
Kim et al. EURASIP Journal on Wireless
Communications and Networking (2016) 2016:233
DOI 10.1186/s13638-016-0729-7
RESEARCH Open Access
Secure user authentication based on the
trusted platform for mobile devices

GeonLyang Kim* , JaeDeok Lim and JeongNyeo Kim*
Abstract

In recent years, the use of mobile devices including smartphones has increased significantly all over the world, and
e-commerce using smartphones has also greatly increased. Furthermore, many people are using their smartphones
to carry out certain aspects of their work according to the BYOD trend. Therefore, it is extremely important that
mobile device users are authenticated securely by remote servers when using their smartphones. Digital certificates
are one of the many solutions available for authentication, but they are easy to copy and leak. Mobile device
services need to properly manage registered devices and users, and trusted means of authenticating their identities
are needed. In this paper, we propose a secure certificate-based user authentication framework using the trusted
mobile zone (TMZ) system into which the trusted platform is built. The TMZ system is a secure mobile device into
which a hypervisor is built on the mobile device, and in which the hypervisor separates the mobile device into a
normal zone and a secure zone. Android OS operates in the normal zone on the TMZ systems, and secure OS is
run in the secure zone at the same time. The trusted platform is built in the normal zone and the secure zone in
order to provide the user with secure services. In this paper, we propose a TMZ system founded on the TEE system
of the global platform. The TMZ system provides a secure execution environment in which to store sensitive data
and execute security functions securely. In conclusion, we describe the experimental results of generating the
signature data in the TMZ system.
1 Introduction
The use of smartphones has increased dramatically in
the last few years. Indeed, the report of Strategy Analytics
stated that universal smartphone shipments had increased
by 12 % each year, reaching the record figure of 1.4 billion
units in 2015 [1]. The IDC study published a report on
global smartphone shipments over the next 5 years, pre-
dicting that worldwide smartphone shipments will hit a
record 1.86 billion units by 2019 [2].
The use of mobile devices such as smartphones, lap-

tops, and tablets has increased significantly and the con-
cept of cloud computing has emerged, coming under the
spotlight as a latent technology [3]. Mobile cloud com-
puting technology enables cloud computing in the mo-
bile environment and tries to resolve various problems
related to security, performance, and environment
among others. Cloud computing in the mobile environ-
ment is threatened by various forms of cyber attack such
* Correspondence: glkim@etri.re.kr; jnkim@etri.re.kr
Information Security Research Division, Electronics and Telecommunications
Research Institute, Daejeon, South Korea

© 2016 The Author(s). Open Access This article
International License (http://creativecommons.o
reproduction in any medium, provided you giv
the Creative Commons license, and indicate if
as malware, spyware, and viruses because mobile devices
are linked to the network and widely used. Thus, the se-
curity requirements for mobile devices have been in-
creasing in line with the progress of mobile cloud
computing. Numerous studies about mobile security pro-
grams for trusted mobile cloud computing have been car-
ried out [4–7], while virtualization technologies for cloud
computing have attracted the attention of the IT industry
and the business world.
A lot of organizations would like to introduce bring

your own device (BYOD) whereby employees utilize
their privately owned smart devices at work. However,
there are extremely significant challenges as employees
very often use their own smart devices at work; and
interest in how to prevent the leakage of security data of
their enterprises from malicious applications or codes
has grown considerably. Many organizations are now
looking at mobile virtualization as a solution to the
significant challenges posed by the BYOD culture. By
concurrently running two operating systems on a smart-
phone, one can execute personal apps and services in
is distributed under the terms of the Creative Commons Attribution 4.0
rg/licenses/by/4.0/), which permits unrestricted use, distribution, and
e appropriate credit to the original author(s) and the source, provide a link to
changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-016-0729-7&domain=pdf
http://orcid.org/0000-0003-3821-3151
mailto:glkim@etri.re.kr
mailto:jnkim@etri.re.kr
http://creativecommons.org/licenses/by/4.0/

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 2 of 15
one OS and business services in a more secure OS that
is isolated from it.
Researchers have already confirmed the great charac-

teristics of virtualization technologies from the security
perspective. The most notable characteristic is a feature
that ensures isolation between virtual machines that are
run concurrently on the same physical system [4], and
the isolation of the hypervisor responsible for managing
the virtual machines from the virtualized operating sys-
tems. The perfect isolation of the virtual machines and
the hypervisor managing them provides a secure frame-
work in which the security system continues to run cor-
rectly even when numerous malicious codes exist in the
virtual machines.
Since the development of mobile communications and

the dissemination of mobile devices have rapidly grown
and the services based on mobility have been increased,
the authentication of users or mobile devices in mobile
networks is very important. Traditional authentication
methods such as the username and password are used in
many cases of user authentication by a remote authen-
tication server. But there are drawbacks to using
password-based authentication. For example, the au-
thentication system requires long and complex pass-
words to prevent attackers from cracking or guessing
them. In addition, it makes it more difficult for users
to recall their passwords. This raises the possibility
that the users will not manage their passwords securely
and may easily reveal them to attackers. There are lots
of password threats, such as password capturing, pass-
word guessing, password cracking, and password re-
placing [8]. The move to a system of password-free
login using biometric authenticators is being acceler-
ated through standardization by the FIDO Alliance.
Recently, the ARM TrustZone-based Trusted Execution
Environment (TEE) was designed to deliver enhanced se-
curity from scalable software attacks and common hard-
ware attacks at a lower cost to the market, and to provide
solutions for the FIDO security requirements, such as to
ensure the integrity of the device, to keep key material
confidential from unauthorized access, to maintain the
confidentiality and integrity of sensitive processes, to
maintain the confidentiality of sensitive input data, and to
protect sensitive display data [9].
The RADIUS protocol encrypts and transmits user

passwords between the client and the RADIUS server in
order to eliminate the possibility of user passwords being
exposed, although it might not offer sufficient security
for user passwords [10]. The use of user passwords on
networks where there are many threats always carries
with it the possibility that the passwords will be exposed.
The Transport Layer Security (TLS) protocol uses the
X.509 certificate to authenticate the client and the server
[11]. As such, it needs a method of management that
will protect the certificate file and the private key pair
securely. For certificate-based authentication of the users
or mobile devices in mobile network environments, be-
cause the certificate and the private key pair are fre-
quently spill due to the vulnerabilities of mobile devices,
the theft and misuse of the certificate pairs can under-
mine the trust of certificate-based authentication. There-
fore, a method is needed to increase the reliability of the
authentication process.
In this paper, we describe a TEE-based Trusted Mobile

Zone (TMZ) system that builds the trusted platform into
mobile devices using virtualization technology, and propose
a secure certificate-based user authentication framework
using the TMZ system that can increase the reliability of
the authentication process performed for mobile devices
in mobile networks. The TMZ system with trusted plat-
form is a good solution to enhance mobility management
security. The protection of the private key through hard-
ware such as TrustZone or HSM can provide more secure
authentication, but the TMZ system coupled with the
trusted platform provides a structure that increases the
strength of security through software only, without the
cost of additional hardware.

