Lim and Yi EURASIP Journal on Wireless Communications and
Networking (2016) 2016:221
DOI 10.1186/513638-016-0720-3

EURASIP Journal on Wireless
Communications and Networking

RESEARCH Open Access

Structural analysis of packing schemes for

@ CrossMark

extracting hidden codes in mobile malware

Jongsu Lim and Jeong Hyun Yi*

Abstract

In the Internet of Things service environment where all things are connected, mobile devices will become an
extremely important medium linking together things with built-in heterogeneous communication functions. If a
mobile device is exposed to hacking in this context, a security threat arises where all things linked to the device
become targets of cyber hacking; therefore, greater emphasis will be placed on the demand for swift mobile malware
detection and countermeasures. Such mobile malware applies advanced code-hiding schemes to ensure that the
part of the code that executes malicious behavior is not detected by an anti-virus software. In order to detect mobile
malware, we must first conduct structural analysis of their code-hiding schemes.

In this paper, we analyze the structure of the two representative Android-based code-hiding tools, Bangcle and
DexProtector, and then introduce a method and procedure for extracting the hidden original code. We also present
experimental results of applying these tools on sample malicious codes.

Keywords: Repackaging attack, Android app security, Mobile code hiding

1 Introduction
In the present advent of the Internet of Things (IoT) [1]
era, communication functions such as Wi-Fi and Blue-
tooth are embedded in all things, so that real-time connec-
tion between things is made possible. While connecting
various loT devices with a single communication standard
is practically very difficult, individual users already own
mobile devices that fuse together multiple communica-
tion modules and companies provide a bring your own
device (BYOD) work environment; hence, mobile devices
will play a key role in the proliferation of IoT services.
However, in the case of mobile devices, when this cou-
pling medium for all things is exposed to hacking, there is
the threat that all the connected things will also become
targets for cyber hacking. If there is a cyber attack aimed
at specific connected devices, the security vulnerability of
mobile devices can bring about side effects that may even
have a major adverse effect on a different industry [2]. For
example, in smart car service, cars connected through a
mobile device can become infected with a virus and, if an
infected car has problems operating, studies show that, in

*Correspondence: jhyi@ssu.ac.kr
'Department of Software, Soongsil University, 369 Sangdo-ro, Dongjak-gu,
Seoul, 06978, South Korea

@ Springer Open

the worst case, major car accidents could result [3]. Con-
sequently, in the IoT, it is a task of utmost importance and
urgency to ensure that mobile devices cannot be infected
easily.

Unfortunately, the number of mobile malware codes is
increasing each year with evolution into various types.
Recently, there has even been an emergence of ran-
somware, where documents in an infected device are
secretly encrypted to demand payment. The majority
of the mobile malware targets the Android platform.
Android malware can be generally divided into two
camps: those that have been designed to impersonate a
normal app and those that have been designed to hide
their malicious behavior. In the case where malware is
designed to impersonate a normal app, it impersonates
apps that users most frequently use such as apps related
to the smartphone theme, finance, and games, so that
a similar app is designed to secretly execute malicious
behavior such as account charging and game informa-
tion extraction, without the user’s realization. To pre-
vent an anti-virus from detecting such malware, attackers
apply methods such as encryption, packing, and obfusca-
tion [4] on the main code related to malicious behavior
and then distribute it. To bring about speedy malware
detection and response, understanding the structure of

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-016-0720-3-x&domain=pdf
mailto: jhyi@ssu.ac.kr
http://creativecommons.org/licenses/by/4.0/

Lim and Yi EURASIP Journal on Wireless Communications and Networking (2016) 2016:221

Page 2 of 12

Virtual Memory Space

New APK file

~N

APK file

Modified
AndroidManifest.xml

B Modified
]- """""" AndroidManifest.xml

Launcher

Clas

[%ndroidManifest.xml

(binary) [

new classes.dex
(loader)

(loader)

new classes.dex j

(: classes.dex

—p

Packed
original classes.dex

)

A\

b 'Y Unpacked
) original classes.dex

Fig. 1 Packing and unpacking mechanisms

\ /

such code-hiding methods in order to extract the orig-
inal code related to malicious behavior must first be
achieved.

Thus, in this paper, we analyze the fundamentals behind
the main code-hiding schemes used by mobile mal-
ware and, by running tests, empirically present methods
for extracting the original code hidden in the malware
through reverse engineering analysis. The tests target
the malware that applies the main code-hiding tools,
Bangcle [5] and DexProtector [6], and we analyze in detail
the method of extracting the actual code responsible for
malicious behavior from the packed Android application
package (APK) files generated by these two analysis tools.

This paper is organized as follows. Section 2 presents
background knowledge. Sections 3 and 4 describe the pro-
cess of extracting the original code by conducting reverse
engineering analysis of the structures of Bangcle’s pack-
ing scheme and DexProtector’s class encryption scheme.
Section 5 presents results from experiments using sample
apps, and Section 6 draws conclusions.

