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Abstract

The article proposes a novel two-stage network traffic anomaly detection method for the railway transportation
critical infrastructure monitored using wireless sensor networks (WSN). The first step of the proposed solution is to
find and eliminate any outlying observations in the analyzed parameters of the WSN traffic using a simple and fast
one-dimensional quartile criterion. In the second step, the remaining data is used to estimate autoregressive fractional
integrated moving average (ARFIMA) statistical models describing variability of the tested WSN parameters. The paper
also introduces an effective method for the ARFIMA model parameters estimation and identification using Haslett and
Raftery estimator and Hyndman and Khandakar technique. The choice of the “economically” parameterized form of the
model was based on the compromise between the conciseness of representation and the estimation of the error size.
To detect anomalous behavior, i.e, a potential network attack, the proposed detection method uses statistical relations
between the estimated traffic model and its actual variability. The obtained experimental results prove the effectiveness
of the presented approach and aptness of selection of the statistical models.
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1 Introduction

Intelligent transportation systems (ITS) are currently a
key technology that is identified as an answer to the grow-
ing need for mobility of goods and people. Owing to the
use of ITS, it is possible to establish a fully functioning, ac-
curate, real-time, and efficient transportation management
system. It can be achieved by combining information
systems and technologies like wireless networks and sen-
sors, computing/networking devices, Global Positioning
System (GPS), mobile telephony, and camera recognition
systems. Thanks to ITS, it is possible to improve the level
of services and capacity of transportation systems. In par-
ticular, ITS can help to enhance the transportation infra-
structures, its overall safety, and security of critical
information for different transportation means. It must be
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noted that currently, the main focus of academics and in-
dustry is on vehicular networks and more precisely on
developing inter-vehicle and vehicle-to-infrastructure net-
works [1-3]. However, ITS are not limited only to manage
vehicular traffic but they can also provide services and
they can be successfully implemented in air, water trans-
port, and rail systems [4, 5] as well.

An important aspect of any ITS is to correctly address
potential security and privacy issues. Aijaz et al. [4] de-
fine the following vital attack aspects depending on what
the target is. Authors identify attacks on the following:
(i) wireless interface; (ii) sensor inputs to different pro-
cessing units; (iii) software and hardware parts of the
systems; and (iv) security infrastructure behind wireless
access networks (e.g., certification and traffic authorities,
transportation vehicle manufacturers). On the other
hand, various security solutions have been proposed to
tackle these problems and they can be classified [6] as
proactive (e.g., tamper resistant hardware, proprietary
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system design, and digitally signed messages) or reactive
(e.g., anomaly-based, context-based, and signature-based
approaches). Especially anomaly-based detection systems
constitute an important part of every ITS-based manage-
ment system. They allow to assess the imminent emer-
gence of any incidents, i.e., to detect deviations from
normal patterns (events, situations). Therefore, identify-
ing anomalous events is essential as they can lead to
critical conditions where immediate actions must be
taken.

In the existing literature, several anomaly detection ap-
proaches for ITS have been proposed. However, they
have been mostly proposed for the vehicular networks,
see e.g., [7-9]. However, very few solutions so far have
been proposed for railway systems and they are
mentioned below.

Rabatel et al. [10] focused on the field of train main-
tenance. Monitoring of trains is provided using sensors
positioned on the main train components, e.g., motors
wheels, to transmit information regarding, e.g., the
temperature, acceleration, and velocity. Then an auto-
matic detection system is introduced to identify anomal-
ies in order to predict potential failures in advance. The
proposed approach considers also the contextual criteria
associated to railway data like weather conditions and
itinerary.

Holst et al. [11] developed a statistical anomaly detec-
tion method which has been deployed in a tool which
aim is to monitor train fleets and that allows inspecting
and visualizing the occurrence of event messages gener-
ated on the trains. The designed anomaly detection
component is based on the Bayesian Principal Anomaly
[12] and aids operators to quickly find significant devia-
tions from normal behavior and to detect early indica-
tions of potential problems.

Anomaly detection system that is able to indicate de-
graded condition of track and rolling stock has been
proposed by Goodman et al. [13]. Authors utilized a sen-
sor system installed on one of the 110 boxcars on a train
on a high-tonnage loop test track. The data from the
sensors was sent to a specialized collection gateway hub
which was mounted inside the boxcar. The main goal
was to discover abnormalities in railroad tracks, rolling
stock, bearings, rotating shafts, and gears. The obtained
results confirmed that such a detection system is effi-
cient enough to identify, locate, and characterize such
types of anomalies.

