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Abstract

Pixelated communication systems can convey high-speed data over optical wireless channels by using

spatial orthogonal frequency division multiplexing (spatial OFDM) modulation. Two forms of spatial OFDM,
spatial asymmetrically clipped optical OFDM (SACO-OFDM) and spatial dc-biased optical OFDM (SDCO-OFDM),
have been considered in the literature of pixelated communication. This paper mathematically describes the
SACO-OFDM signal and then proposes a power-efficient derivative of SACO-OFDM termed as noise-cancelled
spatial OFDM (NCS-OFDM). However, NCS-OFDM and other spatial OFDM systems can be impaired by spatial
sampling frequency offset (SSFO) defined as the difference in the number of transmitted and received pixels
and by coexisting defocus and motion blur forming an asymmetric point spread function (APSF). In this paper,
for the first time, the effects of SSFO and APSF on a spatial OFDM based pixelated system are investigated.
Simulation results show that both SSFO and APSF cause phase distortions and attenuation of the data-carrying spatial-
subcarriers resulting in bit error rate (BER) degradation. Simulation results also indicate that in the presence of several

power efficiency.

channel impairments including SSFO and APSF, NCS-OFDM outperforms SACO-OFDM and SDCO-OFDM in terms of
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1 Introduction

In recent years, wireless data traffic has experienced enor-
mous growth due to the increase in bandwidth-intensive
applications such as video streaming, voice over IP and
network-attached storage. Consequently, the radio fre-
quency (RF) spectrum is becoming more and more con-
gested. Multiple-input multiple-output (MIMO) optical
wireless communication (OWC) [1-10] is considered as a
supplemental technology to RF links for many high data
rate applications. MIMO OWC can have either a non-
imaging or an imaging receiver. Research has shown that
MIMO systems using non-imaging concentrators do not
perform well at many receiver positions, and conse-
quently, little diversity gain is obtained. The use of an im-
aging receiver may overcome this problem [8]. One form
of imaging system is pixelated OWC [11-19], where the
term pixelated means that the optical modulator, the
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transmitted images and the detector are each composed
of a large number of smaller units. Figure 1 illustrates
pixelated communication where a number of image
frames are used to carry the data. Such a system operates
based on image transfer. For pixelated OWC, a pixelated
grid of light-emitting diodes (LEDs) or a liquid crystal dis-
play (LCD) screen can be used as a transmitter. In
addition, arrays of pixel sources found in devices such as
TVs, display walls, lighting and electronic billboards may
also be considered as such transmitters. On the other
hand, an imaging lens along with an array of photodiodes
or a stand-alone camera can be used as a receiver [11, 14].
In between the transmitter and the receiver, a two dimen-
sional (2-D) optical wireless channel is described by its
spatial impulse response known as the point spread func-
tion (PSF).

Pixelated systems may provide high transmission
rates by exploiting spatial diversity at a large scale. A
number of recent proof-of-concept experiments re-
ported in [11, 14, 15] have demonstrated the feasibility
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of pixelated communication. Such a system has the poten-
tial to provide a well-directed secure link for inter-device
communication of gigabytes of data. Therefore, these links
can be used for a number of near-field communication ap-
plications such as mobile advertisements, secure data
communication, data transfer in dense high-contention
scenarios and vehicle-to-traffic light communication [14].
However, the pixelated transmitter has to be within the
field of view of the imaging receiver [11], limiting the ex-
tent of user mobility, and thus, systems of this type may
not be suitable for some application areas.

In order to transmit data in parallel, a pixelated system
may apply spatial orthogonal frequency division multi-
plexing (spatial OFDM) [11, 14, 18, 20-22], which is
essentially an extension of the conventional OFDM con-
cept [23-25] to the 2-D spatial domain. For spatial
OFDM modulation, information is encoded using several
orthogonal 2-D subcarriers in the spatial-frequency
domain which is the frequency representation of the 2-D
image space. Each of the 2-D spatial OFDM frames is
transformed into a pixelated image. These images are
transmitted into the 2-D optical channel. For pixelated
OWC, spatial OFDM exhibits a number of advantages
compared to systems that encode data directly in the
spatial domain. For instance, the use of spatial OFDM
algorithms at the transmitter side allows generating
data-carrying images in a way that makes them much
robust to 2-D spatial distortions. Consequently, the re-
ceiver can apply simple correction algorithms to decode
the images [14, 18, 26, 27].

