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Abstract

simulations at system level.

In this paper, we present a framework for estimating trajectories of cellular networks users based on mobile network
operator data. We use handover and location area update events of both speech and packet data users captured in
the core network of the Austrian MNO A1 to estimate the subscribers” mobility behavior. By utilizing publicly available
data, i.e, environmental information, road infrastructure data, transmitter power ranges and antenna characteristics,
our approach allows the estimation of subscriber trajectories for both urban and semi-rural environments with a good
accordance to the actual trajectories. Additionally, we present a method to estimate a particular subscriber’s
movement velocity, on the basis of mentioned data. Furthermore, we propose a methodology to estimate when a
particular user started or ended a speech or packet data session during his journey, based on mobility-related network
events. With this, our framework enables the creation of reproducible mobility situations for cellular network
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1 Introduction

During the standardization and development process of
cellular systems, it is necessary to evaluate the perfor-
mance of new features that are to be tested. Since it is
not feasible to implement an entire test system for every
planned feature in the early development stages, simula-
tions are the only method to get performance figures that
help to assess the value of the new features. Some features
and algorithms strongly depend on the mobility of the
subscribers (e.g., power control, handover, scheduling);
therefore, dynamic system level simulations are necessary
to incorporate the mobility of the subscribers.

This applies not only for new systems; also already
deployed systems are continuously improved over their
lifetimes. And again, performing simulations is the proper
method to rate features and algorithms under evaluation.
In this case, the simulations should be based on the real
network, i.e., the real cell deployment in the real envi-
ronment (comprising the real street network) with the
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actual offered traffic. Additionally, the subscriber mobility
behavior should be incorporated as realistic as possible. In
that case, it is very beneficial to use the mobile network
operator’s (MNO) information related to the subscribers’
mobility, i.e., anonymous handover (HO) and location
area updates (LAU).

In our work, we use HO and LAU events of speech
(GSM) and packet data (GPRS, UMTS, LTE) users cap-
tured in the core network of the Austrian MNO Al. The
location accuracy of these events is limited to the cov-
erage area of the concerned cells. Additionally, we use
freely available data sets about the environment, the base
station (BS) configuration, antenna characteristics, trans-
mitter power ranges, etc. The mentioned data sets provide
us with a sequence of sample points of the subscriber’s
trajectory where each sample point has a location inac-
curacy based on the cell coverage area. In this work,
we estimate trajectories and the velocity of subscribers
based on the available data sets and compare these tra-
jectories and velocities with those the subscribers moved
along in reality. Additionally, we use specific events cap-
tured in the core network to determine when a certain
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speech or packet data session started or ended. This infor-
mation provides a time and spatial frame for modeling
network traffic, whereas the actual traffic model to be
applied can be selected on demand at a later point in time.
This generic solution allows the creation of reproducible
mobility situations for real network simulations, whereby
the traffic model becomes exchangeable.

Figure 1 outlines the basic concept of our system: a tra-
jectory is generated based on a given set of LAU and
HO events. These events are recorded asynchronously,
i.e, each event is logged on occurrence. A HO event
occurs whenever the mobile terminal changes its serving
cell whereas a LAU event is issued whenever a mobile
terminal changes its location area. With that, we have
information about the trajectory as sampling points (time-
location tuples) with a certain accuracy in space domain
and exact in time domain. Whilst LAU events are issued
only when the subscriber is in idle mode, HO events are
generated during active speech or packet data sessions.
Based on the corresponding events, we can distinguish
between speech and packet data sessions, which consti-
tutes useful information when it comes to modeling and
simulating network traffic.

We found out that trajectories can be estimated for
urban as well as semi-rural environments with good
accordance to the real trajectories. Our approach also
allows the estimation of the subscribers’ movement veloc-
ity and is therefore well-suited to describe their mobility.

The rest of this paper is organized as follows. In
Section 2, related work in the areas of mobility model-
ing, travel time estimation, and trajectory estimation is
presented. In Section 3, the developed trajectory estima-
tion framework is outlined. Important figures of merit
and results of performed experiments and simulations are
shown in Sections 4 and 5, respectively. Finally, the paper
is concluded in Section 6.
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2 Related work

Over the past years research has been conducted in the
field of mobility simulations and investigation of mobil-
ity related events in mobile communication networks.
Besides mobility simulations and mobility modeling,
mobile subscription data is also used for mobility behavior
estimation in I'TS applications. We summarize fundamen-
tal concepts in all relevant areas, namely mobility mod-
eling, trajectory estimations, and travel time estimations.
The field of traffic modeling remains unregarded, since
our work does not focus on actually modeling network
traffic, but instead provides a generic solution for applying
a traffic model of choice.

2.1 Mobility models

Stochastic processes are often used in order to model
the human mobility behavior. The most common mobil-
ity models are random way point (RWP, [1]) or random
walk models (sometimes referred to as Brownian Motion,
used in, e.g., [2-4]), Levy walks and flights [5, 6], and
also the Gauss-Markov mobility [7]. Rhee et al. [8] com-
pared the Levy walk model, which is an extended ran-
dom walk model, with the human mobility, based on
GPS traces of 101 volunteers. Their findings indicate
that outdoor Levy walks with less than 10 km contain
statistically similar features as the human mobility. To
understand human mobility patterns, Gonzalez et al. [9]
analyzed 100.000 anonymized trajectories of subscribers.
They found out that human mobility is characterized
by a time-independent travel distance and that people
travel to a few highly frequented locations. In [10], the
authors propose a mobility model based on the flocking
behavior of birds in order to model a realistic movement
of groups of mobile entities in mobile ad-hoc networks
(MANETs). Similar to that Morlot et al. [11] propose an
interaction-based mobility model for hot spots, i.e., their

Fig. 1 Basic concept of an estimated subscriber trajectory based on a sequence of events captured in a cellular mobile network
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formation and disaggregation as well as the time dynamics
in between. However, these results were used to evalu-
ate the mobility of a collectivity of users but not for the
behavior of a single individual.

In [4], a mathematical model is proposed in order to
track a mobile terminal in a cellular environment. Based
on this model characteristic quantities determining the
mobility behavior are derived, e.g., the distributions of cell
residence and holding time as well as the average num-
ber of HOs. Misra et al. [12] present an approach towards
modeling the mobility pattern of a target node in a wire-
less sensor network based on available tracking data that
are collected by sensing nodes. Different methods are
presented to determine and predict the trajectory of the
moving target node. In contrast to this work, we consider
cellular systems in real environments with underlying real
street networks. In [13], the authors propose a random
room mobility model (RMM) in order to describe the
mobility behavior of patients inside a hospital that are
monitored using wireless body area networks (WBAN).
With the help of this model, they studied the performance
of extra-WBAN communication.

