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Abstract

This paper introduces a new direction-of-arrival (DOA) estimation method for wideband signal sources. The new
method estimates the DOA of wideband signal sources based on squared test of orthogonality of projected subspaces
(Squared TOPS) which is an improved method of TOPS. TOPS and Squared TOPS use the signal and noise subspaces of
multiple frequency components of wideband signal sources. Although coherent wideband method, such as coherent
signal subspace method (CSSM), performs high DOA estimation accuracy, it requires the initial estimate of signal
source directions. On the other hand, TOPS and Squared TOPS can provide good performance of DOA estimation
without the initial value of signal sources; however, some false peaks appear in spatial spectrum based on these
methods. The proposed method, called weighted Squared TOPS (WS-TOPS), uses the modified squared matrix and
selective weighted averaging process to improve DOA estimation performance. The performance of WS-TOPS is
compared with those of TOPS, Squared TOPS, incoherent MUSIC, and test of orthogonality of frequency spaces (TOFS)
through computer simulations. The simulation results show that WS-TOPS can suppress all false peaks in spatial
spectrum and improve DOA estimation accuracy and also keep the same resolution performance as Squared TOPS.
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1 Introduction
Direction-of-arrival (DOA) estimation for wideband sig-
nals has been attracting much attention for decades
because wideband signals are commonly used in real
world for such as signal source localization in wireless
communication and radar systems. To improve degree-
of-freedom (DOF) and accuracy of DOA estimation,
many researches on wideband DOA estimation have also
been introduced over several decades [1]. DOA estima-
tion methods for narrowband signals cannot be applied
directly to wideband signals because the phase differ-
ence between array antennas depends on not only the
DOA of the signals but also the temporal frequency.
Thus, the common pre-processing for wideband signal
estimator decomposes a wideband signal into some nar-
rowband signals using filter banks or a discrete Fourier
transform (DFT). Based on the method, many algorithms
have been introduced and they are categorized into two
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groups: incoherent signal subspace method (ISSM) [2, 3]
and coherent signal subspace method (CSSM) [4].
ISSM is one of the simplest wideband DOA estimation

methods. ISSM uses several narrowband signals decom-
posed from wideband signal incoherently [3]. In partic-
ular, the method applies narrowband DOA estimation
techniques, such as MUSIC [5], independently to the
narrowband signals. Then, these results are averaged to
estimate the DOA of incoming wideband signal sources.
Although ISSM provides better estimation accuracy in
high signal-to-noise ratio (SNR) regions, the performance
deteriorates when the SNR of some frequency bands are
low. In other words, the poor estimates from some fre-
quency bands will degrade the final estimation accuracy.
To overcome these disadvantages and to improve DOA

estimation performance, CSSM was proposed [4]. In
CSSM processing, the correlation matrix of each fre-
quency band is focused by transformation matrices and
the focused matrices are averaged to generate a new
correlation matrix. Then, CSSM estimates the DOA of
incoming wideband signal sources by applying a DOA
estimation method for narrowband signals. The key point
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of CSSM algorithm is how to focus correlation matri-
ces. Many techniques have been proposed to obtain a
proper focusing matrix [6, 7]. However, each focusing
technique requires the initial values, whichmeans the pre-
estimated direction of incoming signal sources, and the
performance of CSSM is sensitive to the initial values [8].
The weighted average of signal subspaces (WAVES) [9] is
also a well-known DOA estimation method for wideband
signal sources. However, WAVES also needs the initial
DOA estimates and its performance greatly depends on
the accuracy of the initial values.
A novel wideband DOA estimation method, which

is named test of orthogonality of projected subspaces
(TOPS), was proposed [10]. TOPS uses the signal and
noise subspaces of several frequency bands and provides
good DOA estimation performance without requiring the
initial values. However, the method has a drawback that
the spatial spectrum calculated by TOPS algorithm has
some false peaks and they make it difficult to estimate the
true DOA of signal sources.
Squared TOPS was proposed as an improvement

method of TOPS [11]. Squared TOPS improves DOA
estimation performance by using the squared matrix for
orthogonality test instead of the matrix to be tested in the
signal processing of TOPS. The method provides higher
DOA estimation accuracy and better resolution perfor-
mance than those of TOPS. However, the undesirable false
peaks in spatial spectrum remain.
The test of orthogonality of frequency subspaces