However, the technology of spatial OFDM based
pixelated systems is still in its infancy and has to over-
come several challenges including power constraints,
spatial distortions [18, 27-29] and temporal distortions
[16, 30]. Limiting factors such as ambient light [14],
spatial perspective distortions [14], spatial rotational
error [19] and temporal synchronization problems [16]
have been studied in the literature. In recent years, the
author of this paper has analysed the effects of spatial

distortions such as defocus blur [28, 29], vignetting [18]
and fractional misalignment error [27]. The results re-
ported in the above-mentioned previous studies are
based on the assumption that the numbers of pixels in
the transmitted images and the corresponding received
images are the same. In other words, the numbers of
received pixels in each dimension are equal to the num-
bers of transmitted pixels in the corresponding dimen-
sion, i.e. the value of spatial sampling frequency offset
(SSFO) is zero where each pixel is a spatial sample.
However, this is unlikely in many practical pixelated
systems. Furthermore, the effects of coexisting defocus
and motion blur which can be jointly described by an
asymmetric PSF (APSF) are yet to be studied for spatial
OFDM based pixelated communication. It is note-
worthy that this combined blur is different from the
previously studied stand-alone defocus blur [28] which
is usually modelled using a symmetric PSF (SPSF).

In this paper, the underlying characteristics of a popu-
lar form of spatial OFDM termed as spatial asymmetric-
ally clipped optical OFDM (SACO-OFDM) [26] are
mathematically studied. Based on the analysis, a noise
cancellation technique is applied to form noise-cancelled
spatial OFDM (NCS-OFDM). Next, for spatial OFDM,
the effects of SSFO and APSF are studied. Computer
simulations are performed to evaluate and compare the
bit error rate (BER) performance of SACO-OFDM,
spatial dc-biased optical OFDM (SDCO-OFDM) and
NCS-OFDM in the presence of SSFO, APSE, vignetting,
fractional misalignment and additive white Gaussian
noise (AWGN).

The remainder of this paper is organized as follows:
Section 2 describes a spatial OFDM based pixelated sys-
tem. Section 3 analyses an SACO-OFDM signal and then
proposes an appropriate noise cancellation technique. In
Section 4, SSFO and APSF are described for the case of
spatial OFDM. Simulation results on the performance of
SACO-OFDM, SDCO-OFDM and NCS-OFDM impaired
by a number of channel perturbations including SSFO,
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APSF and AWGN are presented in Section 5. The paper
concludes in Section 6.

2 System design
In pixelated OWC using spatial OFDM, data are embed-
ded in the 2-D spatial-frequency domain, the frequency
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equivalence of the 2-D spatial domain. In this section,
SACO-OFDM will be considered as a spatial-frequency
domain encoder. Figure 2a shows the block diagram of an
SACO-OFDM-based pixelated communication scheme.
Figure 2b illustrates the optical intensity, and Fig. 2c pre-
sents the corresponding image for a single SACO-OFDM
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frame. The transmission and the reception methods and
the performance metric of the overall system are discussed
in the following.

2.1 Transmitter

Consider first the SACO-OFDM transmitter. For each of
the transmitted SACO-OFDM frames, the data are
mapped to quadrature amplitude modulation (QAM)
constellation points resulting in a matrix X where the
even-index columns are set to zero [26]:

0 X071 0 XO,NZ—I
0 X 0 X1.N,-

X = ! L (1)
0 XNl*Ll 0 XN]—LNZ—I

Note that the elements of X are in the spatial-
frequency domain. For the remaining of the paper, the
terms odd subcarriers and even subcarriers will be used
to refer to the subcarriers corresponding to the odd-
index and even-index columns of X, respectively. So
X, k, represents the signal on the (ki, ko)th subcarrier,
where k; and k, are integers between 0 and N; -1 and 0
and N, -1, respectively. Since the optical signal from
the transmitter panel will be in the spatial domain, the
term X has to be transformed to a spatial domain signal
of non-complex and non-negative values. Note that a 2-
D inverse fast Fourier transform (IFFT) is a means of
converting a spatial-frequency domain signal to its cor-
responding spatial domain version. In order to ensure
that the 2-D IFFT output of X will result in a real-
valued matrix x, Hermitian symmetry [26] is maintained
for X. The elements of x are denoted here as x;, ;, where
({1, 15) is the 2-D spatial index and /; and /, are integers
between 0 and N; -1 and 0 and N, -1, respectively.
Using the formula for 2-D IFFT, the term x;,; can be
expressed as follows:

Nj-1Np-1 ) )
2mkily  j2mkals

= E X == 2

b NN, Pavar o) kuke exp( N + N, ( )

The signal x;, 4, is bipolar, and it is converted to a uni-
polar signal s;;, [26] by asymmetrical clipping at the
zero-amplitude level. So:

Sy =
o I
(3)

Next, cyclic extensions in the form of a cyclic prefix
(CP) and a cyclic postfix (CPo) [29] are added to both
the rows and the columns of s, the corresponding matrix
form of s;,;, . The term s which represents a spatial
OFDM frame in the electrical domain is then applied to
the input of the intensity modulator.