Liu et al. [14] propose a hierarchical mobility model
based on user profiles which consist of a set of user mobil-
ity patterns (UMPs). The model covers a global mobility
model (GMM) and a local mobility model (LMM) in
order to predict trajectories in wireless ATM networks.
Whereas the GMM predicts the sequence of cells a user
is moving through, the LMM determines the actual path
within a cell. The sequence given by the UMP is randomly
changed based on different operations (insert, delete,
change). This model is somehow a random walk limited by
deterministic components. Therefore, all positions within
a cell are possible for the mobile. The proposed model is
verified by simulations only.

2.2 Trajectory estimation
The estimation of trajectories based on mobile phone
data is a topic which has been addressed by numer-
ous researchers in recent years. Schlaich et al. [15]
used sequences of LAUs in order to derive trajecto-
ries for mobile users. Using LAUs constitutes an eligible
approach, since they are issued when the mobile termi-
nal is in both idle and connected mode. The ascertained
sequence of LAUs is compared to a set of pre-generated
routes between an estimated start and end position. In the
end, the route showing the highest similarity with respect
to the sequence of LAU events is chosen as the trajec-
tory describing the corresponding user’s mobility. This
approach works well for longer trajectories around 20 km,
for short tracks however it does not work properly, since a
minimum number of three LAUs is required.

Tettamanti et al. [16] used HO updates instead of LAUS,
which makes their approach applicable not only for the
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higher road network, but also for the minor one. HO
updates, however, are only issued when the correspond-
ing mobile terminal is in connected mode, i.e., during
an active call, which constitutes a significant limitation
for their approach. Using Voronoi tessellation, the cov-
erage area for every cell which was traversed during an
ongoing call was estimated. The start and end position
of the trajectory correspond with the centroid of the cell
where the call originated and terminated, respectively.
Certain influences such as the population density or land
use in the respective areas, which can be used to deter-
mine, e.g., where it is more likely that a certain trajectory
starts or ends, are not taken into consideration. In order
to generate different routes connecting the given start
and end position, they used the traffic modeling simula-
tion framework VISSIM. For each of the generated routes,
the squared sum of all minimum distances between the
route and the cell sites was calculated. In the end, the
route with the minimal distance was chosen as the final
trajectory.

Becker et al. [17] characterize the mobility pattern of
hundreds of thousands of people using a huge number of
anonymized call detail records (CDRs) from a cellular net-
work. They characterize the human mobility in terms of
daily travel distance and carbon emissions with a resolu-
tion of ZIP code areas. Additionally they determine traffic
volumes carried by different roads. For that purpose, test
users drive along predefined routes and record the cor-
responding sequences of cells their mobile phones are
connected to. Afterwards they fit the actual cell sequence
to the best predefined in order to estimate the path the
user was moving along. The major difference to our work
is that they distinguish only between a few predefined
routes where for all of those the cell sequence has to be
recorded in a training phase.

2.3 Travel time estimation

Travel time estimation methods can be categorized in
such using active tracking and such using passive track-
ing methods. Active tracking requires the participation of
the subscriber and/or the mobile terminal. Active track-
ing technologies are, e.g., Global Positioning System (GPS)
and Time Difference of Arrival (TDOA). Methods like
TDOA need BSs that support that feature and therefore
require special equipment. These systems have a higher
location accuracy than passive tracking systems, but they
increase either the power consumption of the mobile ter-
minal (e.g., GPS) or the network load (e.g., TDOA) or
both. On the other hand, passive tracking uses events
captured in the operator’s core network to locate the
subscribers. Therefore, passive tracking does not require
any special equipment in the mobile terminal or involve-
ment of the subscriber. The related work outlined in the
following is based on passive tracking exclusively.
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Alger et al. [18] from Vodafone Germany were one of
the first who investigated travel time estimation on the
German higher roads network. Double handover (DHO)
events of speech users were used to compute the cell
passage time, i.e., the time elapsed between entering and
leaving the cell coverage area. By estimating the route
a subscriber moved within the cell coverage and divid-
ing it’s length by the time difference, the velocity can
be computed. An average filter was used to combine the
travel times of other subscribers in the same cell. The sys-
tem was used to investigate the traffic condition on the
higher roads network in real time. This research showed
that travel times can be estimated for the higher roads
network without the need of expensive inductive loop
detectors. However, their approach focused only on the
highway networks and does not support the minor roads
network. Especially, the route estimation is very simplis-
tic on highways. Since the German road network! consists
of 12.917 km highway and 230.377 km other roads their
approach is only applicable for 5.6 % of the entire road
network.

In order to estimate the traffic speed and travel time,
Bar-Gera [19] used a proprietary system developed by
Estimotion Ltd. This system uses information about HO
events of speech users to estimate the traveled route and
velocity. A sequence of locations derived from the HO
footprints is matched to road segments. Unfortunately, no
information is provided about the determination of the
HO footprints which are the basis for further investiga-
tions.

3 Mobility estimation and traffic modeling

In this section, we give a detailed description of the
methodology used in our framework. We introduce all the
data that are required as input to our system as well as the
algorithms to transform this data into a set of user trajec-
tories. Figure 2 gives an overview of the particular steps
which are performed in order to derive a users’ trajectory
from a given input. The individual steps are explained in
the following.

3.1 Mobile network operator data

The data described in this section are provided by the
Austrian MNO A1l. The MNO captures a lot of events
at the interfaces of its core network by installing network
probes. This process is described by Valerio [20] in detail.
Each event that is captured in the core network features
the following attributes:

e Timestamp: specifies the exact time when the event
was captured
ID: identifies the subscriber
Cell ID: identifies the cell the subscriber is currently
connected to
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e LAC: identifies the location area the subscriber is
currently assigned to
e Event: defines the type of the captured event

Some of these events are strongly related to the mobil-
ity of the subscribers. The most important events in this
respect are call establishment and termination, HO, and
LAU. Each of these events can be related to a certain sub-
scriber ID and the cell where the event occurred. In case
of a HO event this is the cell the subscriber is handed over
to (target cell), in case of a LAU event this is the target
cell in the newly assigned location area. An example for
a sequence of events related to a certain subscriber that
was captured in the core network is depicted in Table 1.
The first event describes a call establishment, followed by
three HO events and a call termination event. Using the
position of the involved BSs in combination with their
antenna configuration (i.e., the angles of the electrical
bore sight), a coarse position of the subscriber at the time
the event occurred can be determined.