(TOFS) was proposed as a newwideband DOA estimation
method [12]. TOFS uses the noise subspaces of multiple
frequency bands with the steering vector and shows high
estimation accuracy when SNR is high. However, TOFS
cannot resolve closely spaced signal sources when SNR
is low.
Recently, Khatri-Rao (KR) subspace approach was pro-

posed as the method to expand the array structure and
to increase DOF [13]. Applying KR subspace approach to
CSSM algorithm, someDOA estimationmethods of wide-
band signal sources were proposed [14]. The methods
achieve higher DOA estimation accuracy and resolution
performance than the conventional CSSM even if there
are fewer sensors or antennas than the incoming signal
sources. However, it also requires the initial DOA estimate
of each signal source.
Furthermore, sparse signal representation algorithms

have also been received much attention, which can pro-
vide new approaches for wideband DOA estimation
[15–17]. These DOA estimation methods based on the
sparse signal representation perform higher resolution
than the conventional methods without requiring the
number of sources. However, there are some difficul-
ties in selecting properly parameters to calculate optimal
solutions.

In this paper, we propose a new DOA estimation
method for wideband signals called weighted Squared
TOPS (WS-TOPS) based on Squared TOPS. WS-TOPS
also uses signal subspace and noise subspace of each
frequency like Squared TOPS and does not require any
initial values. Using modified squared matrix and selec-
tive weighted averaging process, WS-TOPS can suppress
all false peaks in spatial spectrum and improve DOA esti-
mation accuracy of wideband signal sources and also keep
the same resolution performance as Squared TOPS.
This paper is organized as follows. In Section 2, the

signal model is described, and the conventional DOA esti-
mation algorithms are explained in Section 3. In Section 4,
WS-TOPS is proposed. In Section 5, simulation results are
presented, and conclusions are provided in Section 6.
Notation: We denote vectors and matrices by bold-

face lowercase and uppercase letters, respectively. The
superscripts T and H are transpose and complex conju-
gate transpose, respectively. E[ ·] denotes the expectation
operator.

2 Signal model
We consider estimating the DOA of L wideband signal
sources using a uniform linear array that consists of M
antennas. Assume that the number of signal sources L (≤
M) is either known or can be estimated [18, 19]. It is also
assumed that all signals are uncorrelated with each other
and exist in the bandwidth between wL and wH . Then, the
received signal atmth antenna can be expressed as

xm(t) =
L∑

l=1
sl(t − vm sin θl) + nm(t), (1)

where sl(t) is the lth signal source, nm(t) is additive white
Gaussian noise at the mth antenna, vm = (m − 1)d/c,
where d is the distance between adjacent antennas, and c
is the speed of light. θl is the DOA to be estimated. Then,
the received wideband signals are decomposed intoK nar-
rowband signals. The DFT of the signal received at mth
antenna is

xm(ω) =
L∑

l=1
sl(ω) exp

(−jωvm sin θl
) + nm(ω). (2)

Then, the output signals of the DFT can be written in
vector form as follows:

x(ωi) = A(ωi, θ)s(ωi) + n(ωi), i = 1, 2, · · · ,K , (3)

where ωL < ωi < ωH for i = 1, 2, · · · ,K ,

A(ωi, θ) = [
a(ωi, θ1) a(ωi, θ2) · · · a(ωi, θL)

]
, (4)

a(ωi, θl) = [
1, e−jωiv1 sin θl , · · · , e−jωivM−1 sin θl

]T . (5)
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For simplicity, hereafter, A(ωi, θ) and a(ωi, θl) will be
represented as Ai(θ) and ai(θl), respectively. The correla-
tion matrix is calculated as follows:

Rxx(ωi) = E
[
x(ωi)xH(ωi)

]
, (6)

= Ai(θ)Rss(ωi)AH
i (θ) + σ 2

n I, (7)

where Rss(ωi) = E[ s(ωi)sH(ωi)], σ 2
n is the noise power,

and I is the M × M unit matrix. Assuming the L signal
sources are uncorrelated, Rss(ωi) has full rank, then the
signal subspace matrix F i and the noise subspace matrix
W i at frequency ωi can be formed from the eigenvalue
decomposition (EVD) of the correlation matrix as