Considering the above, in this article we introduce an-
other type of a novel anomaly detection system dedi-
cated for wireless sensor networks (WSN) traffic that is
based on clustering and statistical model with long
memory, i.e., autoregressive fractional integrated moving
average (ARFIMA). The main idea of the proposed ap-
proach is to analyze the deviations between parameters
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of the real network traffic and the estimated statistical
models of that traffic. We develop a two-stage anomaly
detection method. The first step is to find and eliminate
possible observations outlying from the analyzed WSN
traffic parameters. This step is performed by means of a
simple yet effective one-dimensional quartile criterion.
In the second step, the remaining data are used to esti-
mate the ARFIMA statistical models describing variabil-
ity of the tested WSN parameters.

The proposed anomaly detection method is used as a
security measure for railroad gates tracking system that is
based on WSN sensors. It is a part of a more comprehen-
sive system responsible for supervising and visualization
of the critical infrastructure, i.e., railroad crossings. The
feasibility and effectiveness of the introduced method is
proved based on the abovementioned real-life railroad
crossings monitoring system; however, it must be noted
that it can be conveniently ported to any other transporta-
tion system as well.

The rest of this paper is structured as follows. The
next section focuses on the main security issues related
to WSN. Then in Section 3, the assumed scenario as
well as details of the proposed anomaly detection ap-
proach is outlined. Section 4 presents the real-life setup
as well as obtained experimental results. Finally, Section
5 concludes our work.

2 Overview of security in WSN
Ensuring security of the WSNs is an important factor
for their correct operation due to the fact that they are
distinctly sensitive to hazards emerging from human
intentional actions that include illegal use or incapacita-
tion (e.g., impersonating or eavesdropping the user, ter-
rorist attacks) [14], or from environmental influence, for
instance fire, electromagnetic signal, etc. [15]. When
comparing cable networks to WSNs, the latter offer
restricted computational abilities and limited energy re-
sources [16].Taking this into account, maintaining safe
operation of WSN is difficult, nevertheless necessary. It
is because the networks must be able to uphold their
basic functioning which consists in collecting data from
the sensors and transmitting it to both the monitoring
unit and the WSN infrastructure management centers.
Wireless sensor networks might be subjected to differ-
ent types of attacks (either passive or active). Passive at-
tacks happen when an intruder does not utilize signal
emissions aimed at disturbing the proper operation of
WSN in order to, e.g., access its data, infrastructure, or
modify transmitted messages. On the other hand, active
attacks rely on utilization of such emissions of signals or
actions that may be detected [15, 17], while trying to ob-
tain an unauthorized access or a possibility to alter the
messages.
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During passive attacks on WSN, the intruder aims at
passive interception of the exchanged network traffic to
implicitly acquire the transmitted data. An example of
such action is eavesdropping of the data that is transmit-
ted between the nodes. The WSN radio medium, be-
cause of its specific features, is relatively vulnerable to
such attacks. Another instance may be the network traf-
fic analysis which intends to examine and disclose the
WSN topology. A characteristic aspect of wireless sensor
networks is a great load of information transmitted
through a part of their nodes. If this data transmission is
increased on these nodes, the neighboring nodes coun-
teract by retransmitting the information to the base sta-
tion. Due to the network traffic analysis, the attacker
may obtain knowledge of how much workload the sen-
sor network critical nodes are burdened with [18, 19].

Contrary to the passive methods, active attacks enable
the intruder to directly or indirectly influence data con-
tent transmitted in the WSN. Moreover, the active at-
tacks can be easily detected because their impact on
WSN performance is direct, ie., they may degrade the
WSN quality, or even deny access to some services or
completely disenable control over the network. For the
network critical infrastructure, direct attacks on WSN
hardware are especially dangerous. Such attacks can
cause diminishing of the monitoring area of the sensor
network, or entire disposal of the WSN [19, 20].

The aim of manipulating WSN nodes is to distract the
operator of the sensor network from the main origin of
the threat. e.g.. from spoofing or distributed denial of
service ((D)DoS) attacks. Moreover, if the attacker uses a
short-term high-energy electromagnetic pulse then an
annihilation of either the given sensor network or any
electronic device within the EMP destruction field [21]
is possible.

The attacks aimed at the data’s confidentiality or integ-
rity constitute an immense threat because they let the
intruder enter the network without authorization to
transmit data. The Sybil Attack is an example of a mask-
ing technique which consists in spoofing by transmitting
numerous identifiers through a harmful confluence, or
framing a legal confluence and taking over its specifica-
tion to obtain access to the WSN infrastructure [22].

The (D)DoS attacks in WSN aim at excessive charging
of the attacked sensor networks features in order to dis-
enable data gathering from the attacked nodes or to re-
strain the efficiency of tools provided by the victim
WSN. The (D)DoS invasions can be directed onto every
level of the network model, i.e., ISO/OSI [21].