3.2 Road network

Based on the assumption that individuals typically move
along roads, our framework maps the estimated sub-
scriber trajectories on ways and streets existing in a real
environment. The road network we use for that reason
is obtained from OpenStreetMap. These freely available
data cover a majority of the real road network and pro-
vide additional information such as the maximum allowed
speed on particular road segments. This information is
required for adapting and validating the estimated user’s
speed, whereas the road network defines the actual route
of the final trajectory.

3.3 Cell area estimation

At this point, it is difficult to estimate the actual location
of a particular subscriber at the time the specific event
is captured as only the position of the BS the subscriber
is currently connected to is known. In order to improve
the estimated position, knowledge about the cell’s cover-
age area (relevant for call establishment and termination
events) and its borders (relevant for HO and LAU events)
is inevitable. We therefore investigate two methods for
determining mentioned characteristics, namely Voronoi
diagrams and coverage prediction.

3.3.1 Voronoidiagrams

A simple approximation of a cell’s coverage area and bor-
ders can be made using Voronoi diagrams as described by
Baert and Seme [21]. Hereby, Voronoi tessellation is used
to partition a plane with n points into n convex polygons.
Each of these convex polygons contains one generator
point, ie., the location of the cell site. However, many
cells are part of a sectorized deployment, which implies
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Fig. 2 Workflow of the proposed trajectory estimation framework

Table 1 Events captured in the core network of the mobile

network operator A1

Timestamp D CellID LAC Event
1327678833 4 51520 5501 Call establishment
1327678854 4 31510 5501 Handover update
1327678935 4 31210 5502 Handover update
1327678949 4 40510 5502 Handover update
1327679027 4 40510 5502 Call termination

that the cell towers of these sector cells have the same
location but their antenna patterns are aligned differently.
We incorporate this circumstance by moving the location
of each cell tower in the direction of the main beam of
the antenna pattern. The longitude’s and latitude’s loca-
tion are shifted according to Egs. (1) and (2), respectively.
The constant factor m" in both equations constitutes
an approximate maximum movement of 1.6 m in each
direction, resulting from the earth’s polar and equatorial
perimeter.
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After performing the mentioned transformations, each
cell's coverage area is described by a unique polygon,
resulting from Voronoi tesselation. A subscriber located
within such a polygon has the closest distance to the asso-
ciated BS. Using Voronoi diagrams for cell area estimation
has the advantage that every location has a well-defined
affiliation to one of the BSs; moreover, the cells’ borders
are defined exactly. One drawback is that eventually dif-
ferent power classes of particular cells are not considered.
Additionally, the influence of the BSs’ environment is also
completely neglected.

3.3.2 Coverage prediction

Certain limitations of Voronoi tesselation in the scope
of cell area estimation can be overcome by using pre-
diction calculations through the application of network
planning tools. These tools allow the incorporation of
additional data, which comprises, among other things,
antenna characteristics, transmitter power, and landscape
characteristics.

We estimated the coverage area for all cell sites of the
Austrian MNO Al in two areas of interest. Since Al only
provided us with the location and the beam direction of
its antennas, we used publicly available data sets to enrich
coverage estimation. A representation of the landscape is
defined by a digital elevation model?. This model offers a
resolution of 25 m, which means that each pixel covers an
area of 25 by 25 m. Additionally, we integrated a building
block model for the two areas of interest. For the city of
Linz, the footprint of every building is known from Open-
StreetMap?, though, their heights is unknown. For these
buildings we assumed an average height of 15 m. On the
contrary, the city of Vienna* provides a building model
including height information. This model consists of the
footprint of buildings and a category that specifies their
heights in steps of approximately three meters.

In our building model we enriched the building lay-
out from OpenStreetMap for the city of Vienna with
the average height of the specified category. In total, we
computed two coverage predictions for each area of inter-
est. The first uses the transmitter’s location, transmitter
power, and the digital elevation model. The second predic-
tion enhances the first one by additionally including the
building model on top of the elevation model.

3.3.3 Transmitter power

A cell's coverage area directly depends on the trans-
mitter power of the corresponding BS. We use trans-
mitter power specifications from the Austrian Forum

Page 6 of 18

Mobilkommunikation (FMK) as basis. The FMK pro-
vides a service where participating MNOs can upload
information about their network infrastructure. For our
work the cell sites’ location and information about their
transmitter power is relevant. However, there are a few
limitations while using these data. First, the service pro-
vided by the FMK is voluntary and therefore the data
can either be out of date or even absent. Second, only
the highest transmitter power of all sectors in case of a
sectorized cell deployment is provided. Finally, it is not
indicated which network operator a particular cell site
belongs to.

In the following, our approach to retrieve transmitter
power estimations for each cell site in the areas of inter-
est is outlined. At first, we define two sets of locations,
one for the cell sites of the provider of relevance and one
for the FMK transmitters. Let A = {posg, posi, . .., pos;}
be a set of BS locations of the network operator and B =
{poso, pos1, . . ., pos;} be a set of BS locations provided by
the FMK. Set C = A N B then contains the positions of
cell sites of the MNO of interest for which the informa-
tion regarding transmitter power is available. For BSs of
the same MNO where this information is not at hand (set
D = A\B), an estimation is performed. Given the informa-
tion (positions and transmitter powers) of the BSs in set
C, the transmitter powers of BSs in set D are estimated by
applying a scattered interpolation. An example therefore
is depicted in Fig. 3. The triangles indicate the positions
of BSs in set C, the transmitter power values outlined
at all other positions are estimations of the transmitter
power for a BS situated at the corresponding location.
Different transmitter power values are depicted using dif-
ferent colors, according to the color scheme shown in
Fig. 3.

3.4 Start- and endpoint estimation

At this point, the framework knows the road network
on which subscribers can move and the coverage area
of the cell sites in the areas of interest. In order to esti-
mate trajectories for a particular subscriber, we need to
know where the subscriber started and ended his journey.
The call establishment and termination events are used to
determine those cells where the trajectory starts and ends
in, respectively.