F i =[ ei,1, ei,2, · · · , ei,L] , (8)

W i =[ ei,L+1, ei,L+2, · · · , ei,M] , (9)

where ei,1, · · · , ei,M are the orthogonal eigenvectors of
Rxx(ωi) indexed in descending order with respect to their
corresponding eigenvalues as follows:

λi,1 ≥ λi,2 ≥ · · · ≥ λi,L > λi,L+1 = · · · = λi,M = σ 2
n .
(10)

3 Conventional wideband DOA estimation
methods

In this section, we explain some conventional DOA esti-
mation methods, which can estimate the DOA of incom-
ing wideband signal sources without any initial value.
In these methods, each wideband signal is decomposed
into K narrowband signals by DFT as mentioned in the
previous section.

3.1 Incoherent MUSIC (IMUSIC)
IMUSIC, which is one of the simplest DOA estimation
methods for wideband signals, applies narrowband sig-
nal subspace methods (e.g., MUSIC) to each frequency
band independently [2, 3]. Then, IMUSIC estimates the
DOA of wideband signal sources by using the following
equation:

θ̂ = arg min
θ

K∑

i=1
aHi (θ)W iWH

i ai(θ) (11)

Since the DOAs estimated by Eq. (11) are averages of the
result of each frequency band, the poor estimates from a
single frequency band even degrades the final estimation
accuracy.

3.2 Test of orthogonality of frequency subspaces (TOFS)
TOFS uses the noise subspace obtained from EVD of
the correlation matrix of each frequency [12]. The DOA
of each incoming wideband signal source is estimated
by testing the orthogonality between the steering vec-
tor and the noise subspaces. If θ is the one DOA

of incoming wideband signals, θ satisfies the following
equation:

aHi (θ)W iWH
i ai(θ) = 0 (12)

Here, we define the vector d(θ) as follows:

d(θ) =[aH1 (θ)W 1WH
1 a1(θ)

aH2 (θ)W 2WH
2 a2(θ)

· · ·aHK (θ)WKWH
KaK (θ)] (13)

All elements of the vector d(θ)will be zero when θ is the
DOA of incoming wideband signal sources. Then, we can
estimate the DOAs by using the following equation:

θ̂ = arg max
θ

1
||d(θ)|| (14)

TOFS shows good DOA estimation accuracy in high
SNR region by using the noise subspaces obtained from
the correlation matrix of received signals. However, TOFS
cannot resolve closely spaced signal sources when SNR
is low.

3.3 Test of orthogonality of projected subspaces (TOPS)
TOPS uses both of the signal and noise subspaces of
each frequency band to estimate the DOA of incoming
wideband signal sources [10].
First of all, we obtain the signal subspace F i and the

noise subspaceW i from EVD of the correlation matrix of
each frequency band, as described in the previous section.
Then, one frequency band ωi should be selected and the

signal subspace F i of the selected frequency band is trans-
formed into other frequencies. One of the advantages of
TOPS over CSSM is that TOPS does not require the ini-
tial DOA estimates for the frequency transform process as
follows.
TOPS uses a diagonal unitary transformation matrix.

Themth term on the diagonal of the frequency transform
matrix �(ωi, θ) is

[�(ωi, θ)](m,m) = exp(−jωi
md
c

sin θ). (15)

Using �(ωi, θ), the signal subspace F i of the frequency
band ωi is transformed into the other frequency band ωj,
where we define the transformed signal subspace U ij(θ),
as follows:

U ij(θ) = �(�ω, θ)F i, i �= j, (16)

where �ω = ωj − ωi. Eq. (16) can be expressed as

U ij(θ) = �(�ω, θ)Ai(θ)Gi, (17)

= Aj(θ̂)Gi, (18)

where θ̂ is the transformed θ by using the frequency trans-
form matrix �(ωi, θ),Gi is a full-rank square matrix that
satisfies F i = Ai(θ)Gi. The transformation process just
transforms an array manifold at any frequency and DOA
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into another array manifold corresponding to another fre-
quency. Therefore, the transformed matrix is a full rank
matrix and could be used for the following test of orthog-
onality between transformed matrix and noise subspaces
as discussed in detail in [10].
Assuming that selected frequency band is ω1, the matrix

D′(θ) is defined as

D′(θ) = [
UH

12(θ)W 2 UH
13(θ)W 3 · · · UH

1K (θ)WK
]
.