2 Background
2.1 Assurance level of certificate-based user
authentication
The NIST published SP 800-63, which offers technical
guidelines for federal agencies that are developing elec-
tronic authentication. It describes the authentication of
remote internet-based users such as employees or of
private individuals attempting to connect with the IT
systems of government organizations over open net-
works. It also describes the technical requirements for
each of four levels of assurance in the fields of authenti-
cation protocols, identity proofing, management pro-
cesses, and so on. The SP 800-63 guidelines make up for
OMB guidance, serving as e-authentication guidance for
federal agencies. The OMB guidance describes the defin-
ition of the required level of authentication assurance re-
lated to the risks from an authentication error, provides
the criteria for deciding the level of e-authentication as-
surance demanded for specific applications and transac-
tions for organizations, founded on their risks and their
possibility of occurrence, and also provides the technical
requirements for choosing the authentication solutions
using the risk assessment. The OMB guidance describes
briefly a five-step process by which organizations should
decide their levels of e-authentication assurance. The
NIST published SP 800-63 to provide guidelines on imple-
menting the third step [12].

Step 1. Conduct a risk assessment of the government
system.

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 3 of 15
Step 2. Map the identified risks to the appropriate
assurance level.
Step 3. Select the technology based on e-authentication
technical guidance.
Step 4. Confirm whether the implemented system has
met the required assurance level.
Step 5. Periodically reassess the information system to
determine the technology refresh requirements.

Organizations can choose e-authentication technolo-
gies that satisfy the requirements of the necessary assur-
ance level after conducting a risk assessment for the
target system and comparing the identified risks of the
target system and the appropriate assurance level. OMB
guidance describes the definition for each of four assur-
ance levels, of which level 1 is the highest and level 4
the lowest level of assurance. The traditional mode of
authentication system asserts the following three ele-
ments as the foundation of authentication: “something
you know,” “something you have,” and “something you
are”. The first of these, “something you know,” is the
knowledge factor (e.g., a password, a PIN), while “some-
thing you have” is the possession factor (e.g. an ID badge
or cryptographic key) and “something you are” is the in-
herence factor (a fingerprint, other biometric data).
Multi-factor authentication refers to the utilization of

more than one of the three elements mentioned above
[12]. The strength of the authentication system is primar-
ily determined by the number of elements integrated by
the system. For example, systems integrating two elements
are regarded as being stronger than those which utilize
only one element, and systems that integrate all three
elements are stronger than those which only integrate two
elements. It is not multi-factorial authentication that the
“something you know” includes several things.
A cryptographic key is saved on a disk or on other

media and needs to be triggered through the possession
factor of authentication in order to utilize it. The authenti-
cation is achieved by attesting possession and control of
the key. The authenticator is extremely dependent on the
specific cryptographic paradigm, but it is generally some
type of signed message. For instance, the multi-factor soft-
ware cryptographic token is the possession factor in a
“certificate verify” message of the TLS protocol, and the
token can be triggered by the knowledge factor or the in-
herence factor.
Among the four assurance levels of the OMB guid-

ance, level 3 offers multi-factor authentication on re-
mote network-based IT systems, demanding at least
two elements of authentication. Authentication is
founded on attestation of the possession of authentica-
tion tokens through a cryptographic paradigm. It de-
mands cryptographic strength paradigms that preserve
the authentication tokens against not only all the
threats at level 2 but also against verifier imperson-
ation attacks.
The uses of electronic transactions on smartphones

have increased significantly, and the certificate-based
electronic signature authorization system is built by
using the public key infrastructure (PKI) for secure in-
formation transmission and identification, and then the
service provider. In this paper, we describe the secure
certificate-based user authentication method. The certifi-
cate is a multi-factorial software cryptographic token;
and, in this respect, certificate-based user authentication
can be called “multi-factorial authentication” because
the user has the certificate file and knows the password
required to decrypt the private key [12, 13].
“Something you have,” as the second authentication

factor, means that the user has to have a hardware type
(e.g., OTP device) or software type (e.g., digital certifi-
cate) of authentication token. The hardware type of
token offers low portability and convenience because the
user owns the physical form, whereas the software type
of token can compensate for the former’s disadvantage
of low portability and convenience. That said, as it is
stored in a logical form, it has the drawback of carrying
a high risk of leakage.

2.2 Trusted Execution Environment
The TMZ system is designed based on the TEE system
of the global platform and implements the secure zone
as software. The TMZ system constructs the secure
zone and the normal zone in smart mobile devices
through hypervisor technologies. The android OS runs
in the normal zone, and the secure OS runs in the se-
cure zone, which is separated from the normal zone.
The TMZ system blocks the leakage of data from the
secure zone.
ARM works together with numerous cooperative rela-

tionships and industry forum committees to carry for-
ward the standards. ARM has joined hands with the
global platform in order to standardize security and cer-
tification [14, 15]. In fact, the global platform sets the
definition of the TEE client API and the TEE internal
API back in 2010 and 2011, but the TEE functional API
has not yet been defined [16–18].
The TEE software architecture is designed so that the

trusted applications offer separated and reliable capabil-
ities that can be used by service providers via the client
applications [19]. The relationship between the major
software systems components is outlined in the block
architecture as shown in Fig. 1. The TEE is an isolated
and secure execution environment that operates with
the rich OS concurrently and provides trustworthy ser-
vices to the client applications in that environment. The
TEE exposes sets of APIs to enable communication from
the rational expectations equilibrium (REE) and others

Fig. 1 TEE software architecture

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 4 of 15
to guarantee the functionality of the trusted application
software within the TEE [19].
The TEE functional API will offer to the client applica-

tions various REE software interfaces that will be the
programming interfaces dedicated to exposing inbuilt
TEE capabilities for the client application developers
[19]. The TEE client API executes efficient communica-
tions between client applications and trusted applica-
tions [17]. The client applications of REE can access the
TEE components and exchange data with the trusted ap-
plications of TEE through the TEE client API as a low-
level communication interface. The REE communication
agent provides REE support for messaging between the
client application and the trusted application.
The Trusted Core Framework provides the OS like

functionality to trusted applications, while the trusted
functions provide support facilities for application de-
velopers. Both the trusted functions and the Trusted
Core Framework make use of the scheduling function
and other OS management functions provided by the
Trusted Kernel [19]. The TEE communication agent is
a special case of a Trusted Core Framework function
API. It works with its peer, the REE communication
agent, to safely transfer messages between the CA and
the TA. The trusted applications interface to the rest of
the system via the APIs exposed by trusted OS compo-
nents. The TEE internal API defines the fundamental
software capabilities of a TEE [18]. Other APIs may be
defined to support interface to further proprietary
trusted functions.
When a client application creates a session with a

trusted application, it connects to an “Instance” of that
trusted application. A trusted application instance has a
physical memory space which is separated from the
physical memory space of all the other trusted applica-
tion instances. A session is used to logically connect
multiple commands invoked in a trusted application.
Each session has its own state, which typically contains
the session context and the context of the task executing
the session.