It is obvious that the probability for the location of a
trajectory’s start- and endpoint is not homogeneously dis-
tributed over the entire cell area. Hence, a reasonable
remedy is the inclusion of land use information. In our
framework, we use the CORINE land cover® (CLC) maps
provided by the European Environment Agency (EEA).
These maps define a number of land use classes and have
a spatial resolution of 100 meters, i.e., each pixel covers an
area of 100 by 100 m, which is smaller than the coverage
area of many cells. We assign every CLC class a weight that



Ostermayer et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:242

Page 7 of 18

Latitude

51

T

49

Transmitter power [dBm)]

48

47

A

= 46

14.28

14.29

14.3
Longitude

14.31 14.32

Fig. 3 Transmitter power interpolation. Sample power interpolation for 20 cell sites with a random transmitter power in the range of 45-52 dBm

defines the probability that a trajectory starts or ends in an
area of this kind. In this manner, the start and end position
can be restricted to a few defined CLC classes such as arti-
ficial surfaces, urban fabric and industrial, commercial,
and transport units.

The second improvement is the use of socio-statistical
maps (i.e., population density maps®). These maps are also
provided by the EEA and have the same resolution as the
CORINE land cover maps. The basic assumption is that
it is more likely that a trajectory starts or ends in an area
with higher population density compared to other areas
of the same CLC class. These maps can be used to create
trajectory sets that fit better to the morning as well as to
the evening hours since it is possible to incorporate the
commuter traffic.

An example is depicted in Fig. 4, where a region con-
sisting of three different population density areas is illus-
trated. Based on our assumption the subscriber will more
likely be located in the area with a population density of

240 2 z;lee rather than in those with 45 Z ;:’5216 and 30 1%”216,
Hence, our framework considers all different population
density areas within the region’s boundaries and computes
a spatial probability density function. After a population
area has been selected by a random process, the exact start
and end position will be selected randomly based on a
uniform distribution within the bounds of the population
area. In order to generate a realistic trajectory based on
the underlying road network, the estimated start and end
position are mapped to the closest road segment in their
vicinity.

3.5 Trajectory estimation

Apart from the trajectory’s estimated start and end posi-
tion, we know a series of HO and LAU events related to
the locations of the corresponding BSs. Considering the
estimated coverage area of every cell, a series of cells the
subscriber traversed during his journey can be derived.
We restrict our generated trajectories to be on top of the
road network of the area of interest. In this manner, the
subscriber’s route will be computed based on the Open-
StreetMap road network between the estimated start and
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Fig. 4 Start- and endpoint estimation. Area with three different
population densities. Our assumption is that people will more likely
start or end their journey in a more densely populated area
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end position. By default, 20 routes with different start and
end positions will be computed. Afterwards, two plausi-
bility ratings for these routes will be calculated, the first
considering their geometry and the second incorporating
the time it takes to traverse them.

As for the trajectory’s geometric validation, the squared
sum of minimum distances between the route and the
centroid of each particular cell coverage area is calculated.
For each of the pre-calculated routes j, the squared sum D;
of all minimum distances d;; between the route j and cell
site i is computed.

Dj =) min(d;)* 3)
i=1

The second validation step verifies the trajectories with
respect to the time required to traverse them. For this pur-
pose, we introduce a duration ratio route,,;;, between the
call or packet session duration g0, and the time it takes
to traverse the route £, as depicted in Eq. (4). This met-
ric provides information whether the estimated route is
either too short or too long.

Lsession
route,asio = (4)
Lroute

The squared sum D; in combination with the duration
ratio route,qzi, is used to select the most likely route the
subscriber has traveled with respect to the distance to
involved cell sites and ascertained travel time. More pre-
cisely, the route which is showing a minimal D; and a
routey,;, which is closest to or equal to 1 is selected as the
subscriber’s trajectory.

3.6 Velocity estimation

The average velocity of a moving subscriber between two
successive HO or LAU events can be calculated by sim-
ply dividing the distance on the road network between the
two event locations by the passage time (difference of the
two timestamps). Very accurate timestamps are available
from the MNO data, whereas the estimation of the actual
HO and LAU event positions needs a closer look.

3.6.1 Handover position

HO events in cellular networks are usually initiated if the
network decides that the serving cell of a mobile terminal
is no longer the best available cell. The best serving cell
is typically the one that guarantees the aspired quality-of-
service (QoS) with the least necessary transmitter power.
Therefore, the position where a HO is executed correlates
with the coverage areas of the two involved cells. In reality,
the coverage areas of neighboring cells overlap in order to
guarantee a seamless HO. Two aforementioned methods
to determine the coverage area of a cell are used in our
framework.

Page 8 0of 18

When using Voronoi diagrams, every cell has a well-
defined and unique coverage area, i.e., no overlapping or
gap between the coverage areas of two neighboring cells
can occur. Since the HO can only take place on the trajec-
tory the intercept between this trajectory and the border
between the involved cells is the estimated position of the
HO event.

Using the coverage prediction method, we have to deal
with three different situations concerning the estimated
coverage areas of the involved cells,

1. Overlapping handover: The estimated coverage
areas of the two involved cells intersect with each
other (see Fig. 5a).

2. Unconnected handover: The estimated coverage
areas of the two involved cells do not intersect (see
Fig. 5b). This means that a HO is made to a cell site
whose coverage area the subscriber has not entered
yet. Although such situations are very unlikely in
reality we sometimes have to deal with them. This is
because our input data for the coverage prediction
are not as complete as they should be. It would
require additional knowledge of used antenna
configurations and transmission power to estimate
the coverage area of the concerned cell sites more
precisely. As we are using only freely available data
sources, we lack this kind of information.

3. Ping-pong handover: A HO is performed from cell
A to cell B and later back to A although the trajectory
does not contain lines that are used twice. These HOs
are an undesirable effect not only for the network
itself but also for the timing estimation. Therefore, we
filtered out ping-pong HOs by removing the last HO
event, in this specific case the HO event from B to A.

Algorithm 1 depicts how the system estimates the HO
position for the overlapping and the unconnected HO
type. For an overlapping HO the centroid of the inter-
section C = A N B of the involved cells is computed
and mapped onto the calculated trajectory. For an uncon-
nected HO, the line between the closest points of the
two coverage areas is computed. If this line intersects
the previously computed route then the point of inter-
section is set as the HO position. If this is not the
case then the midpoint of the line is mapped onto the
route.