(19)

We can estimate the DOA of the incoming wideband
signal sources from spatial spectrum calculated by the fol-
lowing equation since the rank of the matrix D′(θ) also
decreases when θ is the one DOA of incoming wideband
signal sources same as TOFS.

θ̂ = arg max
θ

1
σ ′
min(θ)

(20)

where σ ′
min(θ) is theminimum singular value of thematrix

D′(θ).
DOA estimation performance depends on the accuracy

of the estimated correlation matrix, which is basically
determined by the number of snapshots and the SNR of
received signal. In signal processing of TOPS, the sub-
space projection technique is applied to reduce the signal
subspace component leakage in the estimated noise sub-
space. The projection matrix Pi(θ) is defined as

Pi(θ) = I − (aHi (θ)ai(θ))−1ai(θ)aHi (θ), (21)

where I is anM×M unit matrix. Then, we obtain the noise
robust matrix D′′(θ) replacing the term U ij(θ) of Eq. (19)
by a new transformed signal subspace matrix U ′

ij(θ).

U ′
ij(θ) = Pj(θ)U ij(θ) (22)

D′′(θ) =
[
U ′H

12 (θ)W 2 U ′H
13 (θ)W 3 · · · U ′H

1K (θ)WK

]
(23)

By using the following equation with D′′(θ), TOPS pro-
vides better performance since the estimation errors of
subspaces are removed by the projection matrix Pi(θ).

θ̂ = arg max
θ

1
σ ′′
min(θ)

, (24)

where σ ′′
min(θ) is theminimum singular value of thematrix

D′′(θ).
The output signal of DFT or bandpass filter is not always

a perfect narrowband signal. The filtered signals could
degrade the DOA estimation accuracy. TOPS can reduce
those degradations by using the certain signal subspace
obtained from the estimated correlation matrix instead of
the steering vector of the frequency band. It indicates that
the method to select the frequency band, of which the sig-
nal subspace will be transformed to other frequency bands
by Eq. (16), also affects the resulting DOA estimation.

In contrast, the residual error of the subspaces causes
some undesirable rank reductions of the matrix D′′(θ).
Therefore, TOPS has the serious disadvantage that sev-
eral false peaks appear in the spatial spectrum obtained by
Eq. (24).

3.4 Squared TOPS
Squared TOPS applies two techniques to TOPS to
improve the performance of DOA estimation [11]. One is
the technique to select the frequency band of which the
signal subspace will be used. The other is the technique
to improve the sensitivity of rank decrease of the matrix
D′′(θ) when θ is the one DOA of incoming wideband
signal sources.
The reference frequency, which is defined as the fre-

quency band of which the signal subspace will be used,
should be the frequency band with the highest SNR.
Squared TOPS uses the frequency band where the dif-
ference between the smallest signal eigenvalue λi,L and
the largest noise eigenvalue λi,L+1 is maximum as the
reference frequency [11].
Then, the signal subspace of the reference frequency

band is transformed into the other frequency bands by
Eq. (16). Let us assume that the frequency band ωi is
selected and the signal subspace F i is transformed to the
other frequency bands ωj. Using the transformed signal
subspace matrixU ′

ij(θ) and the noise subspace matrixW j,
we construct the matrix Zi(θ) for the test of orthogonality
of projected subspaces as follows:

Zi(θ) =
[

· · · U ′H
ij (θ)W jWH

j U ′
ij(θ) · · ·

]
, i �= j (25)

Squared TOPS estimates the DOA of incoming wide-
band signal sources using the inverse of the minimum
singular value σzimin(θ) of the matrix Zi(θ) as follows:

θ̂ = arg max
θ

1
σzimin(θ)

(26)

Both of the row and the column elements of the matrix
Zi(θ) obtained by the squared operation should be close
to zero when θ is the DOA of incoming wideband sig-
nal sources. It means that the operation improves the
sensitivity to detect the rank reduction of the orthogo-
nality evaluation matrix. Eventually, it provides improve-
ment of the estimation performance of Squared TOPS.
However, the undesirable false peaks in spatial spectrum
remain.