2 Related works

2.1 Repackaging attacks

The cause of various problems, including malware dis-
tribution in the Android environment is as follows.
The Android platform, also labeled the Android Open

()
Original APK file

modify & inject

Packed APK file

(éndroidManifest.xmi)

Ve . .
\andIOLdManlfest.xmi>

Fig. 2 Structure of an APK file packed by Bangcle

(classes.dex)-M»[c(luanspsaecsk.ejcgr] (classes.dex)
(lib) compressing (lib)
A\
(: assets) [(packed)] (: assets)
classes.jar
(res) bangcleiclasses.ja%>
o v

rename & inject libsecexe.so :)

D

()

Lim and Yi EURASIP Journal on Wireless Communications and Networking

Table 1 List of files added by Bangcle

assets/bangcle_classes.jar

assets/bangcleplugin/collector.apk
assets/bangcleplugin/container.apk
assets/bangcleplugin/dgc
assets/com.msec.login
assets/com.msec.login.art
assets/com.msec.login.L
assets/com.msec.login.x86
assets/libsecexe.so

assets/libsecexe x86.s0
assets/libsecmain.so
assets/libsecmain.x86.s0
assets/meta-data/manifest.mf
assets/meta-data/rsa.pub

assets/meta-data/rsa.sig

Source Project (AOSP) [7], promotes broad openness.
While Androids possess a high market share for the smart-
phones because of this, various security problems have
arisen owing to the app structure and signing method
devised to provide this openness [8].

Android apps are, by default, built using the Java lan-
guage and are generated in the APK file format [9, 10].
Because at this level in app development the developer
distributes code by self-signing using jarsigner, an attacker
can distribute code by re-signing using the attacker’s
private key rather than the developer’s signature [11]. An
attacker can use this point of weakness to insert attack
code into a normal app, repackage it, and then distribute
it. This is called a repackaging attack [12, 13].

2.2 Mobile code packing

Packing is a method used when one wishes to hide the
code’s structure before the code is run. Code packed
by techniques such as encryption and compression is
not revealed until execution; then, at each run time, the
packed code is unpacked through dynamic loading and
executed. Code exposure is minimized through static
analysis. Such packing methods are used mainly so that
malware such as viruses or worms are not detected by an

Table 2 Classes added and used by Bangcle

Classes

ACall

Description

Interfacing with libraries
ApplicationWrapper Entry point of the packed app
FirstApplication Loading the original app
MyClassLoader

Util

Loading the original app
Other utilities

(2016) 2016:221 Page 3 of 12

public static void runAll (Context ctx) {

checkX86 (ctx) ;
CopyBinaryFile (ctx) ;
createChildProcess (cox) ;
tryDo (ctx) ;

runPkg (ctx, ctx.getPackageName ()) ;

}

Fig. 3 Source code decompiled from Ut i1 classes

anti-virus; however, recently, normal programs have also
utilized this method in the area of copyright protection to
protect important code logic [14].

Generally, when using packing, the original code exists
in its packed state, so a loader that unpacks packing code
is added and the control flow is also adjusted so that
the loader is run first. When a packed app is run, the
loader is run first, so that the app loads once the packed
code is unpacked before running the original code (Fig. 1).
Such packing schemes have the advantage of minimizing
modifications to the original code compared to a code
obfuscation scheme.

2.3 Mobile code reverse engineering

Reverse engineering methods for mobile code can be
grouped roughly into static analysis methods or dynamic
analysis methods. In static analysis, the method uses a
disassembler or decompiler. Disassemblers targeting the
Android execution file, called Dalvik Executable (DEX),
include baksmali [15], dedexer [16], and apktoolkit [17],
and using these programs, the DEX file is converted into
a smali file [18], so that Dalvik virtual machine (DVM)
bytecode [19] can be analyzed in units of commands.
For decompilers, dex2jar [20], jad.jeb [21], etc. have been
made public, and they also provide the function of restor-
ing a DEX file into Java source code. Static analysis of
the app is done through APK extraction using ADB, DEX
conversion to JAR using dex2jar, and JAR file analysis
using a Java decompiler while static analysis of so library is
carried out using IDA [22] with Hex-Ray. We can investi-
gate which functions and libraries are used through static
analysis.