x5, <0
X1, 1,20.
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At the intensity modulator, the smallest unit of a
light source is considered as a transmitter pixel. The
number of pixels on an LCD screen is usually much
greater than that of a grid of LED arrays. An inten-
sity modulator may experience nonlinear distortions
because of its physical limitations. Therefore, the
electrical signal has to be within the dynamic range
of the modulator. For instance, the amplitude of the
input electrical signal has to be quantized to 256
levels for an 8-bit intensity modulator. The intensity
modulator form images by assigning each transmitter
pixel an intensity value proportional to the input
electrical signal. Note that for the particular case of
red-green-blue (RGB) intensity modulation, the elec-
trical signal is mapped to the intensity values of each
colour channel. The data-carrying transmitted image
is usually formed at the middle of the intensity
modulator with the pixels outside the frame turned
off. For the rest of this paper, the term transmitted
pixels will be used to denote the pixels correspond-
ing to only the data-carrying transmitted image. The
optical signal from the transmitted pixels forms the
time-varying sequence of images. In other words,
each of the spatial OFDM frames in the electrical
domain is converted to an image frame in the op-
tical domain. Figure 2b shows an example of the op-
tical intensity emitted from an intensity modulator
where the peak value of the electrical sample is nor-
malized to have a value of unity. Figure 2c presents
the pixelated image frame where the intensities are
converted into greyscale values. It can be seen that
the pixels having the maximum and the minimum
intensity in Fig. 2b are represented in Fig. 2c as
complete white and complete dark pixels, respect-
ively. Note that for clarity, Figs. 2b, c are illustrated
for a small SACO-OFDM frame of only 10x10
pixels. Mathematically, the intensity of the transmit-
ted pixels, p, ;,, can be written as p; ;, = ¢s;, 1, where
¢ is the electrical-to-optical conversion efficiency
[18]. Without loss of generality, the term ¢ can be
assumed to be unity. Therefore, the transmitted
optical signal from the pixels can be related to the
input electrical signal as:

P, =Sk - (4)

Throughout this paper, it is considered that a single
transmitted image frame is mapped to only a single
spatial OFDM electrical frame. Note that the overall
information transmission rate is a function of the
frame rate, the number of pixels per frame, the num-
ber of colour channels and the number of bits per
pixel.
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2.2 Receiver

Now consider the SACO-OFDM receiver. In the case
of indoor pixelated OWC, the optical channel varies
slowly in time and therefore can be assumed to be
static. For proper data transfer, the imaging receiver
has to have the transmitter panel within its field of
view. In addition, the transmitter plane and the re-
ceiver plane are to be kept parallel to overcome the
perspective distortion. To recover data from each of
the transmitted image frame, the receiver capture rate
is usually kept twice the transmitter refresh rate.
When these conditions are met, the receiver imaging
lens attempts to concentrate the light from each
transmitter pixel onto a small region in the photo-
detector. In other words, the lens reproduces the im-
ages on an array of receiver pixels. These pixels
receive light signals from a number of sources, such
as the data-carrying transmitted pixels, the unused
transmitter pixels and the illumination outside the
transmitter. In order to separate the wanted pixels,
signal-processing techniques are applied to the total
image. The data-carrying received image is extracted
from the total captured image by detecting the four
corners. For the rest of this paper, the term received
pixels will be used to denote only the pixels corre-
sponding to the data-carrying received images. Math-
ematically, the intensity of the received pixels, ¢, ,,,
can be expressed as a function of p; ;, and the system
PSE, hll,12:

qi,1, = P, 1, @M, 1, (5)

where ‘®’ is the 2-D convolution operator. Next, g, ;, is
converted back to the electrical domain by the direct
detection detectors. The obtained electrical signal expe-
riences channel noise, z;, ;,, which is often composed of
shot noise and thermal noise. This noise can be mod-
elled as AWGN similar to other studies [18]. The CP
and CPo are then deducted from the noisy signal. The
resultant electrical signal, y, ,, can be written in the
following form using (5) and (4) [18]:

yh,lz = qll,lz + 200 (6)
= 81,5,®h, 1, + 21, 1,

where it is assumed that the responsivity of the photode-
tecting elements, R,, is unity. A 2-D FFT is then
performed on y, , , resulting in Yy, x,, the signal on the
received subcarriers:

YliQ = Skl,kz Hk17k2 + Zk17k2 (7)

where Sk, x,, Hi, k, and Zg, x, are the spatial-frequency
domain representations of s;,4,, h, 4, and zj, 4,, respect-
ively. Moreover, Sg, «, is a function of the original sub-
carriers, Xy, k,, as will be shown in (16) in Section 3.1.
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Finally, the term Yy x, is corrected using a single-step
equalizer, and then the resultant signal is demodulated
to perform the estimation of the input data.

