracking technology
is as shown in Fig. 3. Among them, the six lines of pro-
grams A and B in the box below represent this program
to run within the process. The curve representing the
thread does not currently contain tainted data. The dot-
ted line represents the thread exits tainted data and the
different dotted line represents the tainted data of differ-
ent types included.
When detecting that the program reads the privacy in-

formation of users, it will mark the privacy data read as
tainted. But when the user-sensitive data with taints is
operated by the program, we can carry on the corre-
sponding processing of the operation to ensure the taint
can follow the privacy data in communication. When
communication is on between the two procedures, taints
can also follow the data tracking normally. For example,
a process of program A (dotted line) sends tainted data
to a thread of program B and taints can continually

track data transmitted in the thread. When a program
sends tainted data to the outside through the privacy
leak transmission, it will record the behavior in real-
time. Finally, as per the results of the log analysis, we
can determine whether there are privacy leakages in the
program. If the log shows that tainted data were sent
out in the process, we could determine that there is a
privacy leakage in the procedure.

3.4 The realization of the taint tracking system
Compared with TaintDroid, the TaintChaser system pro-
posed by this paper could monitor more user privacy in-
formation, not only IMEI, phone number, location
information, photos, and audio, but also communication,
SMS, email, and other important information, detected
as pollution point sources. At the same time, the system
achieves a more fine-grained taint tracking mode
through the detection of each byte in memory content.
The system detects more privacy leakage points (socket
communication, HTTPS encryption communication,
SMS, or Bluetooth communication), gives the path infor-
mation of the detected program executed in detail, and
has automatic tests of procedures [14].
To better understand how to track implicit taint, the

following will explain the privacy leakage method. Based
on the implicit control flow analysis method of SSA
form: (1) in the program control flow graph (CFG), there
contains control dependence of code in judging block
and assignment statements; and (2) calculate the point

Fig. 2 Dominate tree of example code

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 5 of 14

of code block of assignment statement and convert the
program number flow into the form of SSA, in point
count value of multiple versions of code block variables,
finally according to the value of each variable to deter-
mine taint attribute of variables.
The reason for implicit taint is that there is control

dependency between assignment statements and judge
statements. The control dependency of a program can
be expressed as: if the execution of statement S2
determines whether statement S1 executes, statement
S1 control is dependent on statement S2. In this
paper, we use a dominate tree to find this kind of de-
pendence. First, the CFG of the program is extracted,
the dominate tree is calculated, and then the control
dependency between judgment and assignment state-
ments from the tree is obtained. Definitions are given
as follows.

(1)Control dependency
Immediate dominate: for x ≠ y, dominate x is an
immediate dominate of y, if x is an immediate
dominate of y, and there is no dominate z, such
that x is the only immediate dominate of z and z is
the immediate dominate of y, marked as idem (y).
Dominate tree: contains each dominate of CFG in
the tree, and for each dominate x, there is a path
from idom (x) to the x side, because each dominate
has an exactly immediate dominate, the tree known
as the dominate tree.
The paper uses the dominate tree of depth-first
search tree calculation program to CFG [15]. The
complexity of the method is similar to linear time.
The dominate tree of CFG describes the control

dependency of the program, as shown in Fig. 2b.
Judgment dominate B2 is an immediate dominate
of assignment dominates B3 and B4 and judgment
dominate B4 is an immediate dominate of B5 at the
same time. That is {B3, B4} control and rely on B2
and {B5} controls and relies on B4.

(2)Path convergence criterion
Implicit taint is caused by control dependence
and there is assignment difference in the branch of
judgment statement; the assignment differences have
an impact on the following variables in branches
merging. As shown in Fig. 2a in the sample code,
judgment dominate B4 is nested in judgment dominate
B2, only consider B4 cannot correctly respond to the
effects of variables assignment; in fact, the paths
of {B2, B4} converge to B6. Therefore, in order to
analyze the effects of the judgment statement of
variables, we shall examine the path confluence of
judgment statements. The following is a definition of
convergence criterion of the program path: when the
program path is to meet all of the following conditions,
dominate n is the confluence of the variable a.
1) There is a code block x that contains an

assignment a.
2) There is a code block y(y ≠ x) that contains an

assignment a.
3) There is a non-empty path Pxn from x to n.
4) There is a non-empty path Pyn from y to n.
5) There is no other path in common between path

Pxn and Pyn other than dominate n.
6) Dominate n does not appear in these two paths

before the point of path Pxn and Pyn, but it can
occur in each path.