4 Proposedmethod
In this section, we explain our proposed method named
weighted Squared TOPS (WS-TOPS). WS-TOPS applies
the following two approaches to Squared TOPS to
improve DOA estimation performance. One is the mod-
ified squared matrix method, which is the algorithm
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to suppress the false peaks in the spatial spectrum of
Squared TOPS. The other is the selective weighted aver-
agingmethod, which is the algorithm to improve the DOA
estimation accuracy by using the signal subspaces of mul-
tiple frequency bands. The details of these algorithms are
shown in the following subsections.

4.1 Modified squared matrix (algorithm 1)
Although Squared TOPS and TOPS use the projection
matrix Pi(θ) to reduce the signal subspace component
leakage in the estimated noise subspace, some false peaks
in the spatial spectrum remain. This is the serious dis-
advantage of TOPS and Squared TOPS. The transformed
signal subspace matrix U ′

ij(θ) has residual error, and it
causes the undesirable rank decrease of the matrix Zi(θ).
Thus, we propose the algorithm to suppress these false
peaks by modifying the component of the matrix Zi(θ).
The steering vector ai(θ) is orthogonal to the noise

subspaces only when θ is the DOA of the incom-
ing wideband signal sources. Here, we define bj(θ) =
aHj (θ)W jWH

j aj(θ). Then, we can avoid the undesirable
rank decrease of the matrix Zi(θ) by adding the square
matrix of which the diagonal elements are bj(θ) of the fre-
quency band ωj. We, however, need to consider how we
add bj(θ) to the components of the matrix Zi(θ) because
bj(θ) is similar to the components of TOFS, and it would
cause the degradation of the resolution performance of
closely spaced signal sources.
bj(θ) is calculated by using a steering vector and noise

subspaces. As we can see from Eq. (5), aHj (θ)aj(θ) is M
that is the number of antennas. Therefore, bj(θ) changes
between 0 andM. If the steering vector is orthogonal to all
of noise subspaces, bj(θ) is 0. If the steering vector is not
orthogonal to noise subspaces, bj(θ) comes close toM. On
the other hand, the elements of U ′H

ij (θ)W jWH
j U

′
ij(θ) are

calculated by using the transformed signal subspaces and
noise subspaces. Here, we define the lth column of U ′

ij(θ)

as u′
ijl(θ), which is a transformed signal subspace. As we

can also see from Eqs. (16) and (22), u′H
ijl (θ)u′

ijl(θ) is 1, thus
each element of U ′H

ij (θ)W jWH
j U

′
ij(θ) changes between 0

and 1. Therefore, we divide bj(θ) by M to deal with the
elements of U ′H

ij (θ)W jWH
j U

′
ij(θ) and bj(θ) as the same

range. Based on the discussion, we modify the component
of Zi(θ) as follows.
First, we obtain the matrix Cij(θ).

Cij(θ) = U
′H
ij (θ)W jWH

j U
′
ij(θ) + Bj(θ), (27)

where Bj(θ) is an L × L diagonal matrix and it can be
expressed as

Bj(θ) = bj(θ)

M
I, (28)

where I is an L×L unit matrix. ThematrixCij(θ) keeps the
full rank except when θ is the DOA of incoming wideband
signal sources even if the rank of Zi(θ) decreases unde-
sirably. Thus, the algorithm can suppress false peaks in
spatial spectrum. Then, we construct a new matrix Z′

i(θ)

using the matrix Cij(θ) as follows:

Z′
i(θ) =[ · · · Cij(θ) · · · ] , i �= j (29)

Finally, we can estimate the DOA of incoming wideband
signal sources using Eq. (30).

θ̂ = arg max
θ

1
σ ′
zimin

(θ)
, (30)

where σ ′
zimin

(θ) is the minimum singular value of the
matrix Z′

i(θ).