2.3 Performance metric

A pixelated system can use different variants of spatial
OFDM modulation. Comparing spatial OFDM modulation
schemes is not straightforward as the BER depends on the
signal-to-noise ratio (SNR) of the electrical signal obtained
from the direct detection receiver, whereas the transmitted
average optical power is considered as the limiting factor
[26]. When the transmitted electrical signal is s;, 4, , the
average optical power, i.e. the optical power per pixel, de-
pends on E {511,12} where E{+} is the expectation operator.
On the other hand, the average electrical power, i.e. the

electrical power per pixel, depends on E {5121112}. Hence,

the conversion between optical power and electrical power
depends on the statistics of s, ;,. Since for different spatial
OFDM schemes the term s;, ;, will have different statistics,
the conversion from optical to electrical power will be dif-
ferent. Similar to the work in [26], the average optical
power here is defined as E{s;, ;, } and the average electrical

power as E {5121 l } For a fixed value of E{s, 5, }, the spatial
OFDM form with high electrical power to optical power
ratio E {slz1 L } JE {sl1 ,[2} is likely to ensure better BER per-

formance. With this consideration, two performance met-
rics are used in this paper to compare different spatial
OFDM modulation. These metrics are Epleq)/No and
Ey(opty/No where Epeleq is the received electrical energy per
bit, Epopy is the received optical energy per bit and N is
the single-sided noise spectral density. The terms Ejpe)

and Ep(opy) can be mathematically described as Ep(elec) = E

{3121’12} /L and Ejop) = E{s, 1, } /L, respectively, where L
represents the number of bits per pixel. Moreover, the
term N, can be expressed as No = E { |le,12 }2} Unlike the

electrical domain term Epeec)/No» Ep(opty/No takes into
account the optical-to-electrical conversion efficiency of
the system, and thus the BER versus Epejec)/No graph will
be different from the BER against Ej(,p/Np graph.

3 Study of SACO-OFDM and NCS-OFDM signals

3.1 Analysis of SACO-OFDM signal

In this section, it will be shown that the SACO-OFDM sig-
nal exhibits anti-symmetry property in the spatial domain
and that the signal is effectively unaffected by clipping
noise in the spatial-frequency domain. Firstly, the SACO-
OFDM signal will be analysed in the spatial domain by
adapting the analysis of temporal OFDM shown in [31].
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It is shown in Section 2 that only the odd subcarriers
(where k, is odd) of SACO-OFDM are used for data
transmission, so (2) can be modified to give:

Ny-1N,-1
j2mkyly 12nk2(lz +N,/2)

- § Y X 8

X, (4N /2) = N 2 kiks €X] { N, ~ ( )

1 NazlNel

j2mkyly ]2ﬂkzlz
X k.
NN, ,;”QZ ke exp{ Ny N, expljmkz) -

For the data-carrying SACO-OFDM signal, k, is odd
and so

exp(jmky) = -1. 9)
Using (2) and (9), (8) can be modified as:

N;-1IN,-1

25kl 27wkl
N:N ZZXklkz ep{] = / sz}
1N == 2

Xl (h+Ny/2) = —

= =X,
(10)

This is the anti-symmetry property across one dimen-
sion (1-D). This anti-symmetry feature of the SACO-
OFDM spatial samples will be used in Section 3.2 to
identify which samples of the received signal are most
likely to be due to channel noise. This is important in
formulating the noise cancellation technique for SACO-
OFDM.

Next, the SACO-OFDM signal will be analysed in the
spatial-frequency domain. This will be carried out by ex-
pressing the received signal Yy, x, mentioned in (7) in
terms of the input signal Xy, x,. The term Xj, x, which is
the spatial-frequency domain equivalence of x;, ;, can be
written in the following form:

N;1-1N;,

2kl —j2mkyl
Xk1kz—zzle,zzexp<] 11 1N22>
=0 1,=0 2
(11)

Separating out the positive and negative values of x;, ,,
gives:

Ni-1N,/2-1 . .
*]27[](111 *]27[/(212
Xk].,kz :Zi |:x1‘1 exp<—+—
=ae L N N>
Xi,5,> 0
—jZﬂklll —jznkz(lz +N2/2)
+ XLy, (14N, /2) EXP{ N, + N, +
Ni-1N,/2-1 . ,
—]271/(1[1 —]271'](2[2
+ZZ {xgvl exp<—+
h=05L=0 o A N,
1, 5< 0
k< —j2ﬂk111

| k(s +No/2) H ‘

+ X0, (4N, /2) exp{ N N,

(12)