Fig. 3 The basic principle of dynamic taint tracking technology

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 6 of 14

By the above criteria, there are one-to-one mapping
relations between the assignment and path of variable
A. There are a number of precursors a of convergence
n, then there are many kinds assignment of variable A.

(3)Discovery of path convergence
It is not practical if we use the convergence criterion
method directly to discover the convergence because
of the need to traverse all the way from the dominate
x and y to the confluence n. To use the dominate tree
to decide dominate boundary of judgment statement
code block, it can be found that convergence of
judgment sentence efficiently.

(4)Virtual value function
Variables value analyze and use static single
assignment (SSA) of the program in program
convergence. SSA forms an intermediate presence.
In the process, each variable has only one assignment,
the static assignment may be located in a cycle
which can be dynamically executed many times,
so it is called SSA. The SSA form is not associated
with the application form for the same variable to
change into different variables and two control
flows in control flow chart merge into a virtual
value function φ, e.g. dominate n is as the variable
a inserted into function φ (a1, a2), used to distinguish
multiple assignments of variable a. The characteristics
of value function are as follows: the number of
parameters of function are the same with the
possible value number of the variable. Each
parameter corresponds to the precursor with a
particular control flow. According to the above
characteristics, all values of variables for the
convergence can be acquired through calculation
of the parameter of virtual value function. The
calculation process is as follows: it is from the
CFG of the program and completes the import of
function φ and parameter calculation of function φ
[16]. The value of using virtual value function φ in

SSA is so we can judge whether the variables are
the same, so as to determine the taint attribute
[17]. Based on the knowledge of the above method,
let us review Taint tracking and TaintChaser.

3.5 Taint data
The TaintChaser system can detect most user privacy
information, identification numbers of mobile phone
equipment, phone numbers, location information, e-
mail, contacts, SMS, schedule, and browser history.
Because we obtained this privacy information in differ-
ent ways, we need to treat them separately as taint
marks. The related service process by the Android
system supplies the identification number of mobile
phone equipment, phone number and location informa-
tion [5, 17], we need to process the service as process-
related. The taint marked process is shown in Fig. 4. At
the time of data reading, the program is as a client
through binder sends out a data requested to the corre-
sponding service process; server side acquire privacy
data; TaintChaser system will mark these data as taint,
so as to ensure the data of the process got taint labeled.
Email, contacts, SMS, schedule, and browser history

have been stored in the database. For the taint marked
data, the behavior of the reading database will be
processed. Among which, the general process of data
reading from the database is first we need to get the data-
base cursor, then by using the cursor to call correlation
function (get String) to read the contents of the database.
The taint marked process of user-sensitive information
stored in the database is shown in Fig. 5, when the pro-
gram obtains the storage of the user privacy information
database cursor, the cursor will be taint marked.
Later in the running program, if the program detects

the specific content by the tainted cursor, all data read
are marked as taint. In this way, we can realize the taint
mark on email, short messages, and other privacy infor-
mation stored in the database.

Fig. 4 Taint marked process of TaintChaser I

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 7 of 14

3.6 Taint storage
Different from TaintDroid taint storage, TaintChaser
uses a fine-grained way to describe taint, each byte in
memory corresponds to a taint. In this way, in the track-
ing of tainted data, we can track more accurately to re-
duce greatly the probability of excessive diffusion of
taint. The storage structure of the taint as shown in
Fig. 6; the Android system is 32 bit, taint storage table
has two level address index organizations. This storage
method can mostly save memory space and fast lookup
taint of corresponding memory [18].

3.7 Taint tracking
The Android program is executed by parsing the Dalvik
virtual machine. TaintChaser system achieves the tainted
data tracking by processing all instructions in the Dalvik

virtual machine. This is processed by the following three
aspects:

(1)General instructions mainly comprise a series of basic
operations of variables (the assignments and add,
subtract, multiply, and divide, etc.) and function call.
For the basic operating of variables, if operands data
involved contain taint, the final result will mark taint.
In the function call, tainted data may be spread by
input parameters and return values of function. The
instruction of invoke and return need to be processed.

(2)The file read and write refers to the detection of file
read and write. When tainted data are written to a
file it will mark taint to the file; and when detected
the contents with taint of the file be read out. It also
can be processed in real time.