4.2 Selective weighted averaging (algorithm 2)
Squared TOPS uses only the single signal subspace F i
of the reference frequency band ωi, where the difference
between the smallest signal eigenvalue λi,L and the largest
noise eigenvalue λi,L+1 is maximum. This approach is
reasonable in terms of computational complexity. How-
ever, there are signal subspaces of different frequency
bands which could be exploited for further improvement
of DOA estimation accuracy. Therefore, we introduce
an algorithm using the signal subspaces of multiple fre-
quency bands. We define the weight αi using the smallest
signal eigenvalue λi,L and the largest noise eigenvalue
λi,L+1 of the frequency band ωi as follows:

αi = λi,L/λi,L+1 = λi,L/σ
2
n (31)

The weight αi can indicate the reliability of the fre-
quency band ωi because of the same reason Squared
TOPS selects reference frequency. Then, using the weight
αi, the spatial spectrum of all frequency bands are com-
bined as follows:

θ̂ = arg max
θ

1
1
K

∑K
i=1 αiσzimin(θ)

(32)

The spatial spectrum obtained from Eq. (32) is averaged
with the weights αi. Therefore, the algorithm can improve
the DOA estimation accuracy of signal sources in high
SNR region. However, the algorithm causes deteriorations
of sharpness of spectrum peaks when each frequency
band shows different peaks to each other, e.g., in low SNR
region. Eventually, the algorithm degrades the resolution
performance of closely spaced signal sources in low SNR
region.
To prevent the deterioration caused by the process, we

propose a selective averaging approach. By using only
the frequency bands ωi with weight αi larger than a cer-
tain threshold αth, which are the reliable frequency bands,
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we can improve DOA estimation performance and also
reduce computational cost.
Finally, we obtain the spatial spectrum based on the

algorithm 2 as follows:

θ̂ = arg max
θ

K ′
∑

i=1 αiσzimin(θ)
, {i | αi > αth}, (33)

where K ′ is the number of frequency bands with weight
αi larger than the threshold αth. If there is no frequency
band with weight αi larger than the threshold αth, we use
the signal subspace of the frequency band with the largest
weight αi. For example, there are signal sources with low
power and every αi is smaller than αth.
If we use only single frequency band, the proposed

method keeps the same performance as Squared TOPS.
In other words, the algorithm can provide better perfor-
mance than that of Squared TOPS even in the case of all αi
that are smaller than the threshold αth. In what follows, we
set αth = 9, which implies that the signal power of the fre-
quency band is larger than (3σn)2 based on Eq. (31). αth in
the algorithm 2 determines the frequency bands of which
spatial spectra are averaged based on SNR; therefore, the
performance of the algorithm 2 depends on SNR of each
frequency band.

4.3 Weighted Squared TOPS (WS-TOPS)
The algorithm 1 is effective to suppress the undesir-
able false peaks in the spatial spectrum. The algorithm
2 improves the DOA estimation accuracy in high SNR
region. Therefore, we can achieve the further improve-
ment of DOA estimation performance using the two
algorithms simultaneously as follows:

θ̂ = arg max
θ

K ′
∑

i=1 αiσ ′
zimin

(θ)
, {i | αi > αth}, (34)

4.4 Computational complexity
The number of computations for anM×M SVD isO(M3)
[20], which is the dominant factor of the computational
complexity for the TOPS-based method (TOPS, Squared
TOPS, and WS-TOPS). For example, the signal process-
ing for TOPS requires an SVD of an L × (K − 1)(M − L)

matrix D′′(θ), where (K − 1)(M − L) > L2 because
2L ≤ M and K ≥ L + 1 [10]. The calculation of the
evaluation matrix (D,Z, and Z′) for each method should
also be in consideration. Table 1 lists the dominant fac-
tors of the computational complexity of each method,
and Fig. 1 shows examples of the computational cost
vs. the system parameters (M, L, and K). The proposed
method, WS-TOPS, needs to repeat SVD calculations for
several frequency bands. Thus, as we can see in Fig. 1,
it requires K ′ times signal processing cost than that of

Table 1 Computational complexity

Complexity

Algorithm Calculation forD,Z, and Z′ Calculation for SVD

TOPS O(LM(M − L)(K − 1)) +O(L2(M− L)(K −1))

Squared
TOPS

O({2LM(M− L)+ L2(M− L)}(K −1)) +O(L3(K − 1))

WS-TOPS O({2LM(M−L)+L2(M−L)}(K−1)K ′) +O(L3(K − 1)K ′)

Squared TOPS. However, considering the DOA estima-
tion performance described in the following section, the
proposed method can provide enough improvement to be
applied.