Because the WSN are vulnerable to a large number of
dangers, limiting the possibility of a successful attack re-
quires the use of advanced methods and algorithms.
These methods are spread spectrum techniques (hinder-
ing the successful interfering with radio transmission);

Page 3 of 14

methods using cryptographic algorithms (securing the
confidentiality and integrity of the transferred informa-
tion); a proper nodes’ device construction to deny access
to their internal systems (for instance, information about
cryptographic algorithms, or keeping secret keys); utiliz-
ing related protocols (documents guarding the transfer
of information); and ways of monitoring and identifying
abnormalities in the WSN data transfer [23-25].

In this paper, we suggest the two stages of analysis of
abnormal behavior detection for WSN traffic. The first
step prepares proper data by removing the outlier values.
In the second step, the parameters of ARFIMA statistical
model are used for detecting anomalies. In the course of
stages, performed according to particular scenarios, the
satisfying results were obtained. The following scenarios
of anomaly attacks are analyzed and calculated for the
sake of efficient protection of railroad crossings: (i)
electromagnetic distortion; (ii) intentional damage of
selected infrastructure; and (iii) attacks performed by
means of the important WSN component, i.e., the WSN
IP gateway.

3 Network anomaly detection: the proposed
approach

In the rest of the paper, we assume the scenario depicted
in Fig. 1 in which there is a management system that is
utilized for visualizing and controlling railroad crossings
critical infrastructure. The required infrastructure for
monitoring a single railroad crossing consists of WSN
sensors used for analyzing the state and position of the
railroad crossing separate gates, WSN IP gateway which
aggregates the traffic from sensors, firewall, and multi-
WAN router for providing different links to the WAN
network.

As mentioned in the introduction, an anomaly detec-
tion system is a vital component of any ITS management
solution. That is why the Intrusion Detection/Prevention
Systems (IDS/IPS) for detecting attacks and/or intru-
sions are currently utilized as one of the main compo-
nents to provide security of the critical infrastructure.
Their main function is to accurately identify, detect, and
respond to an unauthorized activity directed against the
protected network resources [26].

Generally, we may classify IDS/IPS based on the uti-
lized threat identification technique to signature-based
or anomaly detection systems. The first consists in the
detection of intrusions using the signature of previously
known attacks [27]. Comparatively, the latter relies on
monitoring the defended system and to detect any ab-
normalities. Thus, any deviation from a defined model
or profile of legitimate activities reflected in the WSN
network traffic parameters is treated as a symptom of
the attack. Such a deviation from normal reference is
called an anomaly [14, 28].
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The outstanding profit of abnormal behavior no-
ticing solutions is the fact that they are able to detect
unknown intrusions interrupting correct network traf-
fic parameters. Therefore, ID/PS relying on anomaly
detection are (if properly configured) more effective
than signature-based ones [29].

Considering the above, in this article the recognition of
abnormal behavior is applied. This approach is based on
the idea of analyzing the deviations of parameters of the
real network traffic from the estimated statistical models
of that traffic (see Fig. 2). We suggest a two-stage anomaly
detection method. In the first step, ARFIMA model base
for the analyzed WSN network traffic parameters is built.
This is realized on the formerly selected and calculated
features of the network traffic. In the following steps, out-
lier observations are eliminated and estimation of
ARFIMA models parameters of the analyzed WSN net-
work traffic features is performed. In result, statistical
models base is created and serves as a basis for an anom-
aly detection system. The second step is a normal oper-
ation of an anomaly detection system (ADS), i.e., selection
and calculation of the relevant network traffic features,
and assessment of the difference between the actually

transmitted data (i.e., network traffic) and the calculated
ARFIMA representation of the traffic for the chosen WSN
network parameters.

The motivation for choosing the ARFIMA statistical
model was based on the results of previous authors’ re-
search, i.e., on the use of autoregressive models and
heteroscedastic and regression models with variable
sampling resolution of the dataset for anomaly detection
in the LAN/WAN networks. Findings included in [30-32]
clearly indicate the superiority of the ARFIMA model for
modeling network traffic parameters’ variability for the
purpose of anomaly detection.

It must be emphasized that the first stage is always
initiated after performing any change in WSN network
infrastructure or topology. It can also be performed
periodically to update the statistical models base,
which is a basis for the anomaly detection system.
However, the elimination procedure of outliers’ obser-
vations (realized at this stage) disables degradation of
ARFIMA models by rejecting non-standard parame-
ters of the analyzed network traffic.

Below we present and discuss main components of the
proposed approach in details.
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3.1 Detection of outlying observations—one-dimensional
quartile criterion

Due to the nature of the transportation critical infrastruc-
ture and its monitoring using WSN, there is a real hazard
of fluctuation of the analyzed network traffic parameters,
ie, possibility of emerging outlying observations
(outliers). These fluctuations may have diverse sources, for
instance (i) environmental—connected with interference
of radio wave propagation, (ii) technical—related to
changes in the infrastructure, (iii) devices’ damage; or (iv)
they can be a consequence of network attack.