Fig. 5 Taint marked process of TaintChaser II

Fig. 6 Taint storage architecture of TaintChaser

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 8 of 14

(3)Inter process communication: when detecting the
inter process communication, if tainted data are
included in the communication content, real-time
tracking can disseminate tainted data to ensure taint
can continue to follow the data communication in
the new process. But because of the JNI mechanism
in the Android applications process, the program
will break away from the Dalvik virtual machine to
enter the local C/C++ database, the system cannot
carry on the normal taint tracking [19, 20]. In order
to realize taint on normal communication, we have
to deal with it by the related hook function.

3.8 Privacy leak point
Privacy leakage detected by the TaintChaser system has
socket communication interface, Https encryption com-
munication interface, Bluetooth, short message, etc. For
each type of privacy leakage, because interface of data
sent is not the only one we need to process all the func-
tion related, first, according to the length and its mem-
ory address of transmitted data, check in taint storage
table whether the data is tainted data, if it is, it will be
recorded including content and destination address of
sent data, etc. other related information [21, 22].

3.9 The output of path information of testing program
execution
The output of path information of testing program exe-
cution is achieved through the function call instruction
(invoke) in the Dalvik virtual machine. With the execu-
tion of the invoke command, the class and method name
will be printed out. It contains the procedure call and
prints out the information.
But because testing the program will call a large num-

ber of system functions in the implementation process
(such as interface rendering, inter process communica-
tion, event processing, and so on), the printed result not
only includes the execution path of testing the program,
but also a lot of information about system function call.
Therefore, we need to add the filtering mechanism to fil-
ter the call information of system function and other
useless information. Because the system function and
software class name are different, it can be filtered based
on the name of class of call function [23, 24].
First, before the program is tested, we need to extract

the relevant class of tested program and import it to the
specified configuration paper; then, in the test when the
invoke command is executed, the content will be
matched with configuration file name with calling func-
tion. If matched, the related information of the called
function will output or be discarded directly; it can even-
tually get the path information of the tested program
which has been executed.

3.10 Automated testing program
The automated testing program needs to have automatic
setup to the system and can automatically start the
process in the system and, during the execution of the
program, automatically sends a series of events. To
achieve this, the automatic installation and start-up can
use the tools adb and am provided by the Android
system. Before testing the program automation, we need
to do some pre-processing. First, testing procedures have
to be decompressed, by reading related program infor-
mation from the file AndroidManifest.xml. Then,
according to the file directory structure of the program,
that program name is speculated, and the class name is
organized into files in the specified directory, so as to
output the path information of the testing program
executed. After these preparations are done, we can use
the adb tool to install the testing program on the system
and begin the test. In the testing process, we use the am
command to send a series of events to the program.

4 Implementation of automatic test system, test
results, and evaluation
4.1 Development environment
The automatic test system based on TaintChaser is
implemented in the security threat monitoring platform of
mobile Internet, which provides a relevant interface that
could complete automated testing and has a large number
of real samples of Android application software for analysis.
The TaintChaser system is processed in the simulator

provided by the Android system. The simulator has the
same performance problems as a real mobile phone.
This is mainly because, in the course of program execu-
tion, the simulator needs to spend extra time in trans-
forming the ARM instruction into the x86 instruction.
But because the simulator can operate in the general PC,
it can pass through the massively parallel deployment to
remedy the defects on the properties. TaintChaser is the
massive parallel deployment based on the KVM virtual
machine, through a unified dispatching system to carry
out the parallel detection [25].

4.2 Carrying out the automatic test system
The automated test system structure based on TaintChaser
is shown in Fig. 7. It mainly consists of a host machine (real
computer) installed with the KVM virtual system and a
series of virtual machines (kvm#1, kvm#2). The virtual
machines kvm#1 and kvm#2 are used as privacy leakage
problems of the automatic detection program and clone a
series of complete test environment in the host machine.
The system consists of three modules: Schedule,
TaintChaser, and Restore. Among them, the Schedule
module runs in the virtual machine and is mainly used
for the virtual machine to register the security threat
monitoring platform of the mobile Internet and get the

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 9 of 14

test tasks and the testing program from the platform. It
will be handed over to the TaintChaser program to be
analyzed and then send the processed results back to
the monitoring platform. TaintChaser runs in the
virtual machine with complete detection to the auto-
matic program. The Restore module runs on the host
machine, mainly responsible for recovery of the KVM
virtual machine completed test to its original clean
working environment [26, 27].
Taking virtual machine kvm # 1 of the testing system

as an example, the entire workflow is as follows:

(1)When the testing system starts, the Schedule
module is automatically registered to monitor
the mobile Internet platform for security threats.
Then it will wait to monitor the platform for the
allocation of detection tasks.