2.3 Mobile virtualization: hypervisor
In recent years, many mobile virtualization technologies
have progressed to the point where they can handle the
policy configuration for detailed mobile device manage-
ment and the complete separation of containers using
the hypervisor, which is also called a virtual machine
monitor. The hypervisor is a thin layer of codes that al-
lows several virtual machines to run concurrently on a
single physical computer. It utilizes low-level codes in
software or firmware to allocate the resources of a phys-
ical computer to several virtual machines in real time.
The hypervisor exists in two forms, type 1 and type 2, as
shown in Fig. 2. Type 1 supports hardware virtualization
because it runs directly on the hardware, while type 2
performs software virtualization because it runs as
an application on the top of a host operating system
environment.
The type 1 hypervisor operates on the next above the

hardware of mobile devices. Thus, it can access hard-
ware resources such as CPU or USIM directly. It is
sometimes called a “native hypervisor” or a “bare metal
hypervisor”. The type 1 hypervisor can control several
virtual machines and offers complete isolation and se-
curity functions compared to others of its kind. As such,
a mobile device based on the type 1 hypervisor can
optimize the performance of each of the virtual ma-
chines. As for the type 2 hypervisor, it runs as an appli-
cation on top of the host mobile operating system
environment at the second level and on the guest oper-
ation systems that operate on the next above the type 2
hypervisor. The performance and compromise of the

Fig. 2 Hypervisor types

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 5 of 15
guest OS are heavily dependent on the host OS. It is in-
herently less secure and may run slower than native apps
because it does not work at the hardware level. The
hypervisor technology has a drawback in that it has to
be partnered and perform the work with OEMs. Re-
cently, many smartphones have not been able to offer
the hardware level of virtualization [20].

3 Proposed framework
3.1 Trusted mobile zone system
The TMZ system architecture described in this paper is
similar to the TEE system architecture [19], and the se-
cure zone of TMZ system is embodied in the software
rather than the hardware. The following Fig. 3 depicts
the architecture of the TMZ system.
The TMZ system separates the normal zone and secure

zone through the hypervisor as shown in Fig. 3. In
addition, the system builds the trusted platform consisting
Fig. 3 TMZ system architecture
of the normal zone and the secure zone on smart mobile
devices. The trusted platform, which consists of the AC
agent, NZ-security API, TCM API, NZ communication
agent, SZ communication agent, SZ-security API, and se-
cure functions, ensures that the services requested from
the security applications in the normal zone are securely
executed in the secure zone. We call a smart mobile de-
vice in which the secure zone is isolated from the normal
zone and which is equipped with the trusted platform the
TMZ system.
The open OS runs in the normal zone, while the se-

cure OS runs concurrently in the secure zone isolated
from the normal zone. The open OS of the TMZ system
is Android OS. The trusted platform of the normal zone
consists of the AC agent, NZ-security API, TCM API,
and NZ communication agent, whereas the trusted plat-
form of the secure zone consists of the SZ communica-
tion agent, SZ-security API, and secure functions. If we

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 6 of 15
compare the architectures of the TMZ system and the
TEE system, the NZ-security API of the TMZ system
may be mapped to the TEE functional API of the TEE
system. The client application and the trusted applica-
tion may be mapped to the security application in the
normal zone and the security application in the secure
zone. The secure functions, SZ-security API, SZ com-
munication agent, NZ communication agent, and TCM
API may be mapped to the trusted functions, TEE
internal API, TEE communication agent, REE communi-
cation agent, and TEE client API. The AC agent exists
only in the TMZ system and not at all in the TEE
system.
Each trusted application exposes a TA interface.

Trusted core framework implementation calls the TA
interface to relay communication between the client ap-
plication and the trusted application. Once the trusted
core framework has called one of the TA entry points,
the TA can make use of the TEE internal API to access
the facilities of the trusted OS. The TEE internal API
consists of the trusted core framework API, trusted stor-
age API for data and keys, cryptographic operations API,
time API, and TEE arithmetical API [19]. The TA inter-
face is a subgroup of the trusted core framework API.
The TEE internal API can be said to consist of the TA
interface and other APIs to access the facilities of the
trusted OS. If the client application in the normal zone
requests secure services through the REE communica-
tion agent, the trusted core framework implementation
calls the TA interface, and the TA may use the TEE in-
ternal API to access the facilities of the trusted OS, in-
cluding the trusted functions.
Now, the TMZ system does not consider security

applications in the secure zone. So, the TMZ system has
no SZ-security API for security applications of the
secure zone mapped as the TA interface for the trusted
application of the TEE system. In other words, when se-
curity applications of the normal zone request the secure
services through the NZ communication agent, secure
OS components do not call the interface of the security
application in the secure zone but rather the SZ-security
API in order to access the facilities of the secure, OS
including the secure functions.
The security applications of the normal zone (required

to use the secure functions of the secure zone are ac-
cessible only through the NZ-security API. The trusted
platform of the TMZ system is independent on the
hypervisor type. ETRI’s VIMO has the type 1 and type 2
hypervisors. The type 1 hypervisor is more secure than
the type 2 hypervisor, but the former is less flexible than
the latter because it is easily ported and built, depending
on the upgrade of the Android OS. We built the trusted
platform in the TMZ system, with VIMO included, like
ETRI’s type 2 hypervisor built into the Galaxy S3, and
installed the μC/OS-II as a secure OS in the secure
zone. However, we have been unable to install and oper-
ate security applications in the secure zone up to the
present time.
The security applications of the normal zone offer