3.6.2 Location area update position

In contrast to HO events, LAUs are issued only when the
mobile terminal is in idle mode, i.e., when no speech or
data session is active. Similar to HO events, LAUs are
afflicted with information regarding the cell site where the
update was issued and an exact timestamp when the event
was triggered. Analogous to the HO position estimation,
this information is used to derive a reasonable location
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Fig. 5 Different types of handover. An overlapping handover (a) and an unconnected handover (b) are depicted together with the estimated

handover position (red point)

Algorithm 1 Handover prediction
1: HP < List()
2: for i <— 1 to length(handover) — 1 do
3: cur = handover| i

4 next = handover[i+ 1]

5: if Intersects(cur, next) then

6: centroid = Centroid(Intersects(cur, next))
7: Add(HP, NearestPoint(route, centroid))

8: else

9: line = LineBetweenNearestPoint(cur, next)
10: if Intersects(line, route) then
11: Add(HP, Intersects(line, route))
12: else
13: midPoint = MidPoint(line)
14 Add(HP, NearestPoint(route, midPoint))
15: end if
16: end if
17: end for

for the particular LAU events. The derivation procedure
however differs slightly and will be outlined hereinafter.

The first step is similar to what is done when dealing
with an unconnected HO, which means that a line con-
necting the two closest points of both coverage areas is
computed. In contrary, the end point of the line which is
located closest to the cell site where the actual LAU event
was issued is presumed to be the most reasonable posi-
tion for the corresponding event (Fig. 6). This is due to the
fact that LAUs occur in close proximity to the cell site in
which the event was actually triggered (based on the avail-
able network data). The same applies if the two coverage
areas are overlapping, in this case the closest point of the
intersection area is chosen to be the location where the
event was issued.

3.6.3 Average velocity

After the HO and LAU positions have been estimated, the
average velocity of the subscriber between two consecu-
tive event locations can be computed. Each event exhibits

a timestamp which indicates when the event occurred. In
order to derive the subscriber’s velocity, the distance on
the road network between two event positions is divided
by the difference of their timestamps.

3.6.4 Velocity adaption

Whilst the timestamps of HO and LAU events are very
precise, the estimated positions are not. This can yield in
completely unrealistic average velocities between two suc-
cessive estimated event positions. If the distance between
two events is estimated as too long, the estimated average
velocity can be much higher than the maximum allowed
speed on that particular road. Since the speed limit is
known for each street segment from OpenStreetMap
data, this information can be used to adapt the estimated
event positions in order to obtain realistic velocities (see
Algorithm 2).

First of all, the trajectory is partitioned into so-called
event segments, which represent the partial trajectories
connecting two successive HO or LAU positions. Each
of these segments is verified with respect to its con-
formance with the average velocity and the maximum
allowed speed on the respective road segments. If the
average speed exceeds the allowed limit by a certain fac-
tor (we decided to permit a maximum velocity of 1.7 times
the allowed speed limit, this factor however can be chosen
on demand), the afflicted HO or LAU event positions are
repositioned. This is done by moving the respective posi-
tions back and forth along the trajectory. By increasing or
decreasing the distance between two event positions, the
afflicted segments’ average velocity will be altered in the
same way.

In order to determine to which extent the corresponding
event positions have to be displaced, a reference distance
is calculated. This is done by multiplying the maximum
allowed speed for the concerned road segments with the
time difference between the two events, which is given
by their respective timestamps. By comparing this refer-
ence distance with the distance between the estimated
event positions, the actual shift can be obtained. The
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LAU

Fig. 6 Location area update position. Estimating the position of a location area update event based on two cell coverage areas. The right cell is the
cell where the event was issued, the left cell is the one where the subscriber was connected to previously

Algorithm 2 Handover adaption

10:
11:
12:

1
2
3
4
5:
6
7
8
9

. for i < 2 to length(trajectory) — 1 do
allowedSpeed = MaxSpeed(trajectory[i] )
cur = trajectoryl i]

prev = trajectory|i — 1]

next = trajectoryli + 1]

if Speed(cur) > 1.7 x allowedSpeed then
curDist = Distance(cur)
prevDist = Distance(prev)
nextDist = Distance(next)
nominalDist = allowedSpeed * Duration(cur)

13:

14:

15:

16:

17:

18:
19:

20:

21:

22:
23:

SetSpeed (cur, allowedSpeed);
nextlempDist = nextDist + (curDist —
nominalDist) /2
prevlempDist = prevDist + (curDist —
nominalDist) /2
if  nextTempDist/Duration(next) >
nominalSpeed then
nextTempDist = nextDist
prevlempDist = prevDist + (curDist —
nominalDist)
else if prevIempDist/Duration(prev) >
nominalSpeed then
nextTempDist = nextDist + (curDist —
nominalDist)
previempDist = prevDist
end if

24:

25:
26:
27:
28:

SetSpeed(next, next TempSpeed | Duration(next))
SetSpeed (prev, orevIempSpeed | Duration(prev))
end if
end for

displacement of particular positions however also affects
the previous and/or the subsequent event segments. This
implies that for certain segments only the first, the last, or
both event positions have to be displaced in order to guar-
antee realistic velocities in the adjacent segments. In this
manner, the entire trajectory is traversed.

3.7 Traffic model framing

As mentioned in the beginning, MNOs capture various
kinds of events in their core network that allow to deduce,
e.g., if a particular mobile terminal is in idle or connected
mode or his coarse position at cell coverage level. Fur-
thermore, these events can be used to distinguish between
speech and data users, as different events are issued for the
respective connection types. These HO events (or LAU
events in case the mobile terminal is in idle mode) can
be used in order to infer the subscriber’s mobility behav-
ior in terms of a movement trajectory, as outlined in the
previous sections. For the reason of reproducible mobility
situations in cellular real-network simulations at system
level, the modeling and simulation of network traffic is
an important aspect. In our work we do not focus on
particular traffic models (examples are given in [22-24]);
instead, we offer a generic solution that allows to estimate
when a speech or data session started and ended, both
in a time, and spatial dimension. The actual traffic model
to be applied at a later point in time is freely selectable,
which adds additional flexibility to the simulations to be
performed.

Based on particular events captured in the core net-
work, it is possible to derive at which points in time and
at which spatial locations a network subscriber was par-
ticipating in an active packet data or speech session. In
both cases, specific HO events are issued, whose loca-
tions are derived and mapped onto the road network in
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order to describe the subscribers mobility behavior. From
that point, it can be ascertained when a particular speech
or data session started or ended. Whereas for a speech
session the start and end position can be derived from
the respective call establishment and termination event
(analogous to the estimation of HO positions), the posi-
tion when a session started or ended remains unclear for
packet data users. This is due to the fact that in the core
network only HO events are recorded which indicate that
a data session is currently active, but no specific initiation
or termination events are issued as it is the case for speech
users. On that account, we assume that a packet data ses-
sion starts somewhere between the last LAU and the first
related HO event. The same applies for the termination of
the session, just the other way round. For estimating the
position when a particular data session starts or ends, we
use a uniformly distributed random variable in order to
obtain the definite estimation of the location of the par-
ticular event. Figure 7 outlines this concept based on two
simple scenarios.