(2)When the Schedule module receives the task,
according to the content of the task (program ID,
program location), it downloads the procedures to
be tested from a specified location to the local and
hands the program over to TaintChaser for analysis.

(3)After detection of the program, TaintChaser will
hand the detected print log down to the Schedule
module.

(4)The Schedule module will analyze the log obtained
and send the results of the analysis back to the
monitoring platform.

(5)The Restore module called by schedule on host
recover virtual machine kvm#1 to original work
environment. Then re-steps (1), to begin a new
round of testing.

4.3 Test results and valuation
The test sample is provided by the security threat mon-
itoring platform of the mobile Internet, mainly from

each Android electronic market in China. The concrete
condition is shown in Fig. 8; the sample is obtained
chiefly from the electronics market appchina.om, eoe
marke.com, goapk.com, etc.. The total sample number
is 58,468.
The use of the automated testing system of TaintChaser

was analyzed and detected the large-scale automation
based on these Android sample programs. It finally found
that 19,592 (33.51 %) programs may leak user privacy
information. The information is shown in Table 1.
We then randomly took out 100 pieces of software

from the leaked privacy information to analyze manually.
The reasons for the leakage of private information have
been analyzed more deeply [28] (http://www.google.
com/mobile/products/maps.html).

(1)IMEI
Of the 100 test software, 85 pieces of software will
send the IMEI to the advertising service provider
and the remaining 15 will send the IMEI to the
respective software developers. The user’s privacy
information that the software sends to the
advertising service provider, mostly due to
software developers for the purpose of profit, is
from embedded advertisements in the software.
Inserting advertisements in the software is
accomplished by inserting corresponding
advertising of the third party in software code.

(2)Telephone number
Thirty-nine tested pieces of software will send the
telephone number to the advertising services, while
the remaining 11 pieces of software will send it to
the respective software developers.

(3)Location information
Among the 100 test pieces of software, 24 belong
to the normal application, 50 will send location

Fig. 7 Automatic test architecture of TaintChaser

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 10 of 14

http://www.google.com/mobile/products/maps.html
http://www.google.com/mobile/products/maps.html

information to the advertising service provider, and
the remaining 13 will send location information to
the corresponding software developers. Of the 24
pieces of software in normal use of location
information, 10 provide the normal map service
and the other 14 use the GPS position coordinates
to find food, movies, etc. nearby.

(4)Serial number
Different from the above privacy information, from
the 100 test pieces of software, none sends the serial
number to the advertising service provider, but all
send to the respective software developers.

Software privacy leakage information is shown in Table 2.
The privacy leakage of the domestic software of each

Android electronic market is then analyzed statistically.
The results are shown in Table 3. We find that each
domestic electronics market has software that leaks user
privacy information.
At the same time, through the automatic detection

system, we also found third party plug-ins that may leak
privacy information of users. Take malicious plug-in
“com.nl” as an example; the plug-in will start running
when the mobile phone is started, first send a request
command to a botnet, and then some corresponding

processing would be processed according to the
command, for instance, automatically download and
install some popular software from a specified server (e.g.
QQ, Renren client), send fee deduction SMS, etc. The
plug-in will intercept the address which is “10658166” or
the content including “83589523,” “customer service call,”
“1RMB/msg,” “1RMB/times,” “1 RMB,” and “2 RMB”
strings of short message. Among them, with the botnet
communication process, the plug-in will leak the user’s
phone number and IMEI information.
We randomly selected 50 pieces of software from the

samples (0.18 % of the total), which were detected by
TaintDroid and TaintChaser and we found that 29 may

Table 1 Program statistics showing users’ privacy leaks

Type of privacy leakage data Program QTY Percentage (%)