users secure services using the secure functions of the
secure zone, unlike other applications of the normal
zone. The security applications of the normal zone use
the NZ-security API to access the secure functions of
the secure zone and transmit requests into the secure
zone through the TCM API and the NZ communication
agent. The NZ communication agent calls the secure
functions through the SZ communication agent and the
SZ-security API, receives the return value of the SZ-
security API from the SZ communication agent, and
transmits it to the security applications of the normal
zone through the NZ communication agent. In this
paper, we do not consider ways of protecting the sensi-
tive data of security applications from the malicious code
in the normal zone. Methods of protecting the sensitive
data of security applications—such as reverse engineering
prevention, forgery prevention, and code obfuscation—are
needed because the sensitive data transmitted from
the NZ-security API through the encrypted channel
are decrypted at security applications, and the data
thus decrypted are then provided to the user while he
is using the secure services. The sensitive data of the
security applications include the encryption keys for
encrypting channels between the normal zone and the
secure zone. Such encryption keys are created in the
secure zone and shared between the normal zone and
the secure zone before distributing them to the TMZ
systems. We are currently designing a key management
mechanism that creates and exchanges new encryption
keys for new sessions between the normal zone and the
secure zone.
When the security application of the normal zone calls

the NZ-security API in order to use the secure functions
of the secure zone, the procedure of the TMZ system is
as follows: first, the NZ-security API calls the TCM API
with the access control data created by the AC agent.
Then, the TCM API transforms the request data into the
encrypted message and sends it to the NZ communica-
tion agent, which then transfers the encrypted message
to the SZ communication agent through the connected
channel between the normal zone and the secure zone.
The SZ communication agent calls the secure functions
in order to check whether the security application and
the user triggering the security application have the ac-
cess rights for the secure zone. If the security application
and the user do not have access rights, the SZ commu-
nication agent closes the sessions of the security applica-
tions and the user in order to block access to the secure
zone. If the security applications and the user do have

(

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 7 of 15
access rights, however, the SZ communication agent
calls the SZ-security API in order to use the secure func-
tions of the secure zone and returns the result value for
the secure functions. The components of the trusted
platform in the TMZ system are described as follows:

(i) AC agent
(

(

(

(

(

When the security applications access the secure
zone, the SZ communication agent of the secure
zone needs the access control-related data in order
to determine whether or not to block access to the
security applications. The AC agent generates the
data needed for access control of the security
applications, and the NZ-security API transfers the
requests for the security applications to the TCM
API with them.

ii) NZ-security API
The NZ-security API is mapped to the TEE
functional API of TEE system. The NZ-security API
provides the security applications with a set of
OS-friendly API in the normal zone. The developers
of the security applications in the normal zone can
implement TMZ-based secure services with the
NZ-security API. The NZ-security API transmits the
requests of the security applications to the TCM API
with the access control-related data generated by the
AC agent. The definition of the TEE functional API
is a task of the global platform TEE deliverables
roadmap and has not yet been defined. The NZ-
security API, as TEE functional API of TEE system,
is described in the next chapter of this paper.

iii)TCM API
The TCM API is mapped to the TEE client API of
the TEE system. The TCM API transforms the
format of the data transferred from the security
applications and the NZ-security API and generates
messages in order to transmit them to the secure
zone. The TCM API encrypts the messages before
sending them to the secure one through the NZ
communication agent.

iv)NZ communication agent
The NZ communication agent is mapped to the REE
communication agent of the TEE system. The NZ
communication agent requests the creation of the
channels and sessions of the security applications to
the secure zone in order to communicate with the
secure zone, manages the multi-channels, and
manages the concurrent connections of multiple
security applications.

v) SZ communication agent
The SZ communication agent is mapped to the TEE
communication agent of the TEE system. The SZ
communication agent manages the security sessions
for multiple security applications, controls access to
the applications according to the authentication
results of the applications and users, and manages
the communication messages in order to transfer
the results of the secure functions to the normal
zone. It encrypts the communication messages
before sending them to the normal zone.

vi) SZ-security API
The SZ-security API is mapped to the TEE internal
API of the TEE system. The SZ-security API
provides a set of OS-friendly APIs for the security
applications in the secure zone. The developers of
the security applications in the secure zone can
implement TMZ-based secure services with the
SZ-security API. However, the TMZ system does
not consider the security applications in the secure
zone. When the security applications of the normal
zone request secure services through the NZ
communication agent, the secure OS components
do not call the interface of the security application
in the secure zone, but rather the SZ-security API,
which provides secure services for the security
applications of the normal zone by calling the secure
functions in the secure zone.

vii)Secure functions
The secure functions consist of the access control
function, encryption and key management function,
and data management function. The security data
(e.g., the private key) and security process (e.g.,
signature generation) are safe because the secure
functions are carried out in the secure zone where,
unlike the normal zone, there are no threats such as
malware, spyware, viruses, and so like. Detailed
descriptions of the secure functions are provided as
follows:
a) Access control function
This function executes the authentication of
applications and users that attempt to access the
secure zone and controls their access. When
authentication of the applications or users fail or
when they do not have access rights for the file
data, this function returns the failure value to the
normal zone and the SZ communication agent
blocks their access to the secure zone. This access
control function is executed in the secure zone
according to access control policies that are stored
in the secure zone. This function calls the data
management function in order to gain the access
control policies.

b) Encryption and key management function
This encryption and key management function
carries out the encryption or decryption of
sensitive data transmitted from the normal zone
through the white-box cryptography table, generates
the signature data using the private key stored in the

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 8 of 15
secure zone, and so on. It also executes the functions
for managing the encryption key and the seed value
in order to generate the encryption key. This
function supports various encryption algorithms,
modes of operation, and the hash algorithms. The
sensitive data transferred from the normal zone are
stored after encryption in the secure zone. When
the security applications in the normal zone request
the sensitive data of the secure zone, the data stored
in the secure zone are transmitted to the normal
zone after decrypting.

c) Data management function
This function manages file data such as the
insertion, updating, and deletion of security data
transmitted from the normal zone securely. This
function calls the encryption and key
management function for the encryption/
decryption of file data and calls the access
control function to check the access rights of
applications and users. All data transmitted
from the normal zone are encrypted by the white-
box cryptography table and stored in the form of
files in the secure zone. The seed for
generating the encryption key is stored in the file
metadata. When the security data are stored in
the secure zone, the hash value of each file is
generated by the hash functions and the information
of the file data, including the hash value, is recorded
in the file metadata. In addition, the integrity of the
file data is verified whenever the file is read.