5 Numerical results
This section shows numerical simulation results to
demonstrate the performance of WS-TOPS with respect
to those of the conventional methods which do not require
the initial value of DOA: IMUSIC, TOFS, TOPS, and
Squared TOPS.

5.1 Simulation parameters
The received signals are divided into Q blocks with the
number of samples in one block being equal to the num-
ber of DFT points. In this paper, we set Q to 100 and
DFT points to 256. We use the frequency bands which
are equally spaced K frequency bands between ωL and ωH
from DFT output. We define the DFT output signal of fre-
quency band ωi is xq(ωi), {i ∈ 1 ∼ K} for the qth block.
Then, the estimated correlation matrix of the frequency
band ωi is

R̂(ωi) = 1
Q

Q−1∑

q=0
xq(ωi)xHq (ωi). (35)

Then, we calculate the signal subspace matrix F i and
the noise subspace matrix W i from EVD of the corre-
lation matrix R̂(ωi) and estimate the DOA of incoming
wideband signal sources by using WS-TOPS and each
conventional method described in Section 4.
The statistical performance was evaluated by perform-

ing 500 Monte Carlo runs for each algorithm. The
fixed simulation parameters to be used in the simula-
tions are shown in Table 2. The number of antennas
(M), the number of signal sources (L), and the num-
ber of frequency bands (K) are shown in the caption
of each figure. λ is the wavelength corresponding to
the highest frequency component of the received wide-
band signals. Note that the signal power on each fre-
quency between ωL and ωH changes randomly for each
simulation. This means that the efficient frequency band
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Fig. 1 Computational complexity. a Changing the number of waves L, whereM = 10 and K = 7, b changing the number of antennasM, where
L = 3 and K = 7, and c changing the number of frequency bins K, whereM = 10 and L = 3

Table 2 Simulation parameters

Item Symbol Quantity Remarks

Antenna spacing d λ/2 Uniform linear array

Frequency ωL ωL π/3 The lowest frequency of
signal sources (ω domain)

Frequency ωH ωH 2π/3 The highest frequency of
signal sources (ω domain)

Parameter αth αth 9 3σn

of each signal sources also changes randomly with each
simulation.

5.2 Spatial spectrum
Figure 2 shows the spatial spectrum calculated by each
method for four scenarios, where SNR of each incom-
ing signal source is 5 dB. The details of the scenarios
are described in the caption of the figure. The spa-
tial spectrum of each method has some sharp peaks
at the true directions, which are indicated as dot-
ted lines in the figures. We can see that WS-TOPS
can suppress all undesirable false peaks in the spatial
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Fig. 2 Examples of spatial spectrum on aM = 10, K = 7, and L = 3 (8°, 33°, and 37°), bM = 10, K = 15, and L = 3 (8°, 33°, and 37°), cM = 6, K = 7,
and L = 3 (8°, 33°, and 37°), and dM = 10, K = 7, and L = 5 (-20°, -10°, 8°, 33°, and 37°)

spectrum, while the spatial spectrum of TOPS and
Squared TOPS have some false peaks. From Fig. 2, it
is also found that WS-TOPS can detect closely spaced
signal sources at 33° and 37°, while IMUSIC and TOFS
cannot.
As shown in Fig. 2, WS-TOPS can hold the capa-

bility to suppress false peaks for all scenarios. The
results prove that the WS-TOPS is robust to the system
parameters, which are the number of antennas (M), the
number of sources (L), and the number of frequency
bins (K).
Regarding the computational complexity of WS-

