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Abstract

Among the many kinds of networking technologies, the wireless ad hoc network is an important one for creating
high-performance ubiquitous computing systems. The availability of a wireless ad hoc network (WANET) depends
highly upon the level of node reliability. System-level fault diagnosis has long been a subject for the purpose of
maintaining system reliability. This paper addresses the comparison-based approach to fault detection, and
accordingly, we developed a localized algorithm for detecting faulty nodes in strongly one-step t-diagnosable
WANETs. The contributions of this paper are highlighted as follows: (i) A localized fault detection algorithm is proposed
for strongly one-step t-diagnosable WANETs under the comparison model, (ii) the proposed algorithm is formally
proved, and it incurs only linear time complexity, which is relatively efficient compared to some others in literature,
and (iii) some examples are presented for clarifying how to accomplish the comparison-based fault detection process.

Keywords: Reliability, Mobility management, Fault diagnosis, Strongly one-step t-diagnosable, Comparison model,
Ad hoc network

1 Introduction
A modern network system contains a large number of
computing and storage units, organized in a static or
dynamic underlying interconnection topology. Among the
many kinds of networking technologies, the wireless ad
hoc network (WANET) is a key to high-performance
ubiquitous computing systems [2, 3, 9, 22, 26, 28, 31].
A WANET is a type of wireless network in which some
nodes are self-organized in a wireless local area net-
work. There are three important properties related to
WANETs [7]. First, theWANET is deployed on any topol-
ogy and managed independently of any preexisting infras-
tructure. Second, the nodes with mobility property are
the most important components of WANET. According
to Grossglauser and Tse [11], mobility can increase the
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capacity of a WANET. Third, it has the scalability prop-
erty, such that it could be used in a large deployment. Due
to the undecided number of nodes even during a short
duration, the main difficulties are mobility property and
reasons for node failure. The reasons for node failures are
caused by some nodes with low battery situations, self-
ish behavior, or suffering from being compromised as well
as attacked events, etc. Therefore, the WANET for any
topology is needed to possess strong requirements, which
must be able to exploit the high-level reliability linking
with scalability and fault tolerance without compromising.
In addition, many related issues have been addressed. For
example, Kumar et al. [16] and Subramaniyan et al. [27]
studied selfish node detection in a MANET; Renugadevi
and Mala [24] proposed an improved group key agree-
ment for MANETs. Hence, the maintaining connectivity
in the face of node failures or so-called unit failures is a
main concern in this paper.
The availability of a WANET depends greatly upon

the node reliability, and the system-level fault detection
approaches to achieve high system availability. Preparata,

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-016-0714-1-x&domain=pdf
http://orcid.org/0000-0002-5266-9975
mailto: cdma2000@asia.edu.tw
mailto: shin8409@ms6.hinet.net
http://creativecommons.org/licenses/by/4.0/


Tzu-Liang Kung et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:218 Page 2 of 11

Metze, and Chien [23] formalized the notion of fault diag-
nosis and studied under what condition can a system be
one-step t-fault diagnosable. Then, they further proposed
a fault-tolerance metric, called the one-step diagnosabil-
ity, to evaluate the degree of a system’s fault-tolerance
capability. According to their formal definition [23], a
WANET of n nodes is one-step t-fault diagnosable if all
faulty nodes within theWANET can be identified without
replacement provided the number of faulty nodes present
does not exceed t. Among the various models of fault
diagnosis [4, 21, 23], Maeng and Malek [21] proposed
one classic approach in a comparison-based strategy, as
known as the comparison model. Their approach makes
an assumption that any node w is capable of playing
the role of a “comparator” in differentiating between
responses from two of its neighbors, u and v. The com-
parison result is 0 if w finds no difference between the
returned responses from u, v; otherwise, the comparison
result is 1. However, w may be either faulty or normal
so that the set of comparison results is not absolutely
reliable. Thus, both theoretical and algorithmic issues
related to comparison-based fault diagnosis/detection
have received the attention of many researchers
[6, 8, 12–15, 18, 19, 29, 32].
The one-step diagnosability [23] is a reasonable metric

for evaluating a network’s fault-tolerance capability, but
it cannot exceed the network’s minimum degree. How-
ever, for a number of well-known instances of network
topologies with one-step diagnosability being τ , their one-
step diagnosability cannot be further increased only when
some node happens to have exactly τ faulty neighbors and
no normal neighbor. Motivated by such an observation,
Lai et al. [20] first proposed the concept of strongly t-
diagnosable systems/networks, in which each of any set of
no more than t + 1 faulty nodes can be correctly distin-
guished if every node has at least one normal neighbor.
The aim of the localized fault detection is to identify the
status of any given node in a WANET, which is classified
as either “normal” or “faulty.” In this paper, we develop
a localized fault detection algorithm under the compar-
ison model for ease of handling scalability and mobility
management in a strongly t-diagnosable WANET.
The remainder of this paper is structured as follows:

We introduce in advance useful graph-theory terminol-
ogy about formalizing the process of comparison-based
fault diagnosis in Section 2. The localized fault identifi-
cation algorithm and its mathematical proof are detailed
in Section 3. Examples and applications are presented in
Section 4. Our concluding remarks are drawn in Section 5.