Dynamic analysis enables accurate observation of
parameters and return values of variables and functions
that are difficult to identify using static analysis, thus
allowing effective analysis of the app. The main Android
dynamic analysis tools are DroidScope [23], AppUse [24],
and DroidBOX [25], but these run in sandbox-based emu-
lator form. When an app is run in the emulator, it either
analyzes the commands executed in the DVM or analyzes
the APIs being used and provides the user with activity
information needed for app analysis. Furthermore, IDA

Lim and Yi EURASIP Journal on Wireless Communications and Networking (2016) 2016:221 Page 4 of 12

4 .] N
Application
2\ (N
Packed APK file Stub Bytecode
(AndroidManifest.xml)
(classes.dex)
- J
1lib (" N
() Libraries
(assets)
bangcle_classes.jar>\ \\ j)
: 4 A
libsecexe.so)\ /data/data/ [package]/.cache/
copy
) —>C libsecexe.so)
(res) copy & rename —>(elasses.)Rz)
. J/ & J
Fig. 4 Copying procedure when the CopyBinaryFile method is invoked
4 . R 7\ 4 . . 2\
Application @ Application
(" 2\ » 2\

Stub Bytecode Stub Bytecode

(N\ (N\
Libraries ‘/\\ Libraries

libdvm.so)

L «C
3 N
<(libsecexe.so) \—/I
 §), \ o

O

/data/data/ [palckage] /.cache/ Load library

(libsecexe.so) @ Create child process
(classes.jar) @

Fig. 5 Processing steps of the createChildProcess method

Prevent debugger

I/dalvikvm(2582): Debugger is active

I/WindowState (248): WIN DEATH: Window{41926a68 com.msec.login/
com.msec.login/.MainActivity}

I/ActivityManager (248): Process com.msec.login (pid 2582) has died.
W/ActivityManager (248): Force removing ActivityRecord{42c46518 u0
com.msec.login/.MainActivity t3}: app died, no saved state

Fig. 6 Target app process is terminated when being attached to NetBeans

Lim and Yi EURASIP Journal on Wireless Communications and Networking (2016) 2016:221

Page 5 of 12

com.msec.login/.MainActivity}

D/dalvikvm(10750) : Trying to load lib /data/data/com.msec.login/.cache/libsecexe.so
D/dalvikvm(10750) : Added shared lib /data/data/com.msec.login/.cache/libsecexe.so
I/ActivityManager (248): Process com.msec.login (pid 10750) has died.
W/ActivityManager (248): Force removing ActivityRecord{41842938 u0
com.msec.login/.MainActivity t4}: app died, no saved state

I/WindowState (248): WIN DEATH: Window{42c8b0e8 com.msec.login/

Fig. 7 Target app process is terminated when being attached to IDA

and GDB [26] are used not only for static analysis but also
frequently for dynamic analysis.

3 Structural analysis on Bangcle

3.1 Packing

Bangcle is a packing tool that provides anti-reverse
engineering functions such as anti-debugging [27], anti-
tampering, anti-decompilation, and anti-runtime injec-
tion for mobile code using execution code compression
[28]. To examine the functions provided by this tool, we
examine the packing process for a sample app that has a
simple log-in function shown in Fig. 2. The areas colored
in gray in the illustration denote files that have been newly
added or changed by Bangcle.

First, using just classes.dex from the original APK file,
another classes.jar in the APK file format is generated.
Compressing this (unpacked) classes.jar file, the file is gen-
erated under the same file name (packed) classes.jar. Then,
this classes.jar file is renamed to bangcle_classes.jar and
saved in the packed APK file’s assets folder. Additionally,

files such as libsecexe.so which provide decompression
and anti-analysis functions for the bangcle_classes.jar file
are also stored together in the assets folder. The list of
added files is shown in Table 1.

After packing the original classes.dex, a separate
classes.dex file is newly generated and added to the
packed APK. In addition, the AndroidManifest.xml file
is also updated with information regarding the newly
generated classes.dex file. Table 2 shows the class infor-
mation included in the newly generated classes.dex
file. The ACall class manages the interface with
library files, and the ApplicationWrapper class
monitors the control flow using the entry point of the
compressed app. The FirstApplication class and
MyClassLoader class are used to load the original
app into memory. The Util class carries out over-
head operations needed to execute libsecexe.so and calls
functions from libsecexe.so to perform unpacking, anti-
debugging, anti-tampering, and anti-runtime injection
functions.

4 | | N\
Application
Stub
Bytecode
K | N\
Libraries

(libdvm.so)
(libsecexe.so)

J
\ S

4 | K N\
Application
-
Stub
Bytecode
Original
Bytecode original
dex
&
4 . . N\
Libraries
(libdvm.so)
(libsecexe.so)
I\ J load
\ J

4 N\
/data/data/ [package]/.cache/

/data/data/ [package]/.cache/

(N\
/data/data/ [package]/.cache/

(libsecexe.so) (libsecexe.so (libsecexe.so)
EEE—
unpacking
(packed) (unpacked) (classes.dex
classes.jar classes.jar /
. J \ /
copyFile

Fig. 8 Modified unpacking procedure for extracting the original classes.dex

Lim and Yi EURASIP Journal on Wireless Communications and Networking (2016) 2016:221

public static void runAll (Context ctx) {

checkX86 (ctx) ;

CopyBinaryFile (ctx) ;

createChildProcess (cox) ;

tryDo (ctx) ;

copyFile (ctx) ;

runPkg (ctx, ctx.getPackageName ()) ;
}

Fig. 9 Modified code to extract the original classes.dex

3.2 Unpacking

Figure 3 examines the primary logic of the code inserted
by Bangcle to execute the packed APK. This code is the
Java code obtained by disassembling the Util class.