d) The data management function
This is called from the normal zone in order to
store the certificate file and the private key file
securely in the secure zone, and the data
management function calls the encryption and key
management function in order to encrypt them.
The encryption and key management function is
called from the normal zone in order to generate
the signature data, and the encryption and key
management function calls the data management
function in order to get the private key. The
private key is provided after checking its integrity
and decrypting it.
If the private key is managed in the normal zone
where numerous threats exist, the possibility of leakage
of the private key is very high because the private key file
can be copied easily. As such, the trusted platform of
the TMZ system provides a separate structure that in-
creases the strength of the security. The private key is
stored in the secure zone isolated from the normal zone
after encrypting it through the white-box cryptography
table stored in the secure zone, and the signature data
are also created in the secure zone using the private key
that was decrypted through the white-box cryptography
table. The private key is safe because the encryption key
exists with the algorithm of the white-box cryptography
table in the secure zone, and the private key is stored
after encrypting it through the white-box cryptography
table in the secure zone.
Malicious applications or users may try to access to

the secure zone in order to leak the sensitive data stored
inside it. A secure channel of communication between
an application of the normal zone and the secure zone is
established upon the successful completion of the two-
step authentication of an application and a user. The
trusted platform always checks the access rights of all
the applications that call the ND-security API to use the
secure zone and can execute user authentication at the
time it is required. The trusted platform of the TMZ sys-
tem can prevent the leakage of sensitive data such as the
private key, because it blocks the access of malicious ap-
plications or unauthorized users through the two-step
authentications of applications and users.

3.2 The definition of NZ-security API as TEE functional API
We define the NZ-security API in the TMZ system as
the TEE functional API of the TEE system. The NZ-
security API is called for security applications of the nor-
mal zone in order to make use of the secure functions of
the secure zone. The NZ-security API of the TMZ sys-
tem is classified into five groups, i.e., session manage-
ment API, access control API, file management API,
data encryption API, and signature management API.
The descriptions of the NZ-security API groups are as
follows [21]:

(i) Session management API

The channel means a logical connection between a
security application of the normal zone and the
secure functions of the secure zone and is assigned
to all applications of the normal zone that are going
to communicate with the secure zone. The security
applications of the normal zone request channel
creation to the secure zone with the access control
data generated by the AC agent through the session
management API in order to make use of the
secure functions of the secure zone. The session is
needed in order to communicate securely between
the normal zone and the secure zone. The session is
generated after the creation of the channel and the
successful authentication of the user who triggers
the security application. The security applications
of the normal zone call the session management
API with the user’s input data (e.g., PIN,
fingerprint) for user authentication. Upon the
completion of the channel and the session between
the normal zone and the secure zone, the security

(

(

(

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 9 of 15
applications can take advantage of other NZ-security
APIs.

ii) Access control API
The access control API is an API group for
authenticating the user who triggers the security
application when the security application of the
normal zone seeks access to the secure zone. This
access control API is similar to the session
management API in that the security applications
call in order to generate a secure session between
the normal zone and the secure zone. This access
control API is also called with the user’s input data
for user authentication by the security applications.
If the failure result received by the access control
API from the secure zone is repeated several times
because the user’s input data are wrong or another
such reason, the SZ communication agent may
block the secure session between the normal zone
and the secure zone according to the access control
policy stored in the secure zone, whereupon the
security application of the normal zone will not be
able to access the secure zone.

iii)File management API
The file management API executes the function of
managing data or files that are stored in the secure
zone. The file management API consists of the file
insertion API, file update API, file search API, file
size search API, file list search API, and file deletion
API among others. When the security applications
of the normal zone call the file management API in
order to store files in the secure zone, all the files
transmitted to the secure zone through the file
management API are stored in the secure zone after
encryption. And, when the security applications call
the file management API in order to search the files
in the secure zone, the files stored in the secure
zone are transferred to the security application of
the normal zone after decryption. Even if the
decrypted data are transferred from the secure zone
to the normal zone, they are safe because the session
between the NZ-security API of the normal zone
and the SZ communication agent of the secure zone
is secure.

iv)Data encryption API
The data encryption API has the ability to encrypt
or decrypt data transmitted from the security
applications of the normal zone, to create and
manage the encryption key or the decryption key,
to create and exchange public data in order to
share the same encryption key, and so on. The data
encryption API only performs the function of
encrypting or decrypting data and does not
perform the function of storing data. The data
encryption API is composed of the data encryption
API, data decryption API, key exchange API, and
so on.

(v)Signature management API
The signature management API group consists of the
APIs related to authentication between the security
application of the normal zone in the TMZ system
and a remote authentication server. It consists of
random number generation API, signature creation
API, and signature verification API. The private key
is required for signature generation in the TMZ
system, and the signature is verified by the remote
authentication server for the purpose of user
authentication. The public key is required for
signature verification of the mobile device, and the
process is necessary for the remote server’s
authentication. The public key and the private key,
both of which are required for the authentication
process, are managed through the data management
API.

3.3 Secure user authentication method
The TMZ system separates the normal zone and the se-
cure zone using the hypervisors and builds the trusted
platform in mobile devices. The TMZ system, including
the trusted platform, provides security applications with
a secure user authentication service within a secure exe-
cution environment that is isolated from the normal
zone, where numerous threats such as malware, spyware,
and viruses exist [22, 23]. The TMZ system provides se-
cure certificate-based user authentication that meets
level 3 of the e-authentication assurance levels.
Users store certificate files in a location that can be

accessed and copied easily. In addition, certificate files
carry a high risk of being taken over by a malicious code.
Thus, the private key should never be saved anywhere in
a plaintext form that is not encrypted [24]. The simplest
security method for protecting the private key is to en-
crypt it with passwords and to save the encrypted result.
However, the passwords may often be guessed very eas-
ily, while the private key can be decrypted very easily by
using the passwords. Thus, users should select their
passwords very cautiously. Some attacks are made more
difficult when the encrypted key is saved and managed
on the disk of a computer that cannot be accessed over
a network. The best way to do this is for users to save
and manage the encrypted key in a computer that can-
not be accessed by others or on a portable media that
they can separate and carry around with them after
completing the authentication procedure. Users who
require very strong security should use tamper-
resistant devices in order to manage their private key
securely.
Android OS, as the open platform, has been installed

in a large number of smart mobile devices. As such, it is

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 10 of 15
very important that the private key be protected securely
in mobile devices based on Android OS. If one suspects
that an attacker has stolen one’s private key file, then
one may also assume that the attacker is able to inter-
cept encrypted messages that arrive in accordance with
the corresponding public key [24] and counterfeit the
signature data of one’s documents while other people
recognize continuously the public key as one’s public
key. In this respect, leakage of the private key may give
rise to serious consequences. Thus, we can know that it
is vitally important that one’s private key be managed
securely once again.
Many studies on protection of the private key from

unauthorized access have been conducted or are under
way. When a certificate and a private key are stored, the
secure key store system encrypts the private key using
the encryption key dependent on the device and saves it
securely [25]. Even in the event that a private key is
leaked, the leaked private key cannot be utilized on other
devices. There is also a study on the use of a graphical
password to enhance password security when protecting
the private key derived from the password [26]. There is
another proposed scheme in which mobile agents can
create non-detachable digital signatures with the forward
security of the original signer’s private key [27]. It is not
necessary for mobile agents to transport the private key
in order to create digital signatures, and the private key
will not be compromised.
We use the Public Key Cryptography Standards #5