IMEI 13,783 22.57

Phone number 3651 6.24

Location information 1779 3.04

Serial number 379 0.6

SMS 15 –

Table 2 Software privacy leakage information

Information type
of privacy leakage

Destination Domain name Software QTY

IMEI Advertisement
facilitator

youmi.net
wiyun.com
mobclix.com

45

30

Software
developer

7

Developer - 15

Phone number Advertisement
facilitator

oumi.com
sosceo.com

47

34

Software
developer

- 19

Location
information

Advertisement
facilitator

youmi.net 24

lsense.cn 18

mobclix.com 8

Software
developer

- 13

Serial no. Software
developer

- 100

Fig. 8 Android Sample source of test program

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 11 of 14

have private information leakage detected by TaintDroid
and 31 detected by TaintChaser.
For software privacy leakage problems in a domestic

electronics market, the reasons can be summarized as
follows [29, 30]:

(1)Because of the domestic Android software developers’
lack of awareness of the protection of user privacy
data, software will often reveal the user’s privacy data.

(2)When part of the foreign Android software was
“localized,” it was with some third party plug-ins
(such as advertising plug-ins), which may lead to
leakage of user privacy data. For example, for the
same version of the game “Angry Birds,” there is
no revealing user privacy information in English
version, while the “localized” version provided
by the domestic electronics market has ad mob
advertisement plug-ins which would leak user
location [31].

(3)In order to collect user information and analyze
user behavior in some electronics markets, they will
implement third party plug-ins to their own market
in popular software in which may reveal user privacy
information.

(4)There is a lack of standardized management in the
domestic Android electronics market and no system
or mechanism to deal with software leakage [32].

5 Conclusions
While some mobile phone operating systems allow the
control of applications’ access to sensitive information,
such as location sensors, camera images, and contact
lists, users lack visibility into how applications use their
privacy data. With the rapid development of the Android
mobile phone platform, privacy problems in Android
software is becoming more serious. In this paper, based
on dynamic taint tracking technology TaintChaser (it is
improved from TaintDroid), it is proposed and demon-
strated that automatic inspection system, scale, and the
privacy problems of software in the domestic electronics
market were detected and analyzed by the system. The
next step is to optimize the system, improve the working
efficiency of the system, and analyze in depth the behav-
ior patterns of user privacy data leakage.

6 Appendix A
6.1 Android system architecture
Architecture of [33] Android operating system, as shown
in Fig. 9.
The top layer is the implementation of the Java program

functions; the next layer is a Dalvik virtual machine; it is
Google-specific for the Java interpreter for the design and
development of the Android as the Java program can
run on its interpretation. The middle layer is the Native
Interface, it is by the upper Java procedure call native
code library; Binder layer is the communication mech-
anism of a lightweight Android system which provides
inter process; the bottom is modified through Linux
system, provides the interface to interact with the
mobile phone hardware. Android contains two types of
native methods: internal VM methods (see “Appendix B”)
and JNI methods (see “Appendix C”). The internal VM
methods access interpreter-specific structures and APIs.
JNI methods conform to JNI standards specifications,
which requires Dalvik to separate Java arguments into vari-
ables using a JNI call bridge. Conversely, internal VM
methods must manually parse arguments from the inter-
preter’s byte array of arguments.

7 Appendix B
7.1 Internal VM methods
Internal VM methods are called directly by interpreted
code, passing a pointer to an array of 32-bit register
arguments and a pointer to a return value. The stack
augmentation provides access to taint tags for both Java
arguments and the return value. As there are a relatively
small number of internal VM methods which are infre-
quently added between versions, we manually inspected

Table 3 The software number of privacy leakage of electronics
market

E-market name Software QTY Privacy leakage QTY Percentage (%)

goapk.com 6428 2440 37.96

eoemarket.com 15,636 5754 36.80

appchina.com 22,506 4332 19.25

shouji.com.cn 4590 491 10.70

Fig. 9 Architecture of Android operating system

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 12 of 14

and patched them for taint propagation as needed. We
identified 185 internal VM methods in Android version
2.1; however, only five required patching: the System.
arraycopy() native method for copying array contents
and several native methods implementing Java reflection.