2 Preliminaries
A WANET is composed of mobile nodes that can com-
municate directly and bi-directionally with the others
via wireless communication if they are in the allowable

communication range [3]. Every node is also responsi-
ble for forwarding data packets from the other nodes.
Therefore, any two individual nodes that are outside their
allowable communication range can still communicate
indirectly with each other if at least one path, an ordered
sequence of communication links, connects them. On this
background, a simple, loopless, and undirected graph is an
adequate model of a WANET’s network topology. To for-
malize the process of comparison-based fault diagnosis in
aWANET, we have to define some graph-theory notations
in advance. The standard terminology of graph theory is
also referred to in [5].
An undirected graph G is composed of a vertex set V (G),

which stands for mobile nodes in aWANET, coupled with
an edge set E(G), which symbolizes communication links
between nodes in a WANET. Here, we use {x, y} to denote
an edge linking adjacent vertices x and y. Two adjacent
vertices are neighbors of each other, denoted by NhdG(v)
to the set of all neighbors of a vertex v. Then, the degree
of v is equal to |NhdG(v)|, which is denoted by degG(v). In
this paper, we make the following assumption for a given
WANET: every node has the same communication range;
that is, each node communicates with others within a uni-
tary circle. Under this assumption, the network topology
of a WANET is further simplified as a unit disk graph,
which corresponds to a collection of unit disks in 2D or
3D space - circle/spheres of radius 1. Each vertex in a unit
disk graph is associated with the center of an individual
unit disk. In a unit disk graph, an edge links two vertices
v1 and v2 if and only if the two disks associated with v1 and
v2 cover both v1 and v2.

2.1 The comparison-based fault detection
For any node in a WANET, its actual status may be either
normal or faulty. The fault detection is approached by
comparing data generated from two nodes that have over-
lapped active areas. Our fault detection scheme is on the
basis of the comparison model [21]. In this model, each
unitw that has at least two neighbors u, v is able to play the
role of comparator in differentiating between data trans-
mitted by u and v: w sends an identical test request to u, v
and then compares it with the received responses between
u and v. The comparison result γ ({u, v}w) is set to be 0
if w finds no difference between the returned responses
from u and v; otherwise, γ ({u, v}w) is set to be 1. When
γ ({u, v}w) = 0, it also means that w agrees that both u
and v are normal nodes. Because wmay be either faulty or
normal, the comparison model makes the following two
assumptions:

1. If the actual status of the comparator w is faulty, then
w may produce an unpredictable comparison result.
For example, γ ({u, v}w) may be 0 or 1 at random, and
it is unreliable.
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2. If the actual status of the comparator w is normal,
then w produces a reliable comparison result:
γ ({u, v}w) = 0 indicates that both u and v are
normal; otherwise, u or v is a faulty node.

Table 1 lists every validation rule of the comparisonmodel
according to the actual statuses of u, v, and w.
The syndrome set is a set of all comparison results col-

lected from a network. However, because a faulty node
produces unpredictable comparison results, different syn-
drome sets may be consistent with an identical fault set
F. Let γ [X] be the set of syndrome sets that are consis-
tent with fault set X. Any two different fault sets X1 and X2
are called distinguishable (respectively, indistinguishable)
if the intersection of γ [X1] and γ [X2] is empty (respec-
tively, non-empty). Sengupta and Dahbura [25] proved
topological conditions for characterizing any one-step t-
fault diagnosable graph G: Every two fault sets X1 and X2
inG have to be distinguishable if bothX1 andX2 contain at
most t vertices. Furthermore, the rules for telling whether
or not two fault sets are distinguishable are summarized
in the following lemma:

Lemma 1 [25] Any two fault sets X1,X2 in a graph G are
distinguishable if and only if their topological structures
can meet one condition (see Fig. 1):

1. There exist {u,w} ⊆ V (G) \ (X1 ∪ X2) and
{v} ⊆ X1�X2 (Fig. 1a, b),

2. There exist {v,w} ⊆ V (G) \ (X1 ∪ X2) and
{u} ⊆ X1�X2 (Fig. 1c, d),

3. There exist {w} ⊆ V (G) \ (X1 ∪ X2) and
{u, v} ⊆ X1 \ X2 (Fig. 1e),

4. There exist {w} ⊆ V (G) \ (X1 ∪ X2) and
{u, v} ⊆ X2 \ X1 (Fig. 1f),

where both u and v are neighbors of w, and X1�X2 = (X1 \
X2) ∪ (X2 \ X1).