(PKCS#5) [13] to protect the private key. The user
Fig. 4 Secure user authentication procedure
inserts a password to decrypt the private key when gen-
erating signature data, and as it is necessary to protect
the password that a user inserts using a keyboard, the
TMZ system uses a secure keyboard.
We have developed the TMZ system in which the

trusted platform is built into mobile devices, and the
TMZ system performs the secure certificate-based user
authentication procedure with the authentication server
and the certificate validation server. Using random
number challenges and digital signatures eliminates the
need to transmit passwords for authentication, which in
turn reduces the threat of their being compromised.
Such a compromise would allow an attacker to use the
same information to authenticate himself repeatedly.
The procedure for certificate-based user and server au-
thentication is as shown in Fig. 4. In Fig. 4, we can see
the secure user authentication procedure using the
TMZ system.
At first, the TMZ system requests user authentication

to the authentication server (1), whereupon the authen-
tication server creates a random number challenge with
a value of RS (2), and transmits it to the TMZ system
(3). The value of RS is retained by the TMZ system.
The utilization of random number challenges in the

certificate-based user authentication procedure can
also block an attacker attempting to intercept the au-
thentication tokens, including the signature data cre-
ated by other users, and prevent the attacker from
using them successfully later on [28]. However, the
random number challenge should be newly created for

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 11 of 15
each authentication token exchange procedure. A se-
curity method for blocking replay attacks also depends
on the random number challenges that were created
repeatedly in the low probability. The TMZ system
uses the FIPS approved by the random number
generator.
The TMZ system retains the value of RS, creates a ran-

dom number challenge with a value of RM (4), generates
SignM(RM || RS) as the signature data of RM and RS (5)
by using the private key that is saved in the secure zone
securely, concatenates the data, attaches the CertM as
the certificate of the TMZ system, and transmits the
message M2 to the authentication server (6). It is the
most important to keep the user’s private key securely. If
the user fails to maintain the private key securely, it may
result in an attacker masquerading as the user by using
the user’s private key to sign the authentication token.
The private key is safe because it is encrypted and stored
in the secure zone, the integrity of the private key is
checked after decrypting, and the SignM(RM || RS) is
generated in the secure zone. By utilizing the private key
in order to create the signature data for the authentica-
tion token, it becomes almost impossible for an attacker
to masquerade as another user. Nevertheless, the TMZ
system still relies on passwords to decrypt and access
the private key [13]. Therefore, the password for
decrypting the private key based on PKCS#5 must be
kept secure. The TMZ system protects the password for
decrypting the private key through the secure keyboard
and APIs that prevent screen capture. It can also be pro-
tected more securely through the TMZ system into
which the type 1 hypervisor is built. Indeed, a TMZ sys-
tem into which the type1 hypervisor is built can provide
the user with more secure services by blocking the leak-
age of the private key than a system into which the type
2 hypervisor is built.
Pseudo code-1 is a pseudo code that performed on the

TMZ system in the user authentication procedure of
Fig. 4 (3) to (6). Pseudo code-1 is as follows:
The authentication server checks whether the value
of RS maintained in step (2) is identical to the value of
RS included in the message M2 transmitted from the
TMZ system (7) and also requests the validation of
CertM as the TMZ system’s certificate to the certificate
validation server (8). The certification validation server
carries out checks to determine whether the CRL in-
cludes the CertM, whether the validity date of CertM
has expired or not, whether the “KeyUsage” field of
CertM includes the “digitalSignature” value or not, and
whether the “Issuer” field of CertM has the DN of the
upper authority for the validation of the certificate or
the certificate chain (9) [29].
The authentication server verifies the signature data

SignM(RM || RS) received from the TMZ system after the
certificate validation server has validated the certificate
(10), generates SignS(RS || RM) as the signature data of RM

and RS (11), concatenates the data, attaches the CertS as
the certificate of the authentication server, and transmits
the messageM3 to the TMZ system (12).
The TMZ system checks whether the value of RM

maintained in step (4) is identical to the value of RM in-
cluded in the message M3 (13) and whether the value of
the RS searched from the message M1 is identical to the
value of the RS included in the message M3 (14). Then, it
requests the validation of CertS as the authentication
server’s certificate to the certificate validation server (15).
The certification validation server performs the validation
of the certificate or the certificate chain (16). The
validation of the certificate or the certificate chain in-
cludes verifying the signature data of each certificate in
the certificate chain and validating whether each certifi-
cate in the certificate chain has expired or been revoked
by their issuer. Finally, the TMZ system verifies the signa-
ture data SignS(RS || RM) received from the authentication
server (17).
Pseudo code-2 is a pseudo code that performed on the

TMZ system in the user authentication procedure of
Fig. 4 (12) to (17). Pseudo code-2 is as follows:

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 12 of 15
Figure 5 shows the screenshots of the user authentica-
tion request and the authentication process result in TMZ
system. When the user requests the authentication process
through the security application, the TMZ system prompts
you for your password. The user password is needed to de-
crypt the private key used to generate the signature data
by using the random data received from the authentication
Fig. 5 Screenshots of the user authentication in TMZ system
server and the random data generated from the secure do-
main. When the user enters a password, the TMZ system
generates the signature data and sends the random data
and the signed random data to the authentication server.
Then, the authentication server verifies the signed random
data with the random data and transmits the result of the
authentication process to the TMZ system.