In our approach, identification of the outliers of the ana-
lyzed WSN traffic parameters is performed by means of
one-dimensional quartile criterion introduced by Tukey
[33], which is used for the construction of box plots. For
every parameter, we calculate the first (Q1) and third (Q3)
quartile and interquartile range IRQ = Q3 - Q1. Quartiles
divide all our observations into four equal-number groups
(Fig. 3, left).

The first quartile (Q1) divides observations in respect
of 25-75 %, which means that 25 % are lower or equal
to Q1, and 75 % of observations are equal or greater that
Q1. The second quartile (Q2), otherwise known as the
median, divides observations into 50-50 % proportion.
The third quartile (Q3) divides the observations in re-
spect of 75-25 %, which means that 75 % of observa-
tions are lower or equal to Q3, and 25 % are equal or
greater that Q1. Observations which can be consid-
ered as outliers are those whose values exceed the
range (Q1 - 1.5IRQ, Q3 + 1.5IRQ). In contrast, obser-
vations of extreme outliers (see Fig. 3, right) are iden-
tified as those for which the attributes are outside the
range (Q1 - 3IRQ, Q3 + 3IRQ).

3.2 The ARFIMA model—estimation of the WSN traffic
features variability

Grange, Joyeux [34], and Hosking [35] introduced a
model called the autoregressive fractional integrated
moving average (ARFIMA) which is composed of the
two different processes, i.e., fractional differenced noise
and auto regressive moving average. ARFIMA’s aim is to
examine the attribute of long memory, and for data pre-
sented as time series { Ve, }, it is:

®(B)(1-B)%y, = O(B)er,, ty=1,2,..T,, (1)

where ¢, 7(0,0%) is the statistic process (white noise
process) with zero mean and variance ¢*, ®(B) =1 - ¢B -
[ ¢,B” is the autoregressive polynomial,
©B)=1-06,B-0,B>- - - 0,87 is the moving average
polynomial, B is the backward shift operator, and (1 - B)?
is the fractional differencing operator explained by the

particular binomial expansion (1-B)? = ZT: o <6;>

d i T(d+1)(-1)! L(-d+1)
I (-1) = T(@-I+)T(I+1) ~ T(=d)T(i+1) " The

(-1)'B' and

gamma function is marked by I'(*) and the number of dif-
ferences necessary to present the stationary series is
marked with d. The 4™ power of the differencing operator,
included in Eq. (1) is marked with (1 - B)?.

When the value of the differencing parameter is in range
(-0.5, 0.5), the ARFIMA model can be described as sta-
tionary, and if the value of the differencing parameter be-
longs to (0, 0.5), the process is characterized as a long-
memory behavior. If there are suitable k differences, it is
possible to transform many non-stationary processes into
stationary ones by fulfilling condition (1). Consequently,
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the non-stationary processes obtain the long-memory at-
tribute [36].

It is possible to predict the ARFIMA processes by
means of an infinite autoregressive representation of for-
mula (1), recorded as T1(B)y, = ¢, also

Ve, = Z”i Vi Tt (2)
i=1

where I1(B) = 1 - m,B - m,B” — ... = ©(B)(1 - B)*O(B) ™.

From the perspective of numerical realization, the
above equation requires truncation after k lags; never-
theless, it is not easy to obtain. The difficulty in trunca-
tion will influence the forecast horizon included in
predictions (see [36]). Formula (2) explains that the pre-
dicting rule absorbs the impact of the remote lags, by
which it captures their persistent impact. However, if
shifts appear in the process, the pre-shift lags will also
influence the prediction, and in consequence, the post-
shift horizons may have some biases [37, 38].

3.2.1 Estimation and selection of parameters of the ARFIMA
model

To find a proper prognostic model, contrary to using the
highest number of precise parameters that describe the
variability of the analyzed data presented as time series,
it is of crucial importance to understand that too large
adjustment of series may provide either the description
of the signal itself or the random noise (that may show
accidental regularity in a definite number of attempts).
Therefore, the main aim is to find a model which, with

the use of a limited number of statistically important pa-
rameters, will be able to describe the essential features
of the analyzed time series.

There are two relatively simple and effective methods
for calculation of the autoregressive models’ parameters:
maximum likelihood estimation (MLE) and quasi-
maximum likelihood estimation (QMLE) [39, 40]. For
the MLE, the basic computational problem is finding the
solution of the following equation:

dlog(Lr(9))

=0
a0 ’

(3)

where 0 is the calculated data set, L(9) is the likelihood
function, and T is the quantity of modeled parameters
controls. For many cases, it is impossible to find analyt-
ical solution to Eq. (3) for the defined form of the model;
thus, the numerical estimation is used. Using the max-
imum likelihood method requires establishing the
complete model, hence the formed estimator’s sensitivity
to possible mistakes in procedure of the auto regressive
(AR) and moving average (MA) polynomials that define
the dynamics of the process.