Table 1 Validation rules of the fault detection under the
comparison model [21]

Status of Status of Status of Comparison result γ ({u, v}w)

node w node u node v

Normal Normal Normal 0

Normal Normal Faulty 1

Normal Faulty Normal 1

Normal Faulty Faulty 1

Faulty Normal Normal Unpredictable, 0/1

Faulty Normal Faulty Unpredictable, 0/1

Faulty Faulty Normal Unpredictable, 0/1

Faulty Faulty Faulty Unpredictable, 0/1

2.2 Strongly one-step t-diagnosable systems
Lai et al. [20] defined the concept of strongly one-step
t-diagnosable network systems for investigating potential
limitations in the one-step diagnosability. The standard
definition of strongly one-step t-diagnosable graphs is
presented in Definition 1.

Definition 1 [20] A graph G is strongly one-step t-
diagnosable if it satisfies either condition (1) or (2): For any
two fault sets X1,X2 in G, subject to |X1| ≤ t + 1 and
|X2| ≤ t + 1,

1. X1 and X2 are distinguishable;
2. X1 and X2 are indistinguishable, but there exists an

individual vertex x in G such that X1 ∩ X2 covers
NhdG(x).

Definition 1 implies that two arbitrary fault sets X1
and X2, both of which contain at most t + 1 elements,
are indistinguishable in a strongly one-step t-diagnosable
WANET only when X1 and X2 happen to cover all neigh-
bors of some individual node. This special case incurs
one potential limitation of the one-step diagnosability. In
the remainder of this paper, a set F is a restrictive fault
set if F ∩ NhdG(v) �= NhdG(v) for each v ∈ V (G).
Definition 2 is an extension to the original notion of one-
step t-fault diagnosable systems for meeting the nature of
restrictive fault sets.

Definition 2 A graph G is restrictively one-step t-
diagnosable under the comparison model if every two
different restrictive fault sets F1 and F2 in G, both of which
contain at most t elements, are distinguishable.

3 The localized fault detection algorithm
Given a WANET with underlying topology G and any
one of its node o, the localized fault identification aims to
determine the actual status of o. Kung and Chen [17] first
formalized the concept behind the localized fault identi-
fication under the PMC diagnostic model. The following
definition extends it to the comparison model.

Definition 3 For any positive integer t, a node o is one-
step t-identifiable under the comparison model if every two
distinct fault sets F1 and F2 in G, with |F1| ≤ t, |F2| ≤ t,
and o ∈ F1�F2, are distinguishable; furthermore, o is
restrictively one-step t-identifiable under the comparison
model if for every two different restrictive fault sets F1 and
F2 in G, with |F1| ≤ t, |F2| ≤ t, and o ∈ F1�F2, are
distinguishable.

Theorem 1 Under the comparison model, a graph G is
one-step t-fault diagnosable if and only if every vertex of G
is one-step t-identifiable.
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Fig. 1 Topological conditions for characterizing a pair X1, X2 of two distinguishable fault sets: a & b The first condition of Lemma 1; c & d the second
condition of Lemma 1; e the third condition of Lemma 1; f the fourth condition of Lemma 1

Proof Suppose that G is one-step t-fault diagnosable
under the comparison model. If there is some vertex x
not one-step t-identifiable in G, then G contains a pair
of indistinguishable fault sets F1, F2, both of which have
at most t elements so that x is in F1�F2 according to
Definition 3. Obviously, G is not one-step t-fault diag-
nosable, which is an trivial contradiction against the
assumption.
On the other hand, suppose that all vertices of G are

one-step t-identifiable under the comparison model. If G
is not one-step t-fault diagnosable, then G contains an
indistinguishable pair F1, F2 of two fault sets that satisfy
|F1| ≤ t and |F2| ≤ t. Since F1 �= F2, the set F1�F2 is not
empty; i.e., it has at least one vertex, say y. Therefore, it fol-
lows from Definition 3 that y is not one-step t-identifiable
under the comparison model, which is a contradiction
against the assumption.
By the argument of contradiction, the proof is com-

pleted.

The next theorem is an extension to the original concept
behind Theorem 1 formeeting the condition on restrictive
fault sets.

Theorem 2 Under the comparison model, a graph G is
restrictively one-step t-diagnosable if and only if all vertices
in G are restrictively one-step t-identifiable.