Equation (12) can be simplified to give:
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N1-1N,/2-1
Xiky = ZZ {xlhlz XL, (4N, /2) eXP(—iﬂkz)}
Lh=0 I,=0
X1,,,> 0
—j2]Tklll —j2nk212
X exp( N, + N,
Ni-1 Np/2-1
+ 20> % Fx gy exp(jmka) )
h=0 [,=0
X1,,1,< 0
—]27'[/(1[1 —jzﬂkzlz
X exp( N, + N, .
(13)
Using (9) and (10), (13) can be rewritten as follows:
Nl a2 —j2mkily  —j2mkol
Xy ky = o ex<1N11+1N22)
h=0 I, =0""hb 1 2
Xn.5,> 0
N1-1N,/2-1 ) )
-i2mkily  —j2mkol
+sz . exp(}N11+ }N22>.
h=0Th, =0k 1 2
X1,,,< 0
(14)

Note that Xj 4 is the 2-D FFT of the bipolar signal
%1, 5, which is clipped to form unipolar signal s;,;, as
shown in (3). So S, k,, which is the 2-D FFT of s;, 4,, can
be obtained from (14) as follows:

N;-1N;y/2-1 . .
- —]2nk111 —]27Tk2[2
DY) S s

L=0 I, =0
X1,5,> 0
(15)
The comparison of (14) and (15) results in:
X
Skisy = k2 ) odd. (16)

Therefore, the odd subcarriers are halved and free
from the clipping noise produced from the clipping of
x5, at the zero-amplitude level. This noise due to clip-
ping falls on the remaining even subcarriers. Using (16),
(7) can now be modified to form the SACO-OFDM re-
ceived signal:

Xk oo

Yik = Hi ky + Zi kys k2 0dd. (17)

So, the only noise source in the received SACO-
OFDM signal is the channel noise Zj, x, which will be
partially cancelled in Section 3.2 to generate NCS-

OFDM.
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3.2 Formation of NCS-OFDM signal from SACO-OFDM
signal

In this section, the concepts of noise cancellation for
temporal OFDM-based OWC systems reported in
[32, 33] are combined and then adapted to form a
two-stage noise cancellation method for spatial
OFDM. First, the transmitter and then the receiver
for an NCS-OFDM system are discussed below.

The processing at the NCS-OFDM transmitter is iden-
tical to that of a generalized spatial OFDM transmitter
described in Section 2. For the bipolar (unclipped) signal
X1, 1,» the samples at (/4, l;) and (/3, [ + N»/2) are a pair as
shown in (10). These two samples have the same value
but have opposite polarity. When x;, 4, is clipped at zero
to form s, ;,, one of the samples of each pair remains
positive and the other becomes zero. As for example,
consider %;,;, and X;, 5,1 n,/2 as one of the pair elements
where X;, ;, . n, /2 is negative-valued, so X, 1, = —X;, 1,4n,/2
, and after clipping, sy, ;, = X;,5, and §;, 4,4 n, /2 = 0. After
the addition of CP/CPo, s;,;, is converted to the optical
domain.

The NCS-OFDM receiver does some extra processing
compared to the stand-alone spatial OFDM receiver
mentioned in Section 2. When the transmitted unipolar
optical signal is detected at the receiver, the converted
electrical signal y, , becomes bipolar because of the
addition of bipolar channel noise. This noise can then
be reduced approximately to half by sequentially
applying two noise cancellation techniques. In the
first stage of noise cancellation, the samples of y, , at
(I, 1) and (I3, 15+ N,/2) are inspected. Therefore, the
following terms can be obtained:

Vit =Sub T2, (18)
=X, £ 21,
and
Vi by iNaf2 = 811 4Nxj2 £ 21 N2
= ileslerNz/Z' (19)

In this particular example as shown in (18) and (19),
Vib+N,2 18 the ‘noise-only’ element. Now, forcing
Vi pN,2 to zero amplitude will actually cancel the
channel noise at ([y,l, + N>/2). However, the channel
noise component remains in y, ;. For high-SNR scenar-
ios, the term y; ; .y, /, is expected to be smaller than
V1,1, - S0, in general, out of the two elements of a y,
pair, the element having the smaller amplitude is likely
to be the noise-only element and therefore should be set
to zero. It can be noted that for the special case where
both y, ;, and y, ;.\, » have negative polarity, the one
with the higher amplitude value remains unchanged.
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In the second stage of noise cancellation, all the
remaining negative components of the y, , pair are
clipped to zero. This ensures that in most cases,
approximately half of the channel noise samples of y, ,
are removed which may improve the system perform-
ance up to a margin of 3 dB.

4 Effects of SSFO and APSF on spatial OFDM

4.1 SSFO

In a pixelated system, the imaging receiver samples
the incoming images in the spatial domain. In prac-
tice, it is not possible to adjust the SSFO which has
already been defined in Section 1 as the difference in
the numbers of pixels in the transmitted and received
images. This is because the adjustment of SSFO de-
pends on the pixel size of the receiver and on the
distance between the transmitter and the receiver. So,
in a practical system, the number of received pixels
in each dimension is likely to be different from the
number of transmitted pixel in each dimension. This
means that if the numbers of transmitted and re-
ceived pixels (without the CP/CPo) are Nr, x Nr,
and Np, x Np,, respectively, then Np =Ny, and Ng,=
Nr, , respectively. In the following, the SSFO is
described with an example.