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 13 of 15
4 Results of the experiment
We implemented the TMZ system perform to store the
private key file and to generate signature data securely
in the secure zone in order to prevent the illegal leakage
of the private key file. For this chapter, we measured the
performance for the KCDSA-based signature generation
in the TMZ system. We performed experiments on the
mobile device according to the specifications shown in
Table 1. We built the TMZ system, with VIMO included,
like ETRI’s type 2 hypervisor built into the Galaxy S3
and installed the μC/OS-II as a secure OS in the secure
zone.
Our experiments to measure the performance of sig-

nature generation were carried out in two ways, one in
the secure zone and the other in the normal zone based
on inter-domain communication (NZ communication
agent and SZ communication agent). The security appli-
cations of the normal zone requested the signature gen-
eration to the secure zone through inter-domain
communication and received the return value and the
signature data created from the secure zone through
inter-domain communication. Therefore, the perform-
ance measure experiment of signature generation in the
normal zone based on inter-domain communication is
required from the user’s point of view.
The first way concerns performance obtained only by

generating the signature data in the secure zone,
whereas the second way concerns the performance of
the overall system through inter-domain communication
from the secure zone to the normal zone. In the second
way, we measured inter-domain communication through
the normal channel and the encrypted channel, respect-
ively. We measured the performance of each way a total
of 20 times and calculated the average values for each.
The results of these performance measurements of sig-
nature generation based on the normal channel and
encrypted channel, and in the secure zone, are all shown
in Fig. 6. The performance times were measured in mi-
croseconds (μsec).
The average performance time value of signature gen-

eration through the normal channel is 1268 (μsec), the
average performance time value of signature generation
through the encrypted channel is 1425 (μsec), and in the
case of signature generation in the secure zone, it is
1245 (μsec). The difference in the value of signature
Table 1 Specifications of the experimental device

CPU Exynos4412 Cortex-A9 Quad-core 1.4GHz

RAM 2GB DDR2 SDRAM

Kernel version 3.0.31

Android version Android 4.1.2

Secure OS μC/OS-II

Hypervisor VIMO 1.0
generation by the normal channel and signature gener-
ation in the secure zone is about 23 (μsec). It can be the
overhead of inter-domain communication or the hyper-
visor; there is little overhead of inter-domain communi-
cation or hypervisor. Meanwhile, the difference in the
value of signature generation by the normal channel and
signature generation by the encrypted channel is about
157 (μsec), which can be said as the encryption overhead
of the inter-domain communication channel, and it is
large. Thus, it is considered that there is a need to im-
prove the performance of inter-domain communication
through the encrypted channel.

5 Usage cases
Figure 7 briefly depicts the EAP-TLS authentication pro-
cedure using the TMZ system. The EAP-TLS authentica-
tion procedure [30] is as follows. The TMZ system
initiates a TLS connection procedure by sending its iden-
tity (EAP-response/identity) to the EAP-TLS server. Then,
the mutual authentication procedure of the TLS connec-
tion procedure is executed by using the certificates of
TMZ system and EAP-TLS server. The TMZ system and
EAP-TLS server might share the TLS master secret
through the premaster secret value that the TMZ system
generates randomly. The TMZ system and EAP-TLS ser-
ver can generate the MSK (master session key) through
TLS master secret and the EAP-TLS server delivers the
MSK to the AP. The TMZ system and the AP generate an
encryption key (PTK/GTK) that is used in the wireless
section from the same MSK and initiates a secure data
communication after four-way handshaking process.
The EAP-TLS protocol provides the mutual authenti-

cation through the certificates of the mobile device and
the EAP-TLS Server, and the certificates are important
for the mutual authentication. When the certificate of
the mobile device is forged or deleted, the mobile device
authentication cannot be performed correctly. The TMZ
system can be used for the secure management of the
certificate of the mobile device.

6 Conclusions
As the utilization of smartphone devices has increased
greatly, individual smartphones are being widely utilized
for business purposes and e-commerce nowadays. As
such, a method of authenticating users securely with the
remote server is needed. As there is a user authentica-
tion solution based on digital certificates, in this study,
we propose a secure user authentication framework
based on digital certificates.
First, we described the architecture of the TEE-based

TMZ system and the components of the trusted plat-
form—such as the AC agent, NZ-security API, TCM
API, NZ communication agent, SZ communication
agent, SZ-security API, and secure functions. We also

Fig. 6 Results of the performance measurement of signature generation

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 14 of 15
defined the NZ-security API as the TEE functional API
of the TEE system, which is a part of the global platform
TEE deliverables roadmap.
The TMZ system constructs the normal zone and the

secure zone separately using virtualization technologies
Fig. 7 EAP-TLS authentication procedure
and builds the trusted platform into smartphone devices.
The TMZ system, including the trusted platform, pro-
vides a separate and secure execution environment that
is isolated from the normal zone, where there are many
threats to security applications. The TMZ system

Kim et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:233 Page 15 of 15
provides certificate-based user authentication securely
and meets level 3 of the e-authentication assurance
levels. The certificate is a multi-factor software crypto-
graphic token while certificate-based user authentication
is a multi-factorial authentication. But the digital certifi-
cate is a software-type token that is stored in a logical
form and thus has the drawback of carrying a high risk
of leakage. The TMZ system prevents the leakage of the
digital certificate through the trusted platform, and it
can also be protected more securely in a TMZ system
into which the type 1 hypervisor is built.
We described the secure certificate-based user authen-

tication procedure. The TMZ system performs secure
certificate-based user authentication based on the secure
zone with the authentication server and the certificate
validation server.
The use of random number challenges in the certificate-

based user authentication procedure can also block an at-
tacker’s attempts to intercept the authentication tokens,
including the signature data created by other users, and
prevent the attacker from reusing them successfully later
on. The TMZ system includes the secure zone, which is
isolated from the normal zone in which the open OS is in-
stalled, and the trusted platform, which is built into smart-
phone devices. The TMZ system based on the trusted
platform prevents the leakage of the private key because
the digital certificate and the private key pair are stored
and managed securely in the secure zone, and signature
generation using the private key is executed securely in
the secure zone. Meanwhile, the password for decrypting
the private key is protected through the secure keyboard
and APIs that prevent screen capture.
In the future, we will implement the TMZ system in

smartphone devices for which the kernel version of An-
droid OS is 6.0, and the VIMO hypervisor will be up-
dated according to upgrades of Android OS. We are
currently working on improving the performance of
encrypted inter-domain communication between the NZ
communication agent and the SZ communication agent.
Finally, we plan to implement a key management mech-
anism that creates and exchanges the new encryption
keys periodically in the future.

Acknowledgements
This work was supported by a grant awarded by the Institute for Information
& Communications Technology Promotion (IITP) and funded by the Korean
government (MSIP) [R0101-16-0195, Development of an EAL 4 level military
fusion security solution for protecting against unauthorized access and
ensuring a trusted execution environment in mobile devices].

Received: 1 April 2016 Accepted: 15 September 2016

References
1. L Sui, Strategy Analytics: Global Smartphone Shipments Hit a Record 1.4

Billion Units in 2015. (Strategy Analytics Web, 2016), https://www.
strategyanalytics.com/strategy-analytics/news/strategy-analytics-
pressreleases/strategy-analytics-press-release/2016/01/27/strategy-analytics-
global-smartphone-shipments-hit-arecord-1.4-billion-units-in-2015#.
V8UY9fmLRhF. Accessed Feb 2016.

2. A Scarsella, W Stofega, Worldwide Smartphone Forecast Update 2015–2019:
December 2015. (IDC Research Web, 2015), https://www.idc.com/getdoc.
jsp?containerId=US40734415. Accessed Feb 2016.