Proof Suppose that G is restrictively one-step t-
diagnosable under the comparison model. If there is some

vertex x in G not restrictively one-step t-identifiable, then
G contains a pair of indistinguishable fault sets F1, F2, both
of which have at most t elements so that x is in F1�F2, in
accordance with Definition 3. Hence, it follows from Def-
inition 2 that G is not restrictively one-step t-diagnosable,
which is an obvious contradiction against the assumption.
On the other hand, suppose that all vertices of G

are restrictively one-step t-identifiable. If G is not
restrictively one-step t-diagnosable, then G contains
an indistinguishable pair F1, F2 of two restrictive fault
sets that satisfy |F1| ≤ t and |F2| ≤ t in accor-
dance with Definition 2. Since F1 �= F2, the set
F1�F2 is not empty; i.e., it has at least one ver-
tex, say v. Consequently, it follows from Definition 3
that v cannot be restrictively one-step t-identifiable,
which is a straightforward contradiction against the
assumption.
By the argument of contradiction, the proof of this

theorem is completed.

Let t = degG(o). For any h ≥ 1, an h-extending star with
root o is denoted by ES

(h)
G (o), which is a subgraph of G

defined below:

• V
(
ES

(h)
G (o)

)
= {o} ∪ ⋃h

i=1
⋃t

j=1{oi,j}.
• E

(
ES

(h)
G (o)

)
=

⋃t
j=1

{{o, o1,j}
} ∪ {{oi,j, oi+1,j} | h − 1 ≥ i ≥ 1

}
if

h ≥ 2, and
• E

(
ES

(h)
G (o)

)
= ⋃t

j=1
{{o, o1,j}

}
if h = 1.
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Algorithm 1: FD(ES
(4)
G (o))

Input: ES(4)
G (o).

Output: The status of node o, which is 0 (respectively, 1) if
o is normal (respectively, faulty).

begin
t ← degG(o);
n0 ← |{1 ≤ j ≤ t | γ ({o, o2,j}o1,j ) = 0, γ ({o1,j, o3,j}o2,j ) =
0, γ ({o2,j, o4,j}o3,j ) = 0}|;
n1 ← |{1 ≤ j ≤ t | γ ({o, o2,j}o1,j ) = 1, γ ({o1,j, o3,j}o2,j ) =
0, γ ({o2,j, o4,j}o3,j ) = 0}|;
if n0 ≥ n1 then

return 0 ;
/* The status of o is normal. */

else
return 1 ;
/* The status of o is faulty. */

end
end

Figure 2a, b illustrates 3- and 4-extending stars, respec-
tively. Chiang and Tan [8] developed an efficient method
(Algorithm 1) to execute the comparison-based fault
diagnosis based on a 4-extending star.

Theorem 3 [8] Let ES(4)
G (o) denote a 4-extending star.

The algorithm FD(ES
(4)
G (o)) (Algorithm 1) returns a cor-

rect status of the root o if ES(4)
G (o) contains at most degG(o)

faulty vertices.

Unfortunately, Algorithm 1 is likely to make an
incorrect decision if the number of faults in ES

(4)
G (o)

is greater than degG(o), as shown in the following
examples.

Example 1 Suppose that the faulty nodes are distributed
as those black nodes shown in Fig. 3, whereas white nodes
are normal. Since o1,j is now faulty for every 1 ≤ j ≤
t, it makes an unreliable comparison. We assume that
γ ({o, o2,j}o1,j) is 0 or 1 at random for each j. Because both
o2,j and o3,j are normal for 1 ≤ j ≤ t, they are able to make
a correct comparison. Thus, we get γ ({o1,j, o3,j}o2,j) = 1 and
γ ({o2,j, o4,j}o3,j) = 0 for each j. Accordingly, Algorithm 1
computes n0 = n1 = 0 and returns 0 as output. That is,
the algorithm identifies o as a normal node, which is an
incorrect result.

Example 2 Suppose that black nodes are faulty and
white nodes are normal in Fig. 4. Under the comparison
model, faulty nodes make an unreliable comparison.
Therefore, Algorithm 1 still computes n0 = n1 =
0 and returns 0 as output, which is an incorrect
result.

a b

c
Fig. 2 a 3-extending star ES(3)

G (o), b 4-extending star ES(4)
G (o), and c branching star BSG(o), where t = degG(o)
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Fig. 3 A scenario that the algorithm FD(ES
(4)
G (o)) (Algorithm 1)

makes an incorrect decision, in which black and white nodes are
faulty and normal, respectively

A branching star architecture with root o is denoted by
BSG(o), which is a subgraph of G defined below:

• V (BSG(o)) =
{o} ∪ ⋃t

k=1{ok , ok1,1, ok1,2, ok2,1, ok2,2, ok3,1, ok3,2}.
• E (BSG(o)) = ⋃t

k=1
{{o, ok}} ∪{

{ok , ok1,1}, {ok , ok1,2}
}

∪
{
{oki,j, oki+1,j} | 1 ≤ i, j ≤ 2

}
.