The operation process of the primary methods is as
follows. First, the checkx86 method identifies whether
the CPU of the device running the app is x86-based
or ARM-based. If it is an x86-based CPU, the [libse-
cexe.x86 file is copied to a temporary folder, whereas
if it is an ARM-based CPU, the libsecexe.so file is
copied to a temporary folder. CopyBinaryFile takes
the bangcle_classes.jar file in the assets folder of the
compressed APK file, copies it to the temporary folder
/data/data/[package name]/.cache/, and renames
it as classes.jar (Fig. 4). As a method that provides anti-
debugging-related functions, createChildProcess is
explained in more detail in the next section. tryDo
restores the (packed) classes.jar file copied to the tem-
porary folder into the (umpacked) classes.jar file that
includes the original classes.dex. runPkg loads the
original classes.dex in the (unpacked) classes.jar file into
memory and executes it. After the original classes.dex
has been loaded, the (unpacked) classes.jar file is recom-
pressed into the (packed) classes.jar and saved in the
temporary folder.!

3.3 Anti-debugging
The method createChildProcess generates a child
process, so that Java debug wire protocol (JDWP) and a

Page 6 of 12

native debugger cannot run. As shown in Fig. 5, first, the
libsecexe.so file copied to the temporary folder is loaded
into memory. After the file is loaded into memory, the
method used to prevent native and/or managed code
debuggers is applied.

Both Figs. 6 and 7 show that the app instantly terminates
as soon as connection of the NetBeans and IDA debuggers
to the packed APK is attempted.

In this way, because the anti-debugging function is
already applied with Bangcle, analysis methods that use
existing debuggers do not work, and a different method
must be used for analysis.

3.4 Code extraction

As explained in Section 3.2, when the packed APK is exe-
cuted, the bangcle_classes.jar file is renamed to classes.jar
and copied to the temporary folder along with files such as
libsecexe.so. The classes.jar saved in the temporary folder
at this time is packed, so we cannot analyze it. However,
as shown in Fig. 8, if we find the point when the (packed)
classes.jar file is temporarily restored to the (unpacked)
classes.jar and copy that file to the data folder, we can
extract the original classes.dex.

Figure 9 shows a section of Util.java modified to
copy the (unpacked) classes.jar file into the data folder,
namely, if the copyFile method is added in order to
copy the file between the tryDo method and runPkg
method, we can procure the (unpacked) classes.jar with
the original classes.dex included.

If the classes.dex file obtained in this way is converted
into smali code using the baksmali tool, we can observe
the code in its original state as in Fig. 10. Thus, we see that
Bangcle’s packing function can be neutralized in this manner.

4 Structural analysis on DexProtector

4.1 Encryption

DexProtector is a program used for anti-reverse engi-
neering for Androids. The main functions provided by
DexProtector are class encryption, tamper detection, code
and data hiding, etc. In this paper, we set out to examine

.prologue
.line 7
const-string vO,

"MSEC"
invoke-virtual {pl, vO},
move-result vO0

if-eqz v0, :cond 12

const-string v0, "1234"

invoke-virtual {p2, vO0},

Ljava/lang/String;->equals (Ljava/lang/Object;)Z

Ljava/lang/String;->equals (Ljava/lang/Object;)Z

Fig. 10 Smali code disassembled from the extracted classes.dex

Lim and Yi EURASIP Journal on Wireless Communications and Networking (2016) 2016:221

Page 7 of 12

encrypted APK file

; : :
\AHdr01dMan1fest.xmi)

Fig. 11 Class encryption procedure of DexProtector

4 ..) N
Original APK file
~ modify & inject
(éndroidManifest.xm¥/
encrypt (encrypted)
. P
(: classes.dex :>_ [classes.dex
C 1ib)
(: assets)
(: res)
_ v

[(loader)]
classes.dex

C 1ib)

(: assets)

(encrypted) :

classes.dex

C)

. J

the potential for reverse engineering analysis focusing on
the class encryption function in the various DexProtector
functions. Figure 11 shows the class encryption process of
DexProtector.