A universal criterion for selecting model’s form does
not exist. The common practice is that mapping the
model onto the data is most optimal when the model’s
likelihood function and level of complexity increase con-
currently. Nevertheless, there is a bigger possibility of an
error occurrence when a greater number of parameters
is being estimated. Therefore, one should seek an
optimization of the quantity of parameters that appears
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in the described model along with wanted likelihood
function value. Akaike (AIC), Schwarz (SIC) or Hannan-
Quinn (HQC) propose choosing the “economical”
model’s form on the grounds of informational criterion,
i.e., they suggest selecting the form that possesses the
minimal value of information criterion [41].

Below we present results of parameter estimation ob-
tained by means of MLE and QMLE methods, and the
ARFIMA form of the model. The differentiation param-
eter d value is calculated with the use of the mentioned
techniques and the HR estimator, which is developed by
Haslett and Raftery [42]. Furthermore, we calculated the
selection of the row of the analyzed model using expo-
nential smoothing in the state space and such info-
rmation factors as Akaike (AIC) (see Hyndman and
Khandakar [43]). Owing to the above approach, we were
able to obtain satisfactory computational efficiency and
automatic realization of the used algorithms.

3.2.2 MLE method in estimation of parameter d

The analysis of an ARFIMA process Z;, from the per-
spective of the Gaussian Log-likelihood presented by for-
mula (1) that refers to

logG,(z;0) = -0.5[nlog(2m) + log|=(0)| +2'= 7" (0)7]

(4)

with z = (2, 25, ..., z,)" being the vector described by par-
ameter, and @ = (6%, H,), T describes the # x n covariance
matrix of Z relying on z and g, H, denotes the Hurst ex-
ponent and where the determinant of X is described by
|Z|. The MLE of ¢ may be calculated by the maximum
value of log G, (z; ) respectively to o.

The calculation of first partial derivative of formula (4)
has been described by

, 3 e
6, (z:0) = 05 toglz() + # 5.2 (@) ¢]
5)

The maximum likelihood estimation ¢ creates the re-
sult of the G, (z;0) = 0. Provided that the parameters
present high dimension, or there is a long time series, it
is difficult to compute the exact MLE due to its numer-
ical instability, for the formula (5) stimulates the estima-
tion of the determinant and the elements of matrix X
are inversed [36, 44, 45].

Out of numerous analogous MLE methods that can
be conveyed by calculation of approximation of the
likelihood function, we decided to use the HR estima-
tor based on a quick and precise Haslett and Raftery’s
method [42], whose heuristic idea is to achieve autore-
gressive approximations. Such autoregressive, infinite
order process may represent a Gaussian ARFIMA.
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However, since the quantity of samples is definite, the
truncated model is obtained in accordance with m <
t<m,

Zt_let—l_"'_QmZt—m = €, (6)

with o being the coefficients of the formula
®(B)O(B)(1 - B)%. Since approximating as well as re-
fining are performed, a QMLE of ¢ is brought about
by the operation of maximization

Gj(z;0) = C-0.5nlog(6%(0)),
(7)

(2-2)

v

where C is a constant, 62(p) = 0.52;1 , V=

t-1

var(Z,-Z,), Z; = CD(B)@(B)Z:I‘:1 i Ze—; and @y = -

(i) %. A more extensive study on this ap-

proximation method can be found in [42].

3.2.3 The calculation and selection of model features
The ways of exponential smoothing of the models of
state space are obtained as follows:

by = W(a;1) + R(as1)e;, (8a)

a; = F(as1) + G(ae1 e, (8b)

where {€,} is a Gaussian white noise process with zero
mean and variance ¢%, and s = Wla,_1). The sample
containing additional mistakes has R(a,_;) =1, and
consequently, b,=u;+¢€,, The analyzed model with
multiplicative mistakes has R(a;_;) =y, and conse-
quently, b,=pu,(1 +€,). Hence, €,= (b, - us)/u; creates
the mistake related to the multiplicative model. The
models created as a result of this action are not dis-
tinctive. Apparently, each value of R(a,_;) results in
creating identical prediction points for b,.

The values of ao and the parameter 9 are necessary for
these models to be useful in terms of forecasting. Hence,
calculating the likelihood of the improvements of models
of state space (8) does not create difficulties, and so is
achieving the maximum likelihood estimates:

n

G (9;a0) = nlog (Zet> +2 7 log|R(a,-1)|.  (9)

t=1

It is easy to calculate (9) with the recursive equations
in [43, 46]. As far as multiple sources of mistakes of the
state space models are concerned, it is necessary to
apply the Kalman filter to estimate likelihood; our calcu-
lations are free of that requirement. The sets of the pa-
rameters J and the initial states a, are realized by
operation of computing of minimization of Gj.
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The method for choosing the present model is based

on the Akaike criterium

Vaic = G, (9; &0) +2m,, (10)
where V¢ is the value of AIC, n, creates the quantity
of parameters in 9 along with the quantity of free states
in ay, and 9 and dg define the calculations of 9 together
with a,. From the models applicable for the data, we se-
lected the one that minimizes the AIC.