At the transmitter side, pixels are used to intensity-
modulate the Nj x N, electrical samples of s (without
the CP/CPo), where N, =mN; and N7, = mN,
with #; and n, being integers. The intensity of the
transmitted N7, X N7, pixels is received by the Npg,
xNpg, pixels at the receiving photodetector. The re-
ceived noisy electrical signal corresponding to Npg,
xNg, pixels is resampled to Nj x N, electrical sam-
ples, where N; = Ng,/m; and N, = Ng,/m;. There-
fore, N, = m;Nt, and Ng, = m,Nr, where m; = m
and m, = . For the case where m; <1 and m, < 1,
the received signal will be distorted due to spatial-
averaging effect even for a system with no other im-
pairment. However, for a practical system, the num-
ber of the received pixels is likely to be greater than
that of the transmitted pixels, i.e. m, > 1 and m, > 1.
This means each of the transmitted pixels is spread
into m, x m, received pixels. Consider first the case when
m; and m, are integers; for instance, m; = m, =2 as
shown in Fig. 3a. The intensity of each transmitted pixel
will be collected by an integer number (in this case, 4) of
received pixels; in other words, no received pixel will
get contribution from more than a single transmitted
pixel. Consequently, there will be no SSFO induced
distortion, i.e. all the received pixels are unaffected by
SSFO. Now, consider the case where m,; and m, are
fractional numbers. This is shown for m; = m, = 1.5
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Fig. 3 lllustration of SSFO fora m; = m, =2 and forb m|, =m), = 1.5
in Fig. 3b. It can be seen that some of the pixels re- hy hio by
ceive cqntr1but1ons from a single transm1tted.p1xel. R Hoo ho. (20)
These pixels are free from SSFO and denoted in the A N

figure as unaffected pixels. On the other hand, some
pixels receive contributions from more than one
transmitted pixel. These pixels are affected by SSFO.
This will lead to a spatial-averaging effect in the re-
ceived optical intensity. The higher the values of 7, and
m.,, the lower the ratio of the number of affected pixels to
the number of total pixels. Therefore, the spatial-
averaging effect reduces for larger values of m,; and m,.

4.2 APSF

The PSF can be termed as the spatial distribution of
optical intensity at the receiving detector for a trans-
mitted spatial optical impulse [21, 34]. For the case of
an ideal imaging system, the PSF has a distribution of
a 2-D Dirac delta function. For the case of a practical
imaging system with appropriate focusing, the PSF
usually has the distribution of a narrow spatial pulse
whose dimensions are mainly a function of the aber-
rations of the imaging lens and the diffraction
phenomenon at the receiver aperture [11]. In a prac-
tical pixelated system, both defocus and motion blur
are likely to be present. Defocus is the lack of focus
of the imaging lens, while motion blur is caused by
the relative motion between the transmitter and the
receiver during the exposure time of the imaging sys-
tem. These two blurs together cause the received in-
tensity pattern to be distributed over a larger space,
resulting in a degraded PSF. Figure 4 shows the case
of defocus-degraded PSF whose elements can be rep-
resented as follows (for simplicity, a 3x3 case is
shown):

For the case of a stand-alone defocus blur which is
often characterized by a 2-D Gaussian (omnidirectional)
SPSF with a spread of ¢ [28, 35], the elements of (20)
are defined as:

o1 =hy1=hj=hai, (21)
and
h1o=h_10="ho1 = ho_1. (22)

On the other hand, it is also difficult to establish a uni-
versal model for motion blur since it varies depending
on the actual motion during the exposure time of the

i
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Fig. 4 lllustration of a typical defocus-degraded PSF in the 2-D

spatial domain
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imaging lens [36]. However, in the literature of photog-
raphy and image processing [37-40], motion blur is
often modelled as simple motion models, e.g. linear con-
stant speed motion. Similarly, in this paper, the motion
blur is described as a linear motion across a number of
pixels in a single (horizontal or vertical) direction and
therefore has an APSF distribution. This is illustrated in
Fig. 5. It can be seen that the term /; ;, for APSF has
values only in one dimension and obviously does not fol-
low the relationship shown in (21) and (22).

For the case of combined defocus and motion blur, the
composite PSF is also asymmetric since it is the convo-
lution of the defocus-degraded PSF and the motion-
degraded PSF.