First, the classes.dex of the original APK file is encrypted
to generate the identically named (encrypted) classes.dex

and save it in the assets folder. During this time,
both the classes.dex file for decrypting and executing
the (encrypted) classes.dex file and the AndroidMan-
ifest.xml file updated with the modified file infor-
mation are saved, and the encrypted APK file is
generated.

encrypted APK file

(éndroidManifest.xm{)

Load & execute

(Application h

@ create

res

)

1
(loader) w C (loader) () stub || N
classes.dex ‘J bytecode
dvmJarFil
1lib —»| decryptor p}--------.
(' i) eOpen e decryptor
(: assets j) : original
] bytecode
(. 0
(encrypted) ____i' __________________ : o
classes.dex
-
/data/data/

[package]/.cache/

Vs

) :
<:> create

new.apk

Load & exelcute

| (original)]‘

f new.apk

©
©

Fig. 12 DexProtector class decryption procedure

(decryptor)

Load & execute
(original)

(decryptor)

J

J

(:) remove APKs

(.

Lim and Yi EURASIP Journal on Wireless Communications and Networking (2016) 2016:221

<application
android:debuggable="true”
android:icon=“@drawable/app notes”
android:label="@string/app name”
android:name=".Application”>

</application>

Fig. 13 Modifying AndroidManifest.xml for enabling debugger
attachment

4.2 Decryption

When the encrypted APK file is executed, the
(loader) classes.dex file is executed first. The (loader)
classes.dex file generates the decryptor APK file in the
/data/data/ [package name] /.cache folder,
and, using the generated decryptor APK file, the
decryptor is run. The executed decryptor decrypts the
(encrypted) classes.dex file saved in the assets folder of
the encrypted APK file and saves the original APK file in
the /data/data/ [package name] /.cache folder.
Afterwards, the restored original APK file is actually exe-
cuted. After being executed, the original APK file saved
in the /data/data/[package name]/.cache
folder is deleted. Figure 12 shows the DexProtector class
decryption procedure.

4.3 Code extraction

Because apps with DexProtector have the anti-debugging
function applied by default, debugging at the smali code
level can be done using IDA. Therefore, to debug an app
at the smali code level, the debuggable property in the
AndroidManifest.xml file must be forcibly modified to
true, as shown in Fig. 13.

In this paper, the objective is to obtain the decrypted
classes by reverse engineering the encrypted classes. If the
APK is simply repackaged and executed, the original app
is terminated before MainActivity is executed and the log
is outputted, as seen in Fig. 14. By analyzing the log file, we
confirmed that the first generated new.apk file was loaded
properly and the second generated new.apk file failed to
open because it was not in a zip file format.

In the case of normal execution, the new.apk file is
generated twice and then loaded. However, when the

Page 8 of 12

application is executed normally, the new.apk cannot be
found because the new.apk file is deleted after loading.
Therefore, to incapacitate DexProtector’s class encryption
scheme, the new.apk file which is generated in real time
must be obtained before deletion.

To open the new.apk file, we must first set a break-
point for the Application class that is executed for
the first time the app is executed by using the smali
code level debugger. Then, we set breakpoints such as
the dvmJarFileOpen function from libdvm.so by using
native code-level debugger. Afterwards, when the app is
rerun, after a new.apk file is generated, the app freezes at
the assigned breakpoint. If we obtain the first generated
new.apk file and decompile it using the JEB decompiler,
we can observe the unpack function, etc., as in Fig. 15.
The unpack function uses the application’s hash value as
a decryption key to decrypt the packed classes.dex.
Because hash values change when the application is
repackaged, the second new.apk is not generated correctly.
Thus, to obtain the second new.apk file (without repack-
aging), one must connect the debugger and obtain the file
before MainActivity is executed.

Because Android apps are generated initially from the
early Zygote process, we go about attempting to debug
during the Zygote process. Using the follow-fork-mode
child option in the debugger, we debug the child process
generated by Zygote.

The dvmJarFileOpen function [29] is immedi-
ately called to load the file type compressed by the
functions in the libdvm.so library file (see Fig. 16).
The dvmJarFileOpen function that is called first
is a function for loading the installed APK file. The
dvmJarFileOpen function that is called second is a
function for loading the first new.apk file generated. The
dvmJarFileOpen function called afterwards is a func-
tion for loading the second new.apk file, which includes
the decrypted logic.

Figure 17 shows the result of obtaining and disassem-
bling the second new.apk file generated in the installed
app’s data folder before the last dvmJarFileOpen func-
tion is called. Because the encrypted class was already
decrypted, hereafter, there are no constraints on dis-
assembling and conducting reverse analysis. Figure 18
shows one of methods to obtain the original code from
DexProtector.