On the basis of the mentioned ideas we achieve an ef-
ficient and commonly appropriate algorithm for auto-
matic predicting. To summarize, the stages of the
undertaken performances are as follows [43]:

e Stage 1: optimize the parameters, i.e., smooth them
and the initial state variable, for every series use all
the matching models

e Stage 2: choose the most effective model in terms of
AIC

e Stage 3: create point forecasts with the use of most
applicable model (with parameters that are created
in the optimization process) for any stages in
advance as necessary
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A thorough explanation of the proposed method is de-
scribed in Hyndman and Khandakar work [43].

4 Experimental installation and results: railway
crossings critical infrastructure management
system

In this section, we describe our experimental setup
which has been implemented on a real-life railroad
transportation system. Using this installation, a set of ex-
periments has been performed to prove that the ap-
proach proposed in this paper is feasible and effective.

4.1 Experimental setup
As mentioned above, experimental results presented in
this paper have been obtained using real-world installa-
tion placed on the active railroad crossings. Railroad
gates tracking component that is based on WSN sensors
is a part of the more comprehensive system for supervis-
ing and visualization railroad crossings. The presented
system is an original solution for supervising critical in-
frastructure of railroad crossings.

In Fig. 4, main components of the control and
visualization system for railroad crossings is illustrated.
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Fig. 4 Railroad crossings critical infrastructure management system with the use of WSN for the railroad gates state and position supervising
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GATEWAY

Fig. 5 WSN IP gateway (right) installed on the railroad crossing column (left)

Telecommunication infrastructure for one railroad crossing
consists of WSN sensors used for analyzing the state and
position of the railroad crossing separate gates, industrial
SCADA computer, classic Intrusion Detection System
(IDS) using previously known attacks signatures database,
firewall, and multi-WAN router for providing different
links to the WAN network. In our solution, we propose an
anomaly detection system (ADS) for the WSN part that is
complementary to the implemented classic IDS. ADS sys-
tem obtains the WSN traffic from Ethernet link provided

by the WSN IP gateway. As already mentioned proposed in
this paper, a novel detection approach is based on the stat-
istical model with long memory—ARFIMA. Parameters of
the ARFIMA models obtained for different traffic features
are stored in ADS database. For every railroad crossing, a
separate ADS instance exists and the same telecommunica-
tion infrastructure. WAN routers are used for communica-
tion with control and visualization —management
application. Railroad crossings were situated on the same
rail link and connected to the control and visualization

Fig. 6 WSN sensors (right) installed on railroad gates (left)




Andrysiak et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:245

Page 10 of 14

L
ey
rame
Manmarn
Al

Fig. 7 Part of the railroad crossings management application with railroad gates visualization

system by fiber or radio WAN connection, e.g., by means
of long-term evolution (LTE).

Practical realization of WSN IP gateway is depicted in
Fig. 5 where a printed circuit board and the gateway in-
stalled on one of the railroad crossing column are
presented.

WSN sensors are installed on the top of railroad gates.
Installed sensors on the railroad crossing and a sensor
printed circuit board are presented in Fig. 6. The sensor
is powered by battery banks and additionally supported
by a small solar panel. Static position/tilt of the railroad
gate is measured by a Microelectromechanical Systems
(MEMS) sensor which provides position in three dimen-
sions—x,y, and z. WSN sensors transmit packets in an
idle state (gates are not moving) in approximately con-
stant periods of time. In the idle state, we control phys-
ical presence of railroad gates and battery health, signal
strength (RSSI), ambient temperature, and gates’ three
dimensional position. In the idle state, insignificant rail-
road gates’ movements resulting from, e.g, wind or

vibrations caused by heavy vehicles are not taken into
account. For the sake of reliability, packets from sensors
are received by two redundant IP gateways. Every sensor
transmits packets to the WSN IP gateway when
triggered by railroad gates’ movements.

In Fig. 7, part of the railroad crossings management ap-
plication with railroad gates visualization is depicted. One

Table 1 WSN traffic features captured from railroad crossings
through the WSN IP gateway

Feature WSN traffic feature description

F1 Battery supply voltage

F2 MEMS sensor position x

F3 MEMS sensor position y

F4 MEMS sensor position z

F5 RSSI of WSN sensor [dBm]

Fé6 The number of WSN packets per time period
F7 The number of WSN packets per time period

during idle state of mems X, y, z position
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active railroad crossing with railroad gates visualization
based on the data taken from WSN sensors is visible (left
side of Fig. 7). The list below button ribbons provides in-
formation, for example, about the state and the position of
separate railroad gates (e.g., gate open, closed, changing
position, broken gate). As mentioned, presented in Fig. 7
screenshot is a part of the more comprehensive system for
analyzing railroad crossings critical infrastructure which
considers also, for example, video images.