8 Appendix C
8.1 JNI methods
JNI methods are invoked through the JNI call bridge.
The call bridge parses Java arguments and assigns a
return value using the method’s descriptor string. We
patched the call bridge to provide taint propagation for
all JNI methods. When a JNI method returns, Taint-
Droid consults a method profile table for tag propaga-
tion updates. A method profile is a list of (from, to)
pairs indicating flows between variables, which may be
method parameters, class variables, or return values.
Enumerating the information flows for all JNI methods
is a time-consuming task best completed automatically
using source code analysis (a task we leave for future
work). We currently include an additional propagation
heuristic patch. The heuristic is conservative for JNI
methods that only operate on primitive and String argu-
ments and return values. It assigns the union of the
method argument taint tags to the taint tag of the return
value. While the heuristic has false negatives for
methods using objects, it covers many existing methods.
We performed a survey of the JNI methods included

in the official Android source code (version 2.1) to de-
termine specific properties. We found 2844 JNI methods
with a Java interface and C or C++ implementation. Of
these methods, 913 did not reference objects (as argu-
ments, return value, or method body) and hence are
automatically covered by our heuristic. The remaining
methods may or may not have information flows that
produce false negatives. Currently, we define method
profiles as needed. For example, methods in the IBM
Native Converter class require propagation for conver-
sion between character and byte arrays.

9 Appendix D
9.1 TaintDroid
TaintDroid is a realization of our multiple granularity
taint tracking approach within Android. TaintDroid uses
variable level tracking within the VM interpreter.
Multiple taint markings are stored as one taint tag.
When applications execute native methods, variable
taint tags are patched on return. Finally, taint tags are
assigned to parcels and propagated through binder. Note
that the Technical Report [17] version of this paper
contains more implementation details.
Figure 1 depicts TaintDroid’s architecture. Information

is tainted (1) in a trusted application with sufficient
context (e.g. the location provider). The taint interface

invokes a native method (2) that interfaces with the
Dalvik VM interpreter, storing specified taint markings
in the virtual taint map. The Dalvik VM propagates taint
tags (3) according to data flow rules as the trusted appli-
cation uses the tainted information. Every interpreter
instance simultaneously propagates taint tags. When the
trusted application uses the tainted information in an
IPC transaction, the modified binder library (4) ensures
the parcel has a taint tag reflecting the combined taint
markings of all contained data. The parcel is passed
transparently through the kernel (5) and received by the
remote untrusted application [34]. Note that only the
interpreted code is untrusted. The modified binder li-
brary retrieves the taint tag from the parcel and assigns
it to all values read from it (6). The remote Dalvik VM
instance propagates taint tags (7) identically for the
untrusted application. The untrusted application invokes
a library specified as a taint sink (8), e.g. network send,
the library retrieves the taint tag for the data in question
(9) and reports the event.
Implementing this architecture requires addressing

several system challenges, including: (1) taint tag storage;
(2) interpreted code taint propagation; (3) native code
taint propagation; (4) IPC taint propagation; and (5)
secondary storage taint propagation. The remainder of
this section describes our design.

Acknowledgements
First, I would like to thank my doctoral tutor (Professor Jin ZhiGang) for his
valuable suggestions and productive discussion. I would like to thank Tianjin
University Broad Band & Wireless Communication Labs, Peter Li, and Zhang
Qian for their support and feedback during the design and prototype
implementation of this paper. I thank Jim Yao and Tom Wang for their
feedback during the writing of this paper. I also thank Kevin Chen, Stephen
Ma, Mac Li, and the Tianjin University Mobile Internet design team as a whole
for their helpful comments. This paper is based upon work supported by a lot
of reference paper and their study. This paper is partially supported by my wife
who made sure of all translations and grammar—I also thank her hard work.
Finally, I thank my family as it is based on their full support so that I could
finish this paper.

Competing interests
The authors declare that they have no competing interests.

About the authors
Hou Rui is currently a Ph.D. candidate at Tianjin University, Tianjin, China.
In June 2005, he received a Master’s degree in software engineering from
NanKai University, Tianjin, China. He has been a PMP member since 2013. His
research interests include mobile platform security, wireless networks, and
resource management in heterogeneous networks. His major representative
academic achievements: Paper “Forecast of the fourth generation mobile
communication technology (4G)”, City construction, 2010.05; “Discussion
on the key technology of communication middleware”, City construction,
2010.05; “Mode selection algorithm based on fast frame stereo video compression
of H.264”, The research and application of computer, volume 27, 2010; “Security
Mechanism Analysis of Open-Source”, Consumer Electronics, Communications
and Networks (CECNet), 2012 2nd International Conference; “Comparison of
Windows Phone 8 Windows 8”, issue on processing; “Application research and
analysis based on Bitlocker”, issue on processing.
Jing ZhiGang is a Ph.D. (post), Professor, Expert consultation and decision-
making of Tianjin Government. He was the chief engineer at the network
center of Tianjin University and deputy director of Computer Department of
Tianjin University. He is now the professor of communication at the engineering