4 Figures of merit

In order to evaluate our findings, we make use of a number
of metrics that allow us to assess the estimated trajec-
tories with respect to the ground truth trajectory, which
was recorded using a GPS tracker. The first part of the
evaluation affects the estimated route of the trajectory,
which is compared to the actual one in order to derive
a similarity factor. Secondly, the estimated HO positions
are confronted with the real ones. For that reason, a
mobile terminal was used during test rides in order to
record the exact position where the moving subscriber
was handed over to a new cell site or location area. Finally,
the estimated velocities are verified using the recorded
GPS tracks. Hereinafter, the used metrics are described in
more detail.

4.1 Route geometry
In order to evaluate the estimated trajectory with respect
to the actual, recorded one, we use two different metrics,
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namely the Hausdorff and the Fréchet distance. These
metrics allow to ascertain the similarities between the real
and the estimated route.

1. The Hausdorff distance dy (X, Y) (first introduced in
[25]) measures how far two subsets X and Y of a
metric space are apart from each other. Two subsets
are close in the Hausdorff distance if every point x of
one set is close to some point y of the other set. The
Hausdorff distance then is the greatest of all the
distances from a point x in subset X to the closest
point y in subset Y. In Eq. (5), X and Y are the sets
representing all points x of the estimated and all
points y of the actual route, respectively, d (x, y)
constitutes the distance between a point x and a
point y.

dy(X,Y) = max { sup inf d(x, y), sup inf d(x, y)
xeX V& yey ¥eX

(5)

2. The Fréchet distance constitutes a measure of
similarity between curves, which takes the actual
position and order of points along the curves into
consideration. We consider the algorithm developed
by Alt and Godau [26] which computes the Fréchet
distance of two polygonal curves in Euclidean space.
Hence, the Fréchet distance for two curves
A,B:[0,1] — V, in our case two routes, is defined as

6r(f,g) = inf  max [[f(a() —g(B@®)]

«[0,1]— [a,a’] t€[0,1]
B10,1]—[b,b']

(6)

where « and B are continuous functions with
a(0) =a,a(l) =d, B(0) =band B(1) = b'. Our
evaluation was done using Christophe Genolinis’
implementation of the Fréchet distance [27].
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Fig. 7 Estimating session initiation and termination. Two scenarios for estimating the start and end position of a packet data session. The left
scenario (a) shows a trajectory consisting of two location area updates and three consecutive handover events, the second one (b) outlines a
special case with just one handover event. In both cases, the green segments represent the range where we assume the session to start or end, the
actual position derived from a uniformly distributed Gaussian random variable is highlighted in red color, respectively
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4.2 Handover deviation

Since we estimate the HO and LAU position based on the
geometry of the coverage area of the involved cell sites, we
need a metric that indicates how far the estimated posi-
tions deviate from the observed ground truth positions.
The Euclidean distance d(x, y) (in two-dimensional space,
Eq. (7)) between the estimated position x = (x1,x2) and
the observed one y = (y1,72) is used as a metric. It is
the basis to evaluate the position prediction as well as the
coverage area estimation.

d(x,y) = /01 — 22 + (02 — 22)? ?)

4.3 Velocity comparison

In order to verify our approach, we compare the esti-
mated and adapted (refer to Algorithm 2) velocity with
the ground truth velocity which can be obtained from
recorded GPS information.

One of the metrics we use for this reason is the mean
absolute error (MAE, Eq. (8)) between the observed aver-
age velocity v; and the computed velocity ¥;. The observed
average velocity v; is the velocity obtained from GPS
between the two successive HO positions. The computed
velocity is derived by calculating the distance between the
successive HO locations divided by the time difference
between the corresponding events.

AME:i%?M—wD (8)

The second metric is the root mean square error (RMSE,
Eq. (9)), which is stronger influenced by large errors than
by small ones. In both equations the variable # represents
the number of event segments a trajectory consists of.

i(f’i —v)?

RMSE= |=L 9)

5 Experiments and results

In this section, we present results which have been
achieved using the described methodology. For the rea-
son of evaluation, we performed test drives in urban and
semi-rural areas in Upper Austria and the city of Vienna.
The recorded data are used as a reference in order to
validate the estimated subscriber trajectories. First of all,
we characterize the test setup and the test environment.
Subsequently, we present various metrics and figures that
allow to quantify the achieved results with respect to
actual data. We show that our approach constitutes an
eligible method to derive realistic trajectories for sub-
scribers in a cellular network in both urban and semi-rural
environments.
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5.1 Environment

As mentioned beforehand, we performed several test
drives in order to capture data which is required to verify
our approach towards trajectory estimation. For each of
these test drives, we were using the identical mobile termi-
nal with the same subscriber identity module (SIM). The
handset in use was a Samsung S3 running the Android
4.1.1 JellyBean operating system. During the test drives,
the handset was used to initiate speech and data sessions.
Throughout the entire drives, the mobile terminal’s cur-
rent position was recorded using a GPS tracker. Additional
information regarding the actual serving cell sites and
location areas was logged in order to derive the effective
position of potential HO or LAU events. At a later time,
the Austrian MNO Al provided us with the subscriber
information and events captured in the core network for
the particular test drives. These data were used to derive
the subscriber’s trajectory, whereas the recorded data was
required for validation and quantification.

Table 2 gives an overview of the start and end position
and the number of HO events for each of the performed
test drives. The number of HOs in brackets corresponds
to the unfiltered raw events captured by the core net-
work, the second number represents the same set of HO
events after removing ping-pong HOs. The first test drive
started in the city of Linz and ended in Treffling, a small
town in the outskirts of Linz. This test drive was per-
formed entirely on the higher road network and features
a semi-rural scenario that consists of an urban and a rural
section (trajectory depicted in Fig. 8). The second test
drive took place within the borders of the city of Linz.
This drive was performed on streets of the minor road
network as well as on the city highway. The third and
fourth test drive (refer to Fig. 9) took place in the city
of Vienna. Both test drives were performed on the major
and minor road network and constitute an urban mobility
scenario.