See Fig. 2c for illustration.
To prove the next theorem, we need an additional term

- vertex cover, which can be referred to in [5].

Theorem 4 Suppose that degG(o) ≥ 2. Under the com-
parison model, o is restrictively one-step (degG(o) + 1)-
identifiable if there exists a branching star architecture
with root o in G.

Fig. 4 A scenario that the algorithm FD(ES
(4)
G (o)) (Algorithm 1)

makes an incorrect decision, in which black and white nodes are
faulty and normal, respectively

Proof We assume that G contains a branching star
BSG(o) with root o. Throughout this proof, F1 and F2 are
two different restrictive fault sets satisfying the following
conditions: (1) both F1 and F2 has at most t + 1 elements,
and (2) o is in F1�F2. By symmetry, we assume that o is in
F1. For the sake of convenience, let F denote the intersec-
tion of F1 and F2, and p denote the number of elements
in F. Obviously, the value of p ranges from 0 to t. Both F1
and F2 are restrictive fault sets, so is their intersection F.
Because o is not in F, we derive the following inequality:
r = |F ∩NhdG(o)| ≤ min{p, t − 1}. Without loss of gener-
ality, we can further make an assumption that or+1, . . . , ot
are normal; that is, {oi | r + 1 ≤ i ≤ t} ∩ F = ∅. Then, we
consider the possibilities of r.
Case I: r = t − 1. That is, we have {o1, . . . , ot−1} ⊆ F .

Because both F1 and F2 are restrictive fault sets, we obtain
ot �∈ F1 ∪ F2.
Subcase I.1: ot1,1 or ot1,2 is not in F1 ∪ F2. Here

we further make an assumption that ot1,1 �∈ F1 ∪
F2. See Fig. 5a for illustration. Thus, it follows from
Lemma 1 that F1 is distinguishable from F2, and vice
versa.
Subcase I.2: Both ot1,1 and ot1,2 are in F1 ∪ F2. We take

into accounts the following three conditions.
Condition I.2.A: ot1,1 or ot1,2 is in F1 \ F2. See Fig. 5b,

in which we assume ot1,1 ∈ F1 \ F2. Consequently, it
follows from Lemma 1 that F1 and F2 form a pair of
distinguishable restrictive fault sets.
Condition I.2.B: Both ot1,1 and ot1,2 are in F2 \ F1. See

Fig. 5c. By Lemma 1, F1 and F2 remain to form a pair of
distinguishable restrictive fault sets.
Condition I.2.C: One of ot1,1 and ot1,2 is in F2 \ F1, and

the other is in F1 ∩ F2. Without loss of generality, we
assume ot1,1 ∈ F2 \ F1. Then, ot2,1 and ot3,1 are not in
F1∪F2. See Fig. 5d. Again, it follows from Lemma 1 that F1
and F2 constitute a pair of distinguishable restrictive fault
sets.
Case II: r ≤ t − 2. Referring to the definition given

in [5], a component in G is the maximal connected sub-
graph of G. Let Co be the component of BSG(o) − F
that o belongs to. Thus, Co contains {o} ∪ ⋃t

i=r+1{oi} ∪{
oi1,1, o

i
2,1, o

i
3,1, o

i
1,2, o

i
2,2, o

i
3,2

} \ F . It is straightforward to
see that the cardinality of any vertex cover S of Co is at
least [ 2(t − r) − (p − r)]+(t − r) + 1 = 3t − 2r − p + 1
if S contains o. Comparing this number with the value of
|F1�F2| ≤ 2(t − p+ 1), we have (3t − 2r − p+ 1) − (2t −
2p+2) = t+p−2r−1 ≥ (p− r)+1 ≥ 1. Hence, we get a
fact that S has two nodes x, y that are adjacent and reside
outside F1�F2. So, both x and y are not in F because Co
is a component of BSG(o) \ F). Accordingly, there exists a
path in Co connecting edge {x, y} and node o through F1
or F2 (see Fig. 5e, f). Again, it follows from Lemma 1 that
F1 and F2 form a pair of distinguishable restrictive fault
sets.
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a b c

d e f
Fig. 5 Illustrating the proof of Theorem 4: a Subcase I.1; b Condition I.2.A; c Condition I.2.B; d Condition I.2.C; e & f Case II

In summary, o is restrictively one-step (t + 1)-
identifiable by Definition 3, and the proof is com-
pleted.

On the basis of branching star architectures, we develop
a localized fault diagnosis algorithm CFD (Algorithm 2)
that can detect restrictive faults under the comparison
model.