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 13 of 14

college of Tianjin University. In June 1996, he received his Master’s degree in
computer system structure from Tianjin University. In June 1999, he received
a doctorate of engineering signal and information processing from Tianjin
University. In March 2001, he received a post-doctoral in electrical engineering
from Tianjin University. In 2002, he was visiting scholar at Ottawa University of
Canada. His research interests include wireless networks, the technology of the
Internet of things, network security, and network management. His major
representative academic achievements: Paper “Non-Gaussian characteristics
of traffic and the impact to network performance”, SCI EI, Journal of Comp.
Sci and Tech and “User-oriented network behavior prediction and control”,
SCI EI Chinese Journal of Electronics. Book “Computer network”, major editor,
Xi’an Electronic and Science University Press, 2009.
Scientific research. Completed projects: the National Development and
Reform Commission, a CNGI project, National 863 plan project, two projects;
National Natural Science Fund project, four projects, one was named the
20th anniversary of the establishment of the National Natural Science Fund
for outstanding achievements. These are in addition to completing the
Tianjin city and other provincial and ministerial projects
These projects are ongoing: one project from National Natural Science
Foundation, one project from the National 863 plan project, multi-projects
from Tianjin Municipal Science and Technology Commission
Wang BaoLiang received his Master’s degree in computer engineering from
Shandong University. In June 2010, he received a doctorate of Communication
and information system from Tianjin University. He has issued a paper, “Mode
selection algorithm based on fast frame stereo video compression of H.264”,
The Research and Application of Computer, volume 27, 2010.

Received: 31 May 2016 Accepted: 26 August 2016

References
1. Android, http://www.android.com. Accessed date 6 Feb 2016.
2. Android Market, http://market.android.com. Accessed date 6 Feb 2016.
3. Apache Harmony – Open Source Java Platform, http://harmony.apache.org.

Accessed date 18 Feb 2016.
4. AR Beresford, A Rice, N Skehin, R Sohan, Proceedings of the 12th Workshop on

Mobile Computing Systems and Applications (ACM, New York, 2011), pp. 49–54
5. W Enck, P Gilbert, B-G Chun, LP Cox, J Jung, P McDaniel, AN Sheth,

TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones Tech. Rep. NAS-TR-0120-2010 (Pennsylvania
State University, University Park, 2010).

6. P Hornyack, S Han, J Jung, S Schechter, D Wetherall, CCS’11 Proceedings
of the 18th ACM Conference on Computer and Communications Security
(ACM, New York, 2011), pp. 639–652

7. EJ Schwartz, T Avgerinos, D Brumley, Proceedings of the 2010 IEEE
Symposium on Security and Privacy (ACM, New York, 2010), pp. 125–132

8. W Enck, D Octeau, P McDaniel, S Chaudhuri, Proceedings of the 20th USENIX
Conference on Security (USENIX Association, Berkeley, 2011), p. 21

9. I Goldberg, D Wagner, R Thomas, EA Brewer, Proceedings of the 6th
Conference on USENIX Security Symposium, Focusing on Applications of
Cryptography – Volume 6 (USENIX Association, Berkeley, 1996), p. 1

10. A Sabelfeld, AC Myers, Language-based information-flow security. IEEE J.
Selected Areas Commun. 21(1), 5–19 (2003)

11. GE Suh, JW Lee, D Zhang, S Devadas, ASPLOS XI Proceedings of the 11th
International Conference on Architectural Support for Programming Languages
and Operating Systems (New York, ACM, 2004), pp. 85–96

12. W Enck, Proceedings of the 7th International Conference on Information
Systems Security (Springer-Verlag, Berlin, 2011), pp. 49–70

13. W Enck, M Ongtang, P McDaniel, Proceedings of the 16th ACM Conference on
Computer and Communications Security (ACM, New York, 2009), pp. 235–245

14. EJ Schwartz, T Avgerinos, D Brumley, Proceedings of the 2010 IEEE
Symposium on Security and Privacy (ACM, New York, 2010), pp. 317–331

15. SK Nair, PN Simpson, B Crispo, AS Tanenbaum, Electronic Notes Theor.
Comput. Sci. 197(1), 3–16 (2007)

16. A Ho, M Fetterman, C Clark, A Warfield, S Hand, EuroSys ’06 Proceedings of
the 1st ACM SIGOPS/Eurosys European Conference on Computer Systems 2006
(ACM, New York, 2006), pp. 29–41