5.2 Results

In order to be able to quantify and rate the devel-
oped mechanisms and procedures, evaluating the results
achieved using our system with actual data is inevitable.
For that reason, all in all, four test drives in different

Table 2 Overview of the start and end position and the number
of HO events for the four test drive trajectories

# Start [Lat,Lon] End [Lat,Lon] Handover
1 48.28105,14.30415 48.33499,14.3780 18 (22)
2 48.31616,14.29052 48.28169,14.30275 17.(19)
3 48.13993,16.32367 48.19880,16.25597 16 (20)
4 48.19283,16.27260 48.15278,16.30172 27 (37)
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Fig. 8 Trajectory 1. Estimation of event positions based on different coverage prediction methods: Coverage prediction (top left), coverage
prediction including height and building model (top right) and Voronoi tessellation (bottom left). The last picture shows the original trajectory
recorded using a GPS tracker (black) and the estimated trajectory based on event positions derived from the top right image (green). The purple
points indicate an active speech session, the blue ones a data session, respectively. The yellow points are the actual event positions which have been
recorded using a handset

environments have been performed in order to collect
reference data. This data basis allows to verify the esti-
mated trajectories using real data under different aspects.
First of all, the route geometries of the estimated trajec-
tory and the actual one are confronted, and a similarity
factor is derived. Furthermore, the deviation of the effec-
tive HO positions and the estimated ones is computed.
The last evaluation aspect covers velocity estimation,
which is done by comparing the derived subscriber veloc-
ity with the ground truth recorded by a GPS tracker.
The findings presented on the following pages indicate
that our approach constitutes an appropriate method for
deriving subscriber trajectories based on mobile network
operator data.

5.2.1 Route geometry

In order to quantify the similarity between the estimated
trajectory and the actual route, two different metrics,
namely the Hausdorff and the Fréchet distance, are used.
Whereas the Fréchet distance is well-suited for curve
matching, the Hausdorff distance represents the max-
imum distance between the estimated and the actual
route. Hereby, the Hausdorff distance either indicates the
maximum distance between the estimated start and end
positions or the maximum distance between the esti-
mated and the actual route. The results in Table 3 show
a minimum and maximum Hausdorff distance of 0.0075°,
which is equivalent to 590 m, and 0.0151°(1189 m), respec-
tively. The minimal and maximal Fréchet distance of
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recorded using a handset

Fig. 9 Trajectory 4. Estimation of event positions based on different coverage prediction methods: Coverage prediction (top left), coverage
prediction including height and building model (top right) and Voronoi tessellation (bottom left). The last picture shows the original trajectory
recorded using a GPS tracker (black) and the estimated trajectory based on event positions derived from the top right image (green). The purple
points indicate an active speech session, the blue ones a data session, respectively. The yellow points are the actual event positions which have been
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0.0012°(94 m) and 0.0047°(370 m), respectively intimate
a high similarity between the actual and the estimated
trajectory for all four test cases.

5.2.2 Handover deviation
In order to verify the performance of our HO position-
ing algorithm, we compare three differently estimated HO

Table 3 Route similarity computed with the discrete Hausdorff
distance and the Fréchet distance

Trajectory du(X,Y) 8¢ (f,9)
1 0.0135° 0.0047°
2 0.0075° 0.0015°
3 0.0151° 0.0021°
4 0.0107° 0.0012°

positions—each of them using a specific coverage esti-
mation method—with the actual positions recorded by a
mobile terminal.

Voronoi diagrams constitute the simplest, yet an appro-
priate method for deriving the position of a HO or LAU
event. Though this mechanism only takes the location of
the cell sites into consideration, the HO positions can be
estimated reasonably well, compared to the actual posi-
tions. In the course of our investigations, we recognized
that Voronoi diagrams work best in urban areas, which
naturally feature a high density of cell sites. In semi-rural
regions, where less cell sites usually cover larger areas,
the emerging Voronoi diagrams become fairly large, since
their extent is only limited by the surrounding cell sites,
which can lead to certain HO positions being estimated
very inaccurately.
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Apart from Voronoi diagrams, we use cell coverage pre-
dictions performed using a network planning tool in order
to incorporate additional information, e.g., transmitter
power or antenna characteristics. For an even more realis-
tic view on the cell sites’ coverage we enhance this predic-
tion with a building model. Figure 10 shows the deviations
of HO positions for the first test trajectory. On the hori-
zontal axis the particular HO events are listed whereas on
the vertical axis the distance between the estimated and
the real position is shown. The differently colored bars
indicate the three different coverage estimation methods.
It can be seen that the deviation increased in the second
half of the plot. This was caused by leaving the urban area
and driving into a semi-rural one. Here, Voronoi diagrams
performed worse compared to the other coverage predic-
tions. The reason for this is that in rural environments the
cell coverage areas get larger and the differences between
Voronoi polygons and real coverage areas increase since
Voronoi tesselation does not consider any terrain informa-
tion. On the other coverage prediction hand is able to take
such environmental information into account. This in fur-
ther consequence leads to smaller errors in estimating HO
positions.

Table 4 shows the minimum, the first quartile, the
median, the mean, the third quartile and the maxi-
mum position deviation in kilometers for all four test
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Table 4 The minimum, first quartile, median, mean, third quartile
and maximum handover position deviation in kilometers for
each of the four test drive trajectories using three different
coverage predictions M (coverage prediction P, coverage
prediction with building PB and Voronoi diagrams V)

# M min O X X Q3 max

1 p 0.161 0.468 0.663 0.705 0.878 1403
1 PB 0.101 0.547 0.716 0.711 0.928 1.315
1 vV 0.142 0420 0.837 0.715 1.023 1.155
2 0.219 0.286 0.321 0.401 0483 0.900
2 PB 0.132 0.261 0.346 0.399 0.525 0.884
2 \% 0.048 0.229 0.343 0.386 0.482 0.900
3 0.111 0.360 0.449 0.677 0.604 3.786
3 PB 0.148 0.338 0451 0.679 0.536 4.062
3 % 0.013 0.281 0.409 0.669 0.639 4.085
4 0.020 0.223 0.309 0.355 0.504 0.863
4 PB 0.030 0213 0.325 0.359 0.506 0.850
4 % 0.010 0.175 0.321 0.328 0.443 0.802

trajectories. All HO positions have been estimated with
Algorithm 1 and were performed with the three men-
tioned coverage estimation methods.