4.2 Experimental results

As mentioned before, the proposed anomaly detection
system comprises two main steps. In the first step, we
remove outlier values (see Section 3.1) for every ob-
served traffic feature (see Table 1). This step prepares
data for the next step where parameters of the statistical
model with long memory dependence are calculated.
The second step is based on the calculation of parame-
ters of ARFIMA statistical model (see Section 3.2).

We selected seven features which are related to the
most important functionalities of railroad crossing crit-
ical infrastructure (see Table 1). For every WSN traffic
feature, we achieve forecasting interval (30 samples fore-
casting horizon) based on ARFIMA model (see Figs. 8
and 9). Prediction intervals are described by mean value

(line in the center of prediction interval), 80 % predic-
tion interval (narrower interval), and 95 % prediction
range (wider interval). Examples of prediction intervals
for WSN traffic feature F6 (the number of WSN packets
per time period) and F5 (received signal strength indica-
tion (RSSI) [dBm] of WSN sensor) are presented in
Figs. 8 and 9, respectively.

WSN traffic features presented in Table 1 are captured
from the Ethernet link of the WSN IP gateway. WSN
sensors transmit packets to WSN IP gateways placed on
both sides of the railroad crossing. WSN gateway con-
verts received packets to IP packets. Then, packets con-
verted by WSN IP gateway are captured in the next step
by software sensor installed on railroad industrial com-
puter. Every WSN traffic feature presented in Table 1 is
extracted from packets captured by the IP network
Sensor.

In a subsequent step, WSN traffic features are in real
time processed by the proposed anomaly detection solu-
tion that indicates possible anomaly/attack when the
value of the online calculated traffic feature is outside an
interval determined by two prediction intervals. When
values for a given traffic feature are inside 80 % predic-
tion intervals, we assume that there is no anomaly/attack
for a given traffic feature. When WSN traffic features lie

-39 -
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Fig. 9 30 samples forecasting horizon for F5 WSN traffic feature (RSSI of WSN sensor)
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inside interval described by 80 to 95 % of prediction in-
tervals, we treated this traffic as suspicious where an
anomaly or attack can be present. Traffic features with
values outside 95 % prediction intervals triggers anom-
aly/attack by anomaly detection algorithm.

The proposed anomaly detection method for WSN
traffic has been tested with different anomaly/attack sce-
narios assumed. Because railroad crossing is a critical
railway infrastructure anomaly/attacks had to be simu-
lated and carefully controlled in order to preserve safety
on active testing railroad crossings. In this paper, we
evaluated the following anomaly/attack scenarios:

Scenario 1: electromagnetic distortion

Scenario 2: intentional damage of the selected
infrastructure

Scenario 3: attacks performed by means of the WSN IP
gateway

The proposed anomaly/attack scenarios have impact
on different sets of traffic features from Table 1. Taking
into account scenario 1, i.e., simulated electromagnetic
distortions, will have impact on RSSI values—F5, and
the number of packets which successfully reaches the IP
gateway in a certain period of time—features F6 and F7.
Partial results of detection rate (DR) [%] and false posi-
tives (FP) [%] for scenario 1 are presented in Table 2:

Scenario 2 can be understood as a situation where, for
example, railroad gates will be hit or bent by a vehicle (but
sensors are still able to communicate with the IP gateway).
In this scenario, the most noticeable impact will be seen
for features responsible for measurement of three dimen-
sional positions of railroad gates—F2, F3, and F4. Results
for this scenario are presented in Table 3.

A different variant of scenario 2 covers situations
where railroad gates will be moved outside the railroad
crossing area, but the sensor will not be damaged or
sensors and railroad gates will be completely damaged.
In these cases, we can observe an impact on features F2,
F3, F4, F5, F6, and F7. Results can be observed in
Table 4.

Table 2 DR[%] and FP[%] for attacks performed on WSN
network with scenario 1
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Table 3 DR[%)] and FP[%] for attacks performed on WSN
network with scenario 2

Feature DR[%)] FP[%)] Description

F1 - - No impact for scenario 2

F2 98.00 1.6

F3 97.00 28

F4 97.00 30

F5 - - Negligible impact for scenario 2
F6 - - Negligible impact for scenario 2
F7 - - Negligible impact for scenario 2

In scenario 3, WSN IP gateway was used to perform
an attack. The aim of this attack was to drain batteries
or delay packets from sensors. This attack requires the
knowledge of the specific communication protocol be-
tween sensors and the IP gateway. F1, F6, and F7 are fea-
tures influenced by this attack scenario (see Table 5).