(bootstrap=0) ---

(success) ---
: Dex prep '/data/data/com.example.msec/app dex/new.apk': unzip in Oms, rewrite 82ms
: Zip: EOCD not found, /data/data/com.example.msec/app dex/new.apk is not zip

D/dalvikvm(5124): DexOpt: —--- BEGIN 'new.apk'
D/dalvikvm(5138): DexOpt: load 7ms, verify+opt 4ms,
D/dalvikvm(5124): DexOpt: --- END 'new.apk'
D/dalvikvm(5124)

D/dalvikvm(5124)

103460 bytes

Fig. 14 Log output when running the repackaged app

Lim and Yi EURASIP Journal on Wireless Communications and Networking (2016) 2016:221 Page 9 of 12
static void unpack(Context arg2l, File arg22, File arg23) {
FileOutputStream v15 2;
FileOutputStream v16;
Context v0 = arg2l;
File vl = arg22;
File v2 = arg23;
int v4 = vO0.getPackageManager () .getPackageInfo (v0.getPackageName (), 64).signatures([0].hashCode();
int[] v5 = new int[][v4, v4, v4, v4];
int[] v6 = new int[][-1220469515, -462801895, 895405498, 1374636159];
byte[] v7 = new byte[8192];
InputStream v9 = v0.getAssets () .open(“classes.dex”);
try {
v16 = new FileOutputStream(vl);
}

Fig. 15 Java code decompiled from the first new.apk file

[New process 1482]
[Switching to LWP 1482]

Breakpoint 1, 0x407908be in dvmJarFileOpen (char const*, char const*, JarFile**,

bool) () from /system/lib/libdvm.so
(gdb) set follow-fork-mode parent
(gdb) ¢

Continuing.

Breakpoint 1, 0x407908be in dvmJarFileOpen (char const*, char const*, JarFile**,

bool) () from /system/lib/libdvm.so
(gdb)
Continuing

Breakpoint 1, 0x407908be in dvmJarFileOpen (char const*, char const*, JarFile**,

bool) () from /system/lib/libdvm.so
(gdb)
Continuing

Fig. 16 Debugging process to obtain the second new.apk file

virtual methods
.method public secretMethod()Z
.locals 3

const-string vl, "msec.ssu.ac.kr"

iget-object v0, pO, Lcom/example/msec/SecretClass;

const v2, 0x7£080002

invoke-virtual {v0, v2}, Lcom/example/msec/MainActivity

mov-result-object vO0

Fig. 17 Smali code disassembled from the second new.apk file

Lim and Yi EURASIP Journal on Wireless Communications and Networking (2016) 2016:221

Page 10 of 12

execution
request

Zygote

&)

Debugger

encrypted APK file

CAndroidManifest.xml) 4

O

—— T e o

Set Breakpoint

[classes.dex

<§ Load & execute
w (loader)

C

C

)

(encrypted)
classes.dex

) dvmJarFil

eOpen

——

~N

stub [
bytecode E
—®| decryptor f--------o

: original
: bytecode

/

decrypt \. Z
4 __

/

/data/data/
[package]/.cache/

new.apk
(original

>]‘ """""""""""

Load & execufte
i (decryptor

new.apk

(decryptor)]‘ -----------------------

\

/

Extracting
apk file

Fig. 18 Process used to obtain the original class from the APK file with class encryption

5 Experiments

In this section, we describe experimental results for deter-
mining whether code extraction schemes can be used
successfully for analyzing malware samples that apply
Bangcle and DexProtector.

5.1

Target app selection

We first obtained the target malware apps for the
experiment from Contagio [30] and VirusShare [31] and
distinguished them according to whether the apps applied

Bangcle or DexProtector.

Table 3 The analysis results on packed and unpacked applications with various analysis engines

Analysis engine

Packed application

Unpacked application

AVG

Alibaba
CAT-QuickHeal
ESET-NOD32
Fortinet

lkarus
Kaspersky
NANO-Antivirus
Qihoo-360
Sophos

Android/Deng.MAO

A.LRog.Tgcmbwlbehlb

Android.SecApk.A (PUP)

Secapk.E potentially unsafe
Adware/Secapk!Android

AdWare. AndroidOS.Secapk

not-a-virus:HEUR: AdWare. AndroidOS.Mmaro.a
Trojan.Android.Dowgin.dtznya
Adware.Android.Gen

Andr/PornClk-AB

Android/Deng.GNV

AW.Rog.ModelAd

Android.Dowgin.AM (AdWare)
AdDisplay.Dowgin.Rpotentially unwanted
Adware/Secapk!Android
PUA.AndroidOS.Dowgin
HEUR:Trojan-Downloader. AndroidOS.Agent.az
Trojan.Android.Dowgin.dtznya
Adware.Android.Gen

Android Dowgin (PUA)

Lim and Yi EURASIP Journal on Wireless Communications and Networking (2016) 2016:221

First, in the case of determining Bangcle, when
decompiling the APK file, if package names such as
com.secapk.wrapper, com.secneo.guard, and com.bangc-
le.protect are included or if libexec.so, libmain.so, bangcle
_classes.jar, etc. are found in the assets folder, Bangcle
was determined to have been applied. In the case of Dex-
Protector, because it is difficult to determine its use with
only the results generated from decompiling the file, the
Application class is included. It was determined that
DexProtector is applied based on the log record showing
whether, when executed, the DexOpt process optimizes
an identical named apk file twice.