TOPS- and TOPS-based methods, we calculate the

computational costs to obtain an inverse of the minimum
singular value of each direction by using MATLAB. In
the case of M = 10, L = 3, and K = 7, the averaged
computation time of WS-TOPS (K ′ = 7) is 2.1 ms, that of
WS-TOPS (K ′ = 2) is 0.59 ms, that of Squared TOPS is
0.21 ms, and that of TOPS is 0.17 ms. In the case of M =
10, L = 3, and K = 15, the averaged computation time of
WS-TOPS (K ′ = 7) is 5.1 ms, that of WS-TOPS (K ′ = 2)
is 1.47 ms, that of Squared TOPS is 0.44 ms, and that
of TOPS is 0.42 ms. Although the actual computational
times depend on the calculation system, the results show
that the effective costs coincide with the computational
complexity described in Fig. 1.
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5.3 Probability of resolution
Figure 3 shows the probability of resolution of WS-TOPS
and the conventional methods, where the simulation
parameters are shown in the caption of the figure. The
probability of resolution denotes the probability of suc-
cessful detection of all signal sources. In other words, we
consider a certain result as a successful detection only
when all signal sources are detected. If the number of sig-
nal sources we detect is less than the actual number of
incoming signal sources, we judge the result as a false one
in terms of successful detection. As we can see from Fig. 3,
the resolution performance ofWS-TOPS is between those
of Squared TOPS and TOPS. The results indicate that

WS-TOPS can achieve better resolution than that of
TOPS, TOFS, and IMUSIC, without dependence on the
system parameters.

5.4 Root mean square error (RMSE) of estimated DOA
The RMSEs of the estimated DOA of the signal sources
calculated by WS-TOPS and the conventional methods
are shown in Figs. 4 and 5. For comparison purposes,
the Cramér-Rao bound (CRB) [21] is also presented
in each figure. Figure 4 shows DOA estimation accu-
racy of the signal source from 8°. where there is no
closely spaced wideband signal sources. As we can see
in Fig. 4, WS-TOPS can provide higher DOA estimation

Fig. 3 Examples of resolution on aM = 10, K = 7, and L = 3 (8°, 33°, and 37°), bM = 10, K = 15,, and L = 3 (8°, 33°, and 37°), cM = 6, K = 7, and
L = 3 (8°, 33°, and 37°), and dM = 10, K = 7, and L = 5 (-20°, -10°, 8°, 33°, and 37°)
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Fig. 4 Examples of RMSEs of estimated DOA of the signal source from 8° on aM = 10, K = 7, and L = 3 (8°, 33°, and 37°), bM = 10, K = 15, and
L = 3 (8°, 33°, and 37°), cM = 6, K = 7, and L = 3 (8°, 33°, and 37°), and dM = 10, K = 7, and L = 5 (-20°, -10°, 8°, 33°, and 37°)

accuracy than that of TOPS and that of Squared TOPS
in the full range of SNR. It is also found that WS-
TOPS shows similar performance to TOFS and IMU-
SIC in high SNR region. The results that TOPS and
Squared TOPS show lower accuracy of DOA estimation
than that of IMUSIC coincide with the explanation in
[10]. In contrast, the results show that WS-TOPS can
improve DOA estimation accuracy and it comes close
to that of IMUSIC and TOFS methods in high SNR
region.
Figure 5 shows DOA estimation accuracy of the sig-

nal source from 33° where there is the closely spaced
wideband signal source. From Fig. 5, it is found that

WS-TOPS yields the best performance of DOA esti-
mation accuracy for closely spaced wideband signal
sources in full range of SNR. The results prove that
the DOA estimation accuracy of WS-TOPS is bet-
ter than the conventional methods and also show that
the performance of WS-TOPS is robust to the system
parameters.

6 Conclusions
In this paper, we propose a new DOA estimation method
for wideband signals called WS-TOPS-based on Squared
TOPS. WS-TOPS uses the selective weighted averag-
ing method and the modified squared matrix method to
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Fig. 5 Examples of RMSEs of estimated DOA of the signal source from 33° aM = 10, K = 7, and L = 3 (8°, 33°, and 37°), bM = 10, K = 15, and L = 3
(8°, 33°, and 37°), cM = 6, K = 7, and L = 3 (8°, 33°, and 37°), and dM = 10, K = 7, and L = 5 (-20°, -10°, 8°, 33°, and 37°)

improve DOA estimation performance. The simulation
results show that WS-TOPS can suppress all false peaks
in the spatial spectrum, while TOPS and Squared TOPS
cannot. It is also shown that the DOA estimation accu-
racy and the resolution performance of WS-TOPS are
better than those of the conventional methods. WS-TOPS
can achieve the performance without requiring initial
estimates. These results prove that WS-TOPS is effective
in estimating the DOA of wideband signal sources.
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