17. W Cheng, Q Zhao, B Yu, S Hiroshige, IEEE Symposium on Computers and
Communications (ISCC) (IEEE, Washington, DC, 2006), pp. 749–754

18. J Ligatti, L Bauer, D Walker, Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1–2), 2–16 (2005)

19. J Newsome, D Song, in Proceedings of the 12th Annual Network and
Distributed System Security Symposium (NDSS, San Diego, 2005), pp. 17-24

20. T Bao, Y Zheng, Z Lin, X Zhang, D Xu, Proceedings of the 19th International
Symposium on Software Testing and Analysis (ACM Press, New York, 2010),
pp. 13–24

21. P Gilbert, B Chun, LP Cox, J Jung, Proceedings of the second international
workshop on Mobile cloud computing and services (ACM, New York, 2011),
pp. 21–26

22. J Clause, W Li, A Orso, Proceedings of the 2007 international symposium on
Software testing and analysis (ACM, New York, 2007), pp. 196–206

23. J Newsome, D Song, in Proceedings of the 12th Annual Network and
Distributed System Security Symposium (NDSS, San Diego, 2005), pp. 56-62

24. Y Zhu, J Jung, D Song, T Kohno, D Wetherall, Privacy Scope: A Precise
Information Flow Tracking System for Finding Application Leaks (University
of California, Tech. Rep.: UCB/EECS-2009-145, Berkeley, 2009)

25. J Newsome, D Song, in Proceedings of the 12th Annual Network and
Distributed System Security Symposium (NDSS, San Diego, 2005), pp. 101-124

26. N Nethercote, J Seward, Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation (ACM, New York, 2007),
pp. 89–100

27. T Wang, T Wei, G Gu, W Zou, Proceedings of the 2010 IEEE Symposium on
Security & Privacy (IEEE Computer Society, Washington, DC, 2010), pp. 497–512

28. Google Maps for Mobile. Accessed date 1 March 2016.
29. Apple, INC. Apples App Store Downloads Top Three Billion. http://www.

apple.com/pr/library/2010/01/05Apples-App-Store-Downloads-Top-Three-
Billion.html, January 2010. Accessed date 5 March 2016.

30. AW Appel, Modern Compiler Implementation in C (Cambridge University
Press, Cambridge, 2004)

31. MG Kang, S McCamant, P Poosankam, D Song, in Proceedings of the Network
and Distributed System Security Symposium (NDSS 2011) (NDSS, San Diego,
2011), pp. 56-70

32. A Yip, X Wang, N Zeldovich, MF Kaashoek, Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles (ACM, New York, 2009),
pp. 201–304

33. P Zeng, YJ Shao, Android System Architecture & Application Study. Comptr.
Inform. 27(9), 1–3 (2011)

34. Flurry Mobile Application Analytics, https://developer.yahoo.com/
analytics/. Accessed date 6 March 2016.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Hou et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:227 Page 14 of 14

http://www.android.com/
http://market.android.com/
http://harmony.apache.org/
http://www.apple.com/pr/library/2010/01/05Apples-App-Store-Downloads-Top-Three-Billion.html
http://www.apple.com/pr/library/2010/01/05Apples-App-Store-Downloads-Top-Three-Billion.html
http://www.apple.com/pr/library/2010/01/05Apples-App-Store-Downloads-Top-Three-Billion.html
https://developer.yahoo.com/analytics/
https://developer.yahoo.com/analytics/

	Abstract
	Introduction
	Current status
	Reference study and shortage
	Current detection and defect of privacy disclosure
	Android system problem and interdependency

	Principle of dynamic taint tracking
	TaintDroid on Android
	Implicit flow and implicit taint
	Principle of dynamic taint tracking technology
	The realization of the taint tracking system
	Taint data
	Taint storage
	Taint tracking
	Privacy leak point
	The output of path information of testing program execution
	Automated testing program

	Implementation of automatic test system, test results, and evaluation
	Development environment
	Carrying out the automatic test system
	Test results and valuation

	Conclusions
	Appendix A
	Android system architecture

	Appendix B
	Internal VM methods

	Appendix C
	JNI methods

	Appendix D
	TaintDroid

	Competing interests
	About the authors
	References