Theorem 5 Let BSG(o) denote a branching star with
root o. Suppose that o is linked to a normal neighbor. Then,
the proposed method CFD(BSG(o)) (Algorithm 2) returns
a correct status of the root o if BSG(o) contains at most
degG(o) + 1 faulty vertices.

Proof The proof proceeds using arguments of contra-
diction. Let t = degG(o). Suppose that BSG(o) contains at
most t + 1 faulty vertices and F denote the set of all faulty
vertices.
If γ

({ok1,p, ok3,p}ok2,p
) = 1 for some k ∈ {1, 2, . . . , t} and

p ∈ {1, 2}, then we assume, without loss of generality,
γ ({o11,2, o13,2}o12,2) = 1. Then, at least one of o11,2, o12,2, and
o13,2 is faulty. Thus, BSG(o)−⋃t

i=1{oi1,2, oi2,2, oi3,2}, which is
isomorphic toES(4)

G (o), contains at most t faulty nodes. By
Theorem 3, FD(ES

(4)
G (o)) is able to identify the true sta-

tus of o. Otherwise, we have γ
({ok1,p, ok3,p}ok2,p

) = 0 for all
k ∈ {1, 2, . . . , t} and p ∈ {1, 2}.
For the sake of convenience, let n[ ∗] [ 1]= t −

n[ 0] [ 0]−n[ 1] [ 0].
Case 1: n[ 0] [ 0]−n[ 1] [ 0]≥ 0.
Subcase 1.1: n[ 0] [ 0]−n[ 1] [ 0]≥ 1 or n[ 0] [ 0]=

n[ 1] [ 0]≥ 1. On the contrary, we assume that o is faulty.
When

(
γ ({o, ok1,p}ok ), γ ({ok , ok2,p}ok1,p), γ ({ok2,p, ok3,p}ok2,p)

) =

(0, 0, 0) for some k ∈ {1, 2, . . . , t} and p ∈ {1, 2}, then all of
ok , ok1,p, and ok2,p are faulty. Thus, we derive the following
inequality:

|F| ≥ 1 + 3n[ 0] [ 0]+n[ ∗] [ 1]
≥ 1 + n[ 0] [ 0]+n[ 1] [ 0]+n[ ∗] [ 1]+n[ 0] [ 0]
≥ 1 + t + n[ 0] [ 0]
≥ t + 2,

which is a contradiction against the assumption of |F| ≤
t + 1. As a result, the status of o is normal.
Subcase 1.2: n[ 0] [ 0]= n[ 1] [ 0]= 0. That is, it means

γ ({ok , ok2,1}ok1,1) = γ ({ok , ok2,2}ok1,2) = 1 for every 1 ≤
k ≤ t. We further make an assumption that the status
of ot is normal. Obviously, the number of faulty nodes in⋃t−1

k=1{ok , ok1,1, ok2,1, ok1,2, ok2,2} amounts to at least (t − 1).
Moreover, ot1,1 or o

t
2,1 is faulty; o

t
1,2 or o

t
2,2 is faulty. Thus,

we can deduce that t + 1 ≥ |F| ≥ (t − 1) + 2 = t + 1, and
the status of omust be normal.
Case 2: n[ 0] [ 0]−n[ 1] [ 0]≤ −1.
Subcase 2.1: n[0] [0]−n[1] [0]≤ −2. On the con-

trary, we assume that o is normal. When
(
γ ({o, ok1,p}ok ),

γ ({ok , ok2,p}ok1,p), γ ({ok2,p, ok3,p}ok2,p)
) = (1, 0, 0) for some

k ∈ {1, 2, . . . , t} and p ∈ {1, 2}, then both ok1,p and
ok2,p are faulty. Thus, we get a contradiction as fol-
lows: |F| ≥ 2n[ 1] [ 0]+n[ ∗] [ 1]≥ (n[ 0] [ 0]+2) +
n[ 1] [ 0]+n[ ∗] [ 1]≥ t + 2.
Subcase 2.2: n[ 0] [ 0]−n[ 1] [ 0]= −1 and n[ 0] [ 0]≥ 1.