5 Simulation results

In this section, the system performance for SACO-
OFDM and NCS-OFDM are evaluated via computer
simulations using MATLAB software. In a practical
scenario, the numbers of total subcarriers, transmitter/
receiver pixels and the magnitudes of channel impair-
ments can vary to a large extent; therefore, there is no
standard single value for the simulation parameters. For
this paper, the parameters used in the simulations were
256 x 256 subcarriers having a CP and a CPo of 10 %
(rounded up to the next integer) each. Moreover, the
level of defocus was set as a spread of 9x9 SPSF
with ¢=0.5. The motion blur was modelled as a lin-
ear motion across N, pixels in the horizontal direc-
tion, where N;=1, 2 and 4. The combination of the
defocus blur and the motion blur was used to simulate the
effect of APSF. Next, the effect of SSFO was simulated for
m' =15, 25 and 3.5, where m = m, = m,. For the case
of equalization, a single-step spatial-frequency domain
equalizer was used. When the higher subcarriers were not
used for data transmission, the number of unused higher
spatial-frequency index subcarriers in each dimension, N},

'd Y
Q\i
9]
=
£
g 2
% =
Vo<
C‘O
0,
<%, L
. nale
%/ - fral coor ™
Sp2
Fig. 5 lllustration of a typical motion-degraded PSF in the 2-D
spatial domain
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was set equal to N/2 where N; =N, =N. In the simula-
tions, the effects of temporal distortions were ignored.

Figure 6 shows the constellation diagrams of the trans-
mitted and the received SACO-OFDM signals. For
Figs. 6a, b, the effect of AWGN is ignored to focus on
other impairments. Moreover, for clarity only 64 x 64
subcarriers are used. Figure 6a illustrates the received
constellation points for the case of APSF with N, =2
and 0= 0.5 as well as for the case of SPSF with 0=0.5. It
can be seen that the effect of SPSF is only to cause at-
tenuation in the spatial-frequency domain, and the at-
tenuation varies depending on the spatial-frequency
index. On the other hand, the effect of APSF is to create
both attenuation and phase distortions in the spatial-
frequency domain. It is clear that the constellation
points experience more spread due to APSF than SPSF.
Figure 6b presents the received signal for the case of
SSFO where m’ = 1.5. It can be seen that because of the
presence of SSFO, the received constellation points
experience attenuation as well as phase distortions.

Figure 7 presents the BER as a function of Ejelec)/No,
the received electrical energy per bit to single-sided
noise spectral density, for the case of stand-alone
AWGN and SSFO with and without equalization. In this
case, the Ejle)/Ny penalty caused by a particular im-
pairment is calculated, at a BER of 107% as the Epelecy/
N, difference between the plot for that impairment
(added with AWGN) and the plot for a stand-alone
AWGN system indicated by m’ = 1. Note that as men-
tioned in Section 4.1, there is no extra degradation due
to SSFO when m’ has any integer value of 2. It can be
seen that the Ejleq)/No penalty due to SSFO is approxi-
mately 4.5, 2.8 and 2 dB for m' =15, m" =2.5 and m’ =
3.5, respectively, when there is no equalization. This is
because as shown in Section 4.1 the larger the values of
m; and m,, the less is the spatial-averaging effect, so the
less the power penalty. Hence, the receiver should
have more number of pixels than the transmitter to
combat the effect of SSFO. It can also be seen from
Fig. 7 that the degradation due to SSFO can be fur-
ther reduced when an equalizer is used and the
higher subcarriers are not used to carry the data.
However, the unused subcarriers reduce the effective
data transmission rate.

Figure 8 presents the BER as a function of Epelec)/No
for the case of stand-alone AWGN, SPSF and APSF. All
these plots are for the case of equalization with only lower
subcarriers carrying data, i.e. Nj, = N/2. It can be seen that
the Epelec/No penalties due to SPSF with N;=0, APSF
with N;=1, N;=2 and N,; =4 are approximately 2, 2.7, 7
and 10 dB respectively. So, the BER degradation is greater
for the case of APSF than for SPSF and for greater values
of N;. This is because as shown earlier, the APSF addition-
ally causes phase distortions which is absent in the case of
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SPSF and the level of asymmetry in APSF distribution in-
creases with the increase of N, So when motion blur
takes place across a greater number of pixels, the BER
degradation becomes more prominent.