Based on the above criteria, we were able to determine
seven malware apps that applied Bangcle and one mal-
ware app that applied DexProtector, thus selecting a total
of eight apps as the subjects for our experiment.

5.2 Experimental setup

To extract code from malware that applied Bangcle
and DexProtector, we experimented in the environment
described as follows. Because an app using Bangcle only
needs to be repackaged to be executed, we ran the app on
an Android version 4.4.4 device that had not been rooted.
We determined that the Bangcle version information was
given by the numbers assigned with the VERSION NAME
variables in the Util class. Because a debugger needs to
be used for apps that have applied DexProtector, we used a
rooted device to obtain higher privileges than the app pro-
cess. For the debugger, we used a GDB built for ARM use.
Finally, for decompiling and repackaging, we used apktool
version 2.0.3.

5.3 Experimental results

The analyzed apps were applied with various versions of
Bangcle, from 1.0 to 8.5.12. However, all of the versions
were able to extract the original codes. Likewise, it was
possible to extract the original codes from DexProtector.

Table 3 shows the experimental results on packed and
unpacked applications using well-known analysis engines.
In the case of the packed applications, most of the analysis
engines recognize that Bangcle has been used but do not
check their behaviors in details. On the other hand, most
of them are able to figure out the unpacked application’s
behavior and thus determine it is an adware.

Also, we observed that the unpacked applications
include various library related to advertisement as shown
in Fig. 19. Therefore, we can understand the exact behav-
ior of the applications by obtaining unseen information
from the unpacked applications.

6 Conclusions

In this paper, we present the experimental results of a
reverse engineering analysis conducted regarding code-
hiding methods applied in Android-based malware. As

Page 11 of 12

com.adfonic.android.*
com.adsdk.sdk.*
com.brightroll.androidsdk.*
com. feiwotwo.coverscreen. *
com.google.ads.*
com.huntmads.admobadaptor. *
com.inmobi.androidsdk.*

com. jumptab.adtag.*
com.millenniamedia.android.*
com.mobfox.adapter.*

Fig. 19 Advertisement libraries included in the application

code-hiding tools in the experiment, we used Bangcle, the
most commonly used packer in the Android market, and
DexProtector, the highest-performing binary code protec-
tor, as subjects. Through structural analysis, we were able
to identify characteristics and fundamentals of the shield-
ing method for each tool and were successful in extracting
the original code that causes malicious behavior from all
of the tested malicious apps. We predict that such an anal-
ysis method will be used as a foundational technique to
quickly detect and counteract mobile malware, which is
the core security risk factor in the proliferation of IoT
service.

It should be noted that, if the shielding methods ana-
lyzed in this paper are conversely used to protect code
in normal apps, they could be used to act on the apps’
weaknesses. Therefore, further investigation is required
on secure code-hiding methods to prevent such reverse
engineering.

Endnote

Note that we speculate that the reason for recompres-
sion after loading the original classes.dex is to prevent
reverse engineering analysis of the folder saved in the
temporary folder.
Acknowledgements
This research was supported by the Global Research Laboratory (GRL) program

through the National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT, and Future Planning (NRF-2014K1A1A2043029).

Competing interests
The authors declare that they have no competing interests.

Received: 2 April 2016 Accepted: 6 September 2016
Published online: 15 September 2016

References

1. JGubbi, R Buyya, S Marusic, M Palaniswami, Internet of things (iot): A
vision, architectural elements, and future directions. Future Generation
Comput. Syst. 29(7), 1645-1660 (2013)

Lim and Yi EURASIP Journal on Wireless Communications and Networking (2016) 2016:221 Page 12 of 12

2. AKitana, | Traore, | Woungang, Impact study of a mobile botnet over LTE
networks. J. Internet Serv. Inform. Secur. 6(2), 1-22 (2016)

3. Hacking accident. https://blog.kaspersky.com/tesla-s-hacked-and-
patched/9516/. Accessed 21 Jan 2016

4. JPark, HKim, Y Jeong, S-J Cho, S Han, M Park, Effects of code obfuscation
on android app similarity analysis. J. Wireless Mobile Netw. Ubiquitous
Comput. Dependable Appl. 6(4), 86-98 (2015)

5. Bangcle. http//www.bangcle.com

6. DexProtector. https://dexprotector.com/

7. A Design, Android open source project (2012). https://developer.android.
com/design/index.html. Accessed 28 Jan 2016

8. BRashidi, C Fung, A survey of android security threats and defenses. J.
Wireless Mobile Netw. Ubiquitous Comput. Dependable Appl. 6,4-10
(2015)