If o is normal, then we get a contradiction since |F| ≥
4n[ 1] [ 0]+n[ ∗] [ 1]= (n[ 0] [ 0]+1) + 3n[ 1] [ 0]+n[ ∗]
[ 1]= t + 1 + 2n[ 1] [ 0]≥ t + 3. Hence, omust be faulty.
Subcase 2.3: n[ 0] [ 0]= 0 and n[ 1] [ 0]= 1. That

is, there is exactly one integer k, 1 ≤ k ≤ t,
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Algorithm 2: CFD(BSG(o))
Input: BSG(o).
Output: The status of node o, which is 0 (respectively,

1) if o is normal (respectively, faulty).
begin

t ← degG(o);
if γ

({ok1,p, ok3,p}ok2,p
) = 1 for some k ∈ {1, 2, . . . , t}

and p ∈ {1, 2} then
ES

(4)
G (o) ← BSG(o) − ⋃t

i=1{oi1,p, oi2,p, oi3,p} ;
return FD(ES

(4)
G (o)) ;

else
n[ 0] [ 0]← |{1 ≤ k ≤ t |(
γ ({o, ok1,1}ok ), γ ({ok , ok2,1}ok1,1)

) = (0, 0) or(
γ ({o, ok1,2}ok ), γ ({ok , ok2,2}ok1,2)

) = (0, 0)}|;
if n[ 0] [ 0]≥ 1 then

n[ 1] [ 0]← |{1 ≤ k ≤ t |(
γ ({o, ok1,1}ok ), γ ({ok , ok2,1}ok1,1)

) = (1, 0) and(
γ ({o, ok1,2}ok ), γ ({ok , ok2,2}ok1,2)

) = (1, 0)}| ;
else

n[ 1] [ 0]← |{1 ≤ k ≤ t |(
γ ({o, ok1,1}ok ), γ ({ok , ok2,1}ok1,1)

) = (1, 0) or(
γ ({o, ok1,2}ok ), γ ({ok , ok2,2}ok1,2)

) = (1, 0)}| ;
end
if n[ 0] [ 0]−n[ 1] [ 0]≥ 0 then

return 0 ;
/* The node o is normal. */

else
return 1 ;
/* The node o is faulty. */

end
end

end

such that
(
γ ({o, ok1,1}ok ), γ ({ok , ok2,1}ok1,1)

) = (1, 0) or(
γ ({o, ok1,2}ok ), γ ({ok , ok2,2}ok1,2)

) = (1, 0). We make the
following assumption:

(
γ ({o, ok1,1}ok ), γ ({ok , ok2,1}ok1,1)

) =
(1, 0). Then, we first claim that ok is normal. If not, then
ok , ok1,1, and ok2,1 are all faulty so that |F| ≥ (t − 1) + 3 =
t + 2, which is a straightforward contradiction violating
the assumption of |F| ≤ t + 1. We further claim that
γ ({o, ok1,2}ok ) = 1. If not, then ok1,1, o

k
2,1, and ok2,2 are all

faulty so that |F| ≥ (t − 1) + 3 = t + 2. By contradic-
tion, the claim holds. Since γ ({o, ok1,2}ok ) = 1, o has to be
faulty. Suppose, by contradiction, that o is normal. Then
ok1,1, o

k
2,1, o

k
1,2, and ok2,2 are all faulty and |F| ≥ (t − 1) +

4 = t + 3, which is an obvious contradiction violating the
assumption of |F| ≤ t + 1.

As a consequence, the algorithm CFD(BSG(o)) returns
a correct status of o, provided that BSG(o) contains at
most t + 1 faulty vertices, and o is linked to a normal
neighbor.

The time complexity ofCFD(BSG(o)) is analyzed below.
We make an assumption that a comparator takes con-
stant time differentiating responses from any two of its
neighbors. Then, the time complexity of CFD(BSG(o))
is O(|V (BSG(o))|). Since |V (BSG(o))| = 7degG(o) + 1,
the time taken for determining the status of node o is
O(degG(o)). We can apply this algorithm to every node
in a WANET one after another. Let � denote the maxi-
mum degree of a WANET with underlying topology G. In
general, the total time for identifying all nodes is O(N�),
where N is the amount of nodes. In literature, Sengupta
and Dahbura [25] first presented a diagnosis algorithm
whose time complexity is O(N5). Later, Yang and Tang
[30] addressed a more efficient fault identification under
the comparison model and developed an O(N�3δ) algo-
rithm with respect to N-node networks, where δ is the
minimum node degree. Compared with these previous
results, our approach contributes a significant improve-
ment.

4 Applications
This section presents some examples to show how
CFD(BSG(o)) (Algorithm 2) does accomplish the fault
detection. In the first example, suppose that

F1 = {o, o11,2, o13,1, o33,1, o5, o52,1}
is a set of six faulty nodes in BSG(o). A possi-
ble syndrome set on BSG(o) is illustrated in Fig. 6a.
According to the decision flow (the leading if-else
block) of CFD(BSG(o)), since γ

({o11,2, o13,2}o12,2
) =

γ
({o31,1, o13,1}o32,1

) = γ
({o51,1, o53,1}o52,1

) = 1, it may run

ES
(4)
G (o) ← BSG(o) − ⋃5

i=1{oi1,2, oi2,2, oi3,2}, as illustrated
in Fig. 6b. According to the decision flow of FD(ES

(4)
G (o))