Figure 9 presents the BER as a function of Epejec)/No,
for SACO-OFDM and NCS-OFDM. It can be seen that
for AWGN-only channels and for a given constellation
size of 4-QAM, NCS-OFDM is 2.0 dB better than
SACO-OFDM, but the difference increases to 2.7 dB for
16-QAM. This is because for a given power level, larger
constellation points are more susceptible to noise and
thus cancelling the noise results in more BER im-
provement. Note that the improvement of 2.7 dB due
to noise cancellation is close to the 3-dB improve-
ment as mentioned for an ideal case in Section 3.2. It
can also be seen that for the joint case of SSFO with

10 15
in dB

0 5
Eb(elec)/No

Fig. 7 BER versus Epelec/No for the case of SSFO. Here, eq. stands for
equalization and N, indicates the unused higher subcarriers

m’ =15, APSF with N;=2 and 0=05 as well as
AWGN, 4-QAM NCS-OFDM is only 1 dB better
than 4-QAM SACO-OFDM. So the performance dif-
ference between NCS-OFDM and SACO-OFDM s re-
duced in SSFO-APSF channels than stand-alone
AWGN channels. Thus, the effectiveness of noise
cancellation in NCS-OFDM is dropped when the im-
pairments of SSFO and APSF exist. By comparing the
curves for 4-QAM NCS-OFDM in AWGN and
SSFO-APSF channels, it can be seen that there can
be as large as 8.5 dB degradation in NCS-OFDM due
to a given value of SSFO and APSF.

In the following, the BER performance of NCS-OFDM
will be compared with that of SACO-OFDM and
SDCO-OFDM in terms of average optical power. Since
SACO-OFDM/NCS-OFDM uses half the subcarriers of

0
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-e-SPSF
X —=-APSF, N =1
10} ¢
APSF, N =2
—w— APSF, N =4
o2
Q10
m

10 15 20
E 5 (elec)/No in dB
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Fig. 9 BER versus Epelec/No for NCS-OFDM and SACO-OFDM
for 4-QAM and 16-QAM constellation points for AWGN and
SSFO-APSF channels

SDCO-OFDM [26], SACO-OFDM/NCS-OFDM with
16-QAM and 256-QAM should be compared with
SDCO-OFDM  with 4-QAM and 16-QAM, respect-
ively. In a recent study [29], it has been shown that
for an optimal bias of 0.800,, SDCO-OFDM with 4-
QAM shows better optical power efficiency than
SACO-OFDM with 16-QAM for N, =N/2 and for
equalization, where o, is the standard deviation of
%1, 1,- The result reported in [29] is for a given value
of vignetting and fractional misalignment and SPSF/
defocus with a spread of ¢=0.5. Figure 10 presents
the BER as a function of Ejpy/No, the received op-
tical energy per bit to single-sided noise spectral
density, for NCS-OFDM, SACO-OFDM and SDCO-
OFDM with an optimal bias of 0.800,. In this case, the
values of vignetting and fractional misalignment are the
same as those reported in [29]; SSFO is for m’' = 1.5,
while APSF is for 0=0.5 and N, =2. Figure 10 shows
that for a given data rate, for Nj,=N/2 and for
equalization, 16-QAM NCS-OFDM shows better per-
formance than 16-QAM SACO-OFDM and 4-QAM
SDCO-OFDM. By comparing the curves for NCS-
OFDM in the presence of stand-alone AWGN and all
impairments, it is clear that the Ejpn/No penalty due
to a given value of vignetting, fractional misalignment
error, SSFO and APSF is approximately 14 dB.

6 Conclusions
This paper shows that SSFO and motion blur can
impair the BER performance of spatial OFDM based

10°

=0 NCS, AWGN
=@ SACO, AWGN
= SDCO, AWGN
=0=NCS, All Imp.
"""" SDCO, All Imp.
==SACO, All Imp.

10°F

Fig. 10 BER versus £ppn/No for 16-QAM SACO-OFDM, 4-QAM
SDCO-OFDM and 16-QAM NCS-OFDM. All Imp indicates the
combined impairments of vignetting, misalignment, SSFO, APSF
and AWGN

communication systems. The individual presence of
SSFO and the simultaneous presence of defocus and
motion blur modelled together as APSF cause
attenuation and phase distortion in the spatial-
frequency domain. However, the effect of SSFO can
be decreased by ensuring that the number of re-
ceived pixels is much larger than the transmitted
pixels. Moreover, the use of an equalizer and the use
of only the lower subcarriers can further minimize
the effect of SSFO. The effect of APSF is different
from that of SPSF since SPSF does not cause phase
distortion. Depending on the magnitude of motion
blur, APSF can create significant BER degradations
even when the higher subcarriers are unused for
data transmission. Therefore, the relative motion be-
tween the transmitter and the receiver must be kept
to minimum to ensure reliable data transmission.
Next, it is shown that the performance of SACO-
OFDM in the joint presence of SSFO and APSF can
be improved by forming NCS-OFDM by exploiting
the anti-symmetry property of SACO-OFDM. Simu-
lation results show that for a given data rate and for
the combined perturbations of vignetting, fractional
misalignment, SSFO and APSEF, NCS-OFDM shows
slightly better optical power efficiency than SACO-OFDM
and SDCO-OFDM. Since the above-mentioned
impairments can cause Ejpy)/No penalty as large as
14 dB, efficient techniques will be required to realize
practical compensation of these distortions in a
physical system for specific target performance
levels.
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