Experimental results presented in Table 6 contains ag-
gregated detection rate together with false positive for
all seven WSN traffic features (see Table 1). Based on
the obtained results, an overall performance of the pro-
posed ADS solution can be observed taking into account
all anomaly/attack scenarios described earlier. Most of
the anomaly/attacks have been successfully identified.
Detection rates varied between 93 and 98 %, while false
positive rates were below 9 %. The best results have been
achieved for WSN features: F2, F3, and F4 calculated
based on readings from MEMS sensors and feature F1
(but only for scenario 3).

5 Conclusions

Ensuring a proper level of security for resources and sys-
tems of critical infrastructure, particularly transportation
ones, realized as sensor radio networks is currently an
intensively explored research topic. It is apparent that
WSN, due to their nature, are vulnerable to a substantial
number of threats originating both from the outside and
inside of their own infrastructure. Therefore, these net-
works require ensuring the integrity and confidentiality

Table 4 DR[%)] and FP[%] for attacks performed on WSN
network with scenario 2

Feature DR[%)] FP[%)] Description Feature DR[%] FP[%)] Description

F1 - - No impact for scenario 1 F1 - - No impact for scenario 2
F2 - - No impact for scenario 1 F2 97.00 2.1

F3 - - No impact for scenario 1 F3 96.20 24

F4 - - No impact for scenario 1 F4 96.00 31

F5 94.20 5.20 F5 95.20 48

F6 94.00 840 F6 92.40 9.1

F7 93.00 8.20 F7 93.50 8.6
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Table 5 DR[%] and FP[%] for attacks performed on WSN
network with scenario 3

Feature DR[%)] FP[%)] Description

F1 98.00 20

F2 - - No impact for scenario 3
F3 - - No impact for scenario 3
F4 - - No impact for scenario 3
F5 - - No impact for scenario 3
F6 9340 84

F7 94.40 94

of the transmission, as well as protection of nodes and
data transferred with their use. While developing mecha-
nisms, algorithms, or protocols that increase transmis-
sion security in WSN, one also needs to consider the
restrictions imposed by the unique characteristics of
WSN, such as self-organization, dislocation, equipment
limitations, and ease of fiasco of nodes and protocols.
The increasing number of novel attacks, their global
scope, and complexity level enforce dynamic develop-
ment of network security systems. The most often im-
plemented solution aiming at ensuring security are
detection and classification methods that allow to iden-
tify abnormal behaviors reflected in the analyzed net-
work traffic.

The advantage of such an approach is the protection
against so far unknown attacks, developed specially (tar-
geted attacks) in order to realize attacks onto particular
resources of network infrastructures or simply constitut-
ing so called zero-day exploits. Anomaly detection sys-
tems may play a crucial role in those environments.
Their purpose is to detect (for auto-response) unusual
traffic behavior representing symptoms of unauthorized
actions directed against protected critical infrastructure
resources, implemented as WSN networks.

That is why in this paper we introduced a novel net-
work traffic anomaly detection method for a critical rail-
way transportation infrastructure which is utilizing
sensor radio network. In order to detect anomalies,

Table 6 Overall DR[%] and FP[%] for attacks performed on WSN

network

Feature DR[%)] FP[%]
F1 98.00 2.00

F2 97.50 1.85

F3 96.60 260

F4 96.50 3.05

F5 94.70 5.00

F6 93.27 8.63

F7 93.63 873
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differences between the actual network traffic and the
estimated ARFIMA model of that traffic for the analyzed
WSN network parameters were used. For the purpose of
suitable preparation of data for statistical modeling, ob-
servations outlying in the analyzed WSN network
parameters with the use of a simple and fast one-
dimensional quartile criterion were found and elimi-
nated. Parameter estimation and identification of the
row of the ARFIMA statistical models were realized as a
compromise between the model’s coherence and the size
of its estimation error. The obtained experimental re-
sults performed on the real-life railway crossings infra-
structure confirm efficacy and accuracy of the presented
anomaly detection method. We achieved overall detec-
tion rates varied between 93 and 98 %, while false posi-
tive rates were below 9 %. Most valuable WSN features
for anomaly detection purposes were F1, F2, and F3 and
they were based on reading from MEMS sensor. In case
of sensor failure, we took into account other undamaged
sensors readings in order to ensure system successful
operation. To conclude, we consider utilization of an
efficient IDS system as a must in every railway critical
infrastructure management system.

Future work will be related to further exploring the
most efficient set of parameters used for the proposed
network traffic anomaly detection method. Moreover, we
also plan experiments on a greater scale and during a
longer time period which will allow to further tune the
proposed solution and to model the abnormal behaviors
even better.
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