(Algorithm 1), FD(ES
(4)
G (o)) = 1 is returned since n0 =

0 < 2 = n1; that is, o is a faulty node.
In the second example, suppose that

F2 = {o12,1, o22,2, o3, o5, o51,1, o52,1}
is a set of six faulty nodes in BSG(o). A possible syndrome
set on BSG(o) is illustrated in Fig. 7a. According to the
decision flow (the leading if-else block) of CFD(BSG(o)),
since γ

({ok1,p, ok3,p}ok2,p
) = 0 for every 1 ≤ k ≤ 5 and p ∈

{1, 2}, it runs the else-block and computes n[ 0] [ 0]= 3
and n[ 1] [ 0]= 0. Consequently, CFD(BSG(o)) returns 0
since n[ 0] [ 0]−n[ 1] [ 0]≤ 0; that is, o is a normal node.
In the third example, suppose that

F3 = {o, o1, o2, o5, o51,1, o52,1}
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a

b

Fig. 6 a A syndrome set on BSG(o) and b the remaining syndromes
on ES

(4)
G (o), in which black and white nodes are faulty and normal,

respectively, and the number next to each node is the comparison
result

is a set of six faulty nodes in BSG(o). A possible
syndrome set on BSG(o) is illustrated in Fig. 7b. Since
γ

(
{ok1,p, ok3,p}ok2,p

)
= 0 for every 1 ≤ k ≤ 5 and

p ∈ {1, 2}, it runs the else-block and computes n[ 0] [ 0]=
1 and n[ 1] [ 0]= 2. Accordingly, CFD(BSG(o)) returns

1 since n[ 0] [ 0]−n[ 1] [ 0]< 0. That is, o is a faulty
node.
The proposed algorithm is also capable of identifying

faults in some static network structures including two of
the most popular ones, hypercubes and star-graph net-
works. These two networks have been approved for their
promising topological properties. To apply the proposed
algorithm, it suffices to show that branching star architec-
tures can be embedded into them.
Lai [19] developed an O(n)-time procedure for creating

4-extending stars within an n-dimensional bijective con-
nection graph BCn, n ≥ 5. One important instance of
BCn is surely the n-dimensional hypercubeQn [10]. Below,
we show how to build branching star architectures in the
hypercube: A unique n-bit binary string is assigned to
each node of Qn. An edge links two nodes in Qn if and
only if they differ at one and only one position. When two
nodes differ at ith bit with i ∈ {1, 2, . . . , n}, the edge linking
these two nodes is called an (i)-edge. Figure 8 is a sys-
tematic framework to obtain branching star architectures
in Qn.
For n ≥ 3, SGn stands for the star-graph network that

has the set of all permutations over {1, 2, . . . , n} to form
its vertex set [1]. In SGn, each vertex is labeled by an
individual permutation x1x2 . . . xn and is linked to the
other (n − 1) vertices xix2 . . . xi−1x1xi+1 . . . xn for every
2 ≤ i ≤ n. The edge linking vertices x1x2 . . . xn and
xix2 . . . xi−1x1xi+1 . . . xn is an (i)-edge. Figure 9 depicts

a

b

Fig. 7 Two syndrome sets on BSG(o), in which black and white nodes are faulty and normal, respectively, and the number next to each node is the
comparison result: a The syndrome set consistent with F2, and b the syndrome set consistent with F3
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a

b
Fig. 8 a A branching star architecture with root 000000 in Q6; b a branching star architecture in Qn for n ≥ 6

an instance of branching star architecture in SGn for any
n ≥ 5.

5 Conclusions
Among various networking technologies, the WANET is
critical for creating high-performance ubiquitous com-
puting systems. A WANET is a kind of wireless network
in which some nodes are self-organized in a wireless local
area network. Node mobility is the most important prop-
erty forWANETs. According to Grossglauser and Tse [11],
mobility can increase the capacity of aWANET. Due to the
undecided number of nodes even during a short duration,
main difficulties of maintaining aWANET result from the
properties of node mobility and frequent node failure. In
this paper, a comparison-based approach to system-level

fault detection is addressed, and accordingly, we devel-
oped a localized fault detection algorithm for WANETs.
The contributions are highlighted as follows:

1. A localized fault detection algorithm, CFD(BSG(o)),
is proposed for strongly t-diagnosable WANETs
under the comparison model.

2. The proposed algorithm is formally proved to assure
its validity.

3. The algorithm CFD(BSG(o)) incurs only linear time
complexity, which is relatively efficient compared to
some others in literature.

4. Examples are presented to clarify how CFD(BSG(o))
does accomplish the comparison-based fault
detection.

a b
Fig. 9 a A branching star architecture in SGn for n ≥ 5; b a branching star architecture with root 12345 in SG5
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