3. S Shin, T Kwon, A Survey of Public Provable Data Possession Schemes with
Batch Verification in Cloud Storage. Journal of Internet Services and
Information Security. 5(3), 37–47 (2015)

4. F Gadaleta, R Strackx, N Nikiforakis, F Piessens, W Joosen, On the
effectiveness of virtualization-based security, in Proceedings of IT Security,
(Freiburg, Germany, 2012)

5. D Oh, I Kim, K Kim, S-M Lee, WW Ro, Highly Secure Mobile Devices Assisted
with Trusted Cloud Computing Environments. ETRI Journal 37(2), 348–358
(2015)

6. D Huang, Z Zhou, L Xu, T Xing, Y Zhong, Secure Data Processing
Framework for Mobile Cloud Computing, Paper presented at IEEE INFOCOM
2011 Workshop on Cloud Computing (Shanghai, China, 2011), pp. 614–618

7. HT Dinh, C Lee, D Niyato, P Wang, A survey of mobile cloud computing:
architecture, applications, and approaches. Wireless Communications and
Mobile Computing 13(18), 1587–1611 (2013)

8. NIST, Special Publication 800-118(Draft), K Scarfone, M Souppaya, Guide to
Enterprise Password Management. (2009)

9. ARM, White Paper, R Coombs, Securing the Future of Authentication with
ARM TrustZone-based Trusted Execution Environment and Fast Identity
Online (FIDO). (2015)

10. IETF, RFC 2865, C. Rigney, S. Willens, A. Rubens, W. Simpson, Remote
Authentication Dial In User Service (RADIUS). (2000)

11. IETF, RFC 5246, T. Dierks, E. Rescorla, The Transport Layer Security (TLS)
Protocol Version 1.2. (2008)

12. NIST, Special Publication 800-63-2, WE Burr, DF Dodson, EM Newton, RA Perlner,
WT Polk, S Gupta, EA Nabbus, Electronic Authentication Guideline. (2013)

13. IETF, RFC 2898, B. Kaliski, RSA Laboratories, PKCS#5: Password-Based
Cryptography Specification Version 2.0. (2000)

14. TrustZone. (ARM Web, 2016), http://www.arm.com/products/processors/
technologies/trustzone/index.php. Accessed Feb 2016

15. ARM, White Paper, TrustZone API Specification Version 3.0. (2009)
16. Device Specifications. (Global Platform Web, 2016), http://www.

globalplatform.org/specificationsdevice.asp. Accessed Feb 2016
17. GlobalPlatform, WhitePaper, TEE Client API Specification v1.0. (2010)
18. GlobalPlatform, WhitePaper, TEE Internal API Specification v1.0. (2011)
19. GlobalPlatform, WhitePaper, TEE System Architecture v1.0. (2011)
20. D Jaramillo, B Furht, A Agarwal, Virtualization Techniques for Mobile Systems

(Springer Link, Switzerland, 2014), pp. 5–20
21. G Kim, Y Jeon, J Kim, The Secure Urgent Situation Propagation System

Using the Mobile Security Solution, in Proceedings of The Second
International Conference on Computer Science, Computer Engineering, and
Social Media (Lodz, Poland, 2015), pp.109-114

22. A Skovoroda, D Gamayunov, Securing mobile devices: malware mitigation
methods, Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications. 6(2) 78–97 (2015)

23. B Rashidi, C Fung, A Survey of Android Security Threats and Defenses,
Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications. 6(3) 3–35 (2015)

24. RSA Laboratories: HOW SHOULD I STORE MY PRIVATE KEY? (EMC
Corporation Web, 2016) http://www.emc2.nu/emc-plus/rsa-labs/standards-
initiatives/store-private-key.htm. Accessed Feb 2016

25. Y Park, S Kim, D Lee, The Secure Key Store to Prevent Leakage Accidents of
the Private Key and Certificate, Journal of The Korea Institute of Information
Security & Cryptology. (2014). doi:10.13089/JKIISC.2014.24.1.31

26. B-H Kang, B-S Kim, K-K Kim, Securing the Private Key in the Digital
Certificate Using a Graphic Password. The Journal of Society for e-Business
Studies 16(4), 1–16 (2011)

27. S Yang, Q Zhao, Q Liu, Secure Mobile Agents in eCommerce with Forward-
Secure Undetachable Digital Signatures. ETRI Journal 37(3), 573–583 (2015)

28. NIST, FIPS 196, Entity Authentication Using Public Key Cryptography. (1997)
29. ITU-T, Recommendation X.509, Information technology - Open Systems

Interconnection - The Directory: Public-Key and Attribute Certificate
Frameworks. (2012)

30. IETF, RFC 5216, D Simon, B Aboba, R Hurst, The EAP-TLS Authentication
Protocol. (2008)

https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-pressreleases/strategy-analytics-press-release/2016/01/27/strategy-analytics-global-smartphone-shipments-hit-arecord-1.4-billion-units-in-2015#.V8UY9fmLRhF
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-pressreleases/strategy-analytics-press-release/2016/01/27/strategy-analytics-global-smartphone-shipments-hit-arecord-1.4-billion-units-in-2015#.V8UY9fmLRhF
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-pressreleases/strategy-analytics-press-release/2016/01/27/strategy-analytics-global-smartphone-shipments-hit-arecord-1.4-billion-units-in-2015#.V8UY9fmLRhF
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-pressreleases/strategy-analytics-press-release/2016/01/27/strategy-analytics-global-smartphone-shipments-hit-arecord-1.4-billion-units-in-2015#.V8UY9fmLRhF
https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-pressreleases/strategy-analytics-press-release/2016/01/27/strategy-analytics-global-smartphone-shipments-hit-arecord-1.4-billion-units-in-2015#.V8UY9fmLRhF
https://www.idc.com/getdoc.jsp?containerId=US40734415
https://www.idc.com/getdoc.jsp?containerId=US40734415
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.arm.com/products/processors/technologies/trustzone/index.php
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
http://www.emc2.nu/emc-plus/rsa-labs/standards-initiatives/store-private-key.htm
http://www.emc2.nu/emc-plus/rsa-labs/standards-initiatives/store-private-key.htm
http://dx.doi.org/10.13089/JKIISC.2014.24.1.31

	Abstract
	Introduction
	Background
	Assurance level of certificate-based user authentication
	Trusted Execution Environment
	Mobile virtualization: hypervisor

	Proposed framework
	Trusted mobile zone system
	The definition of NZ-security API as TEE functional API
	Secure user authentication method

	Results of the experiment
	Usage cases
	Conclusions
	Acknowledgements
	References