By combining the HO deviations over all four test tra-
jectories and computing the MAE and RMSE, coverage
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Fig. 10 Handover deviations. A comparison of handover deviations between the real handover position and the estimated one with three different
coverage estimation methods (coverage prediction P, coverage prediction with building PB, Voronoi tessellation V)
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prediction without building information performed best
with a MAE of 0.176 km and a RMSE 0.231 km, fol-
lowed by the extended coverage prediction with a MAE
0.189 km and a RMSE 0.253 km and Voronoi diagrams
with a MAE 0.238 km and RMSE 0.311 km. The slightly
higher errors when using coverage prediction including
a building model originate from the inaccurate building
heights, which are either completely unknown (e.g., city
of Linz, where an average height of 15 m is assumed) or
available in an inadequate resolution (e.g., city of Vienna).

For the fourth trajectory in particular the minimum,
maximum and mean HO position deviations are 0.010,
0.802, and 0.328 km, respectively, which shows that the
HO positions can be estimated with high accuracy.

The third trajectory shows a high maximum HO devi-
ation which was caused by the network not performing a
HO while driving for 3.55 km within the city of Vienna.
Since the HO algorithm computed a HO position between
the two cell site coverage, areas that were far-off a large
HO deviation occurred.

5.2.3 Velocity estimation

In this section, we want to discuss the results of the raw
velocity estimation and the adapted velocity estimation
after HO repositioning. We compared each of the veloc-
ities against the ground truth velocity derived from the
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recorded GPS data. Since the estimated velocity accords to
the average velocity between two HO positions we com-
puted the average GPS velocity between the respective
HO positions. In Fig. 11, the raw estimated velocity for
the first trajectory is illustrated. It can be seen that there
occur many velocity overruns for all coverage estimation
methods. By comparing this figure with the HO deviation
(see Fig. 10) it becomes obvious that a velocity overrun is
caused by a large deviation between the estimated and the
actual HO position (> 0.5 km).

In contrast, Fig. 12 depicts the estimated velocity
after applying the adaption and HO repositioning algo-
rithm. Hence, we see that the bigger deflections could be
reduced. To verify the accuracy of the estimated veloc-
ity, the MAE and RMSE for both velocity estimations and
for each trajectory and coverage prediction method were
computed. The results are shown in Table 5 and indicate
that the adaption algorithm can reduce the error intro-
duced by a wrong HO position estimation significantly.

For the coverage prediction without building model, the
velocity MAE using the adaption algorithm was reduced
on each trajectory by an average of 60.40 %. For the
coverage prediction enhanced with a building model the
reduction was 65.75 %, for Voronoi diagrams 73.01 %.

However, this indicates only how well the adaption algo-
rithm works but not how accurate the velocity estimation
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Fig. 11 Velocity estimation without adaption. The estimated velocity for all three coverage estimation methods before applying the adaption
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Fig. 12 Velocity estimation with adaption. The estimated velocity for all three coverage estimation methods after applying the adaption algorithm
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is in general. To validate this for the three different cov-
erage prediction methods, the absolute adapted veloc-
ity errors from the four trajectories were combined in
order to compute the MAE. Here, the coverage prediction
enhanced with a building model had the minimum abso-
lute error for all trajectories with 14.887 km/h, followed by
Voronoi diagrams with 14.921 km/h and coverage predic-
tion without building model 16.004 km/h. This indicates

Table 5 MAE and RMSE for the four test drive trajectories using
three different coverage predictions

# M MAE RMSE MAEadpated RMSE gdiapted
1 P 42365 62.593 23.360 31514
1 PB 50315 69.985 23127 20.142
1 % 59.704 85.549 17.648 25.250
2 81.304 138707 8970 16.047
2 PB 60.964 99.090 9436 12086
2 % 113.999 181.854 13029 16932
3 21125 26,808 13305 17.799
3 PB 26.384 33786 11.941 16.607
3 v 28449 40,088 13036 18781
4 58425 150.199 17.081 22,000
4 PB 48,061 125747 14553 17.795
4 v 72.715 191.037 15388 21.599

that post-processing using the adaption algorithm is nec-
essary in order to estimate an accurate movement velocity
for a particular subscriber.

6 Conclusions

We have shown that trajectories can be estimated for
cellular subscribers by using subscriber information cap-
tured in the core network of a MNO and the location of
the respective BSs. We presented three methods for the
cell site coverage estimation and compared them in terms
of the accuracy of HO positions and velocity estimation.
Our results show that the HO positions can be estimated
with a mean deviation of 179 m by using coverage pre-
diction without a building model. The average (recorded)
distance between two consecutive HO events was 625 m
in semi-rural environments and 283 m in urban regions,
respectively. To minimize the effect of a deviated HO posi-
tion, we developed an adaption algorithm that is able to
reduce velocity overruns and decrease the mean abso-
lute error. The evaluation has shown that the adaption
algorithm reduces velocity overruns for all four test drive
trajectories. The mean absolute velocity error over all four
trajectories was 14.887 km/h (the actual speed of all four
test drives was in the range between 50 and 145 km/h)
when using coverage prediction enhanced with a building
model. This indicates that the velocity can be estimated
for urban and rural areas with good accuracy.



Ostermayer et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:242

The presented results show that cellular network sub-
scriber trajectories can be generated for the purpose of
mobility simulations. These trajectories cover the sub-
scriber’s route and provide its velocity and are therefore
well-suited to describe the subscriber’s mobility behavior.
Furthermore, based on the estimated position of the cor-
responding HO and LAU events, it is possible to derive
a time and spatial frame for applying a traffic model for
a single subscriber, which is useful, e.g., for real network
traffic simulations.

Endnotes

Statistics about the German road network [28].

The Digital Elevation Model over Europe from the
GMES RDA project: http://www.eea.europa.eu/data-
and-maps/data/eu-dem.

More information about how building information
can be retrieved from OpenStreetMap: http://wiki.
openstreetmap.org/w/index.php?title=Buildings&oldid=
1050850.

“The GIS service of the city of Vienna: https://www.
wien.gv.at/kultur/kulturgut/architektur/gebaeudedaten.
html.

orine Land Cover 2006 seamless vector data: http://
www.eea.europa.eu/data-and-maps/data/clc-2006-
vector-data-version-3.

®Population density disaggregated with Corine land
cover 2000: http://www.eea.europa.eu/data-and-maps/
data/population-density-disaggregated-with-corine-
land-cover-2000-2.
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