9. APKfile. https://developer.android.com/tools/building/index.html

10. D Barrera, J Clark, D McCarney, PC van Oorschot, in Proceedings of the
Second ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices. Understanding and improving app installation security
mechanisms through empirical analysis of android (ACM, New York,
2012), pp. 81-92

11. WEnck, D Octeau, P McDaniel, S Chaudhuri, in Proceedings of the 20th
USENIX Security Symposium (USENIX Security 11). A study of android
application security (USENIX, Berkeley, 2011), pp. 21-21

12, J-H Jung, JY Kim, H-C Lee, JH Yi, Repackaging attack on android banking
applications and its countermeasures. Wireless Pers. Commun. 73(4),
1421-1437 (2013)

13. SW Park, JH Yi, Multiple device login attacks and countermeasures of
mobile VoIP apps on android. J. Internet Serv. Inform. Secur. 4(4), 115-126
(2014)

14. CLinn, S Debray, in Proceedings of the 10th ACM Conference on Computer
and Communications Security. Obfuscation of executable code to improve
resistance to static disassembly (ACM, New York, 2003), pp. 290-299

15. baksmali. http://code.google.com/p/smali/. Accessed 13 Feb 2016

16. dedexer. http://sourceforge.net/projects/dedexer/. Accessed 3 Mar 2016

17. apktoolkit. http://ibotpeaches.github.io/Apktool/. Accessed 8 Mar 2016

18. smali. https://code.google.com/p/smali/. Accessed 15 Feb 2016

19. Bytecode. https://source.android.com/devices/tech/dalvik/dalvik-
bytecode.html

20. dex2jar. http://code.google.com/p/dex2jar/. Accessed 28 Feb 2016

21. JEB. http://www.android-decompiler.com/. Accessed 24 Mar 2016

22. IDA. http://www.hex-rays.com. Accessed 27 Mar 2016

23. LK Yan, HYin, in Presented as Part of the 21st USENIX Security Symposium
(USENIX Security 12). Droidscope: seamlessly reconstructing the OS and
Dalvik semantic views for dynamic android malware analysis, (Berkeley,
2012), pp. 569-584

24. AppUse. https://appsec-labs.com/AppUse. Accessed 18 Feb 2016

25. P Lantz, A Desnos, K Yang, DroidBox: Android application sandbox (2012).
https://code.google.com/archive/p/droidbox/. Accessed 2 Mar 2016

26. R Stallman, R Pesch, S Shebs, et al, Debugging with GDB. https://
sourceware.org/gdb/onlinedocs/gdb. Accessed 24 Feb 2016

27. HCho, J Lim, H Kim, JHYi, Anti-debugging scheme for protecting mobile
apps on android platform. J. Supercomputing. 72(1), 232-246 (2016)

28. RYu,in Proceedings of the Virus Bulletin Conference (VB'14). Android packer
facing the challenges, building solutions, (Abingdon, 2014), pp. 266-275

29. DKim, J Kwak, J Ryou, Dwroiddump: Executable code extraction from
android applications for malware analysis. Int J Distrib Sensor Netw. 11(9)
(2015). Article ID: 379682 : . : 0]

30. Contagio. http://contagiodump.blogspot.kr/. Accessed 31 Mar 2016 Submit your manuscrlpt toa Sp"ngeropen

31. VirusShare. https://virusshare.com/. Accessed 31 Mar 2016 journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://blog.kaspersky.com/tesla-s-hacked-and-patched/9516/
https://blog.kaspersky.com/tesla-s-hacked-and-patched/9516/
http://www.bangcle.com
https://dexprotector.com/
https://developer. android. com/design/index. html
https://developer. android. com/design/index. html
https://developer.android.com/tools/building/index.html
http://code.google.com/p/smali/
http://sourceforge.net/projects/dedexer/
http://ibotpeaches.github.io/Apktool/
https://code.google.com/p/smali/
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://code.google.com/p/dex2jar/
http://www.android-decompiler.com/
http://www.hex-rays.com
https://appsec-labs.com/AppUse
https://code.google.com/archive/p/droidbox/
https://sourceware.org/gdb/onlinedocs/gdb
https://sourceware.org/gdb/onlinedocs/gdb
http://contagiodump.blogspot.kr/
https://virusshare.com/

	Abstract
	Keywords

	Introduction
	Related works
	Repackaging attacks
	Mobile code packing
	Mobile code reverse engineering

	Structural analysis on Bangcle
	Packing
	Unpacking
	Anti-debugging
	Code extraction

	Structural analysis on DexProtector
	Encryption
	Decryption
	Code extraction

	Experiments
	Target app selection
	Experimental setup
	Experimental results

	Conclusions
	Acknowledgements
	Competing interests
	References

