
Lee and Kwon EURASIP Journal onWireless Communications and
Networking (2016) 2016:250
DOI 10.1186/s13638-016-0746-6

RESEARCH Open Access

Secure dissemination of software updates
for intelligent mobility in future wireless
networks
JongHyup Lee1 and Taekyoung Kwon2*

Abstract

Wireless mobile networks frequently need remote software updates to add or adjust the tasks of mobile nodes.
Software update traffic, particularly in the Internet of Things (IoT), should be carefully handled since attackers can
easily compromise a number of unattended devices by modifying a piece of code in the software update routine.
These attacks are quite realistic and harmful as seen in the real world. To protect lower-powered mobile devices, an
in-network detection mechanism is preferred. However, due to the mobility of devices, it is difficult to set a network
monitor with complete context of software updates. Moreover, even the conventional integrity checks can be fooled
by a replaced binary code or minimized modification. In this paper, we tackle this problem and propose CodeDog, a
new approach to check the integrity of software updates in mobile environments. CodeDog generates a binary code
with semantics markers. A validation of those markers proves the control flow semantics was unchanged. It can be
performed on program fragments for in-network monitoring to protect incapable devices. Our evaluation result
shows that CodeDog can prevent attacks in the supply chain with 4.2 % storage overhead.

Keywords: Mobile networks, Software updates

1 Introduction
The Internet of Things (IoT) environments consist of
heterogeneous devices and wireless, mobile networks.
The versatile use of IoT devices causes frequent software
updates by administrators to add or adjust the tasks of
the devices. Due to the complexity of IoT environments,
software updates are being delivered by a deployment
chain, which is operated by outsourced authorities or net-
work providers. However, the frequent updates expose
the deployment chain to ever-growing attacks. Software
updates are traditionally primary aims of attackers since a
malformed software update can change the behavior of all
victims. Hence, any point of the deployment chain can be
compromised. A question then arises: can we always trust
the deployment chain?
The deployment chain for the software updates starts

from the administrator (and its developer) and ends at
remotely located target devices. The developer writes a

*Correspondence: taekyoung@yonsei.ac.kr
2Graduate School of Information, Yonsei University, 50 Yonseiro, Seoul, South
Korea
Full list of author information is available at the end of the article

new source code and compiles it to an executable in the
binary code form and then hands it over to the deploy-
ment chain. The deployment chain identifies the target
devices and transports the binary code to the devices
through its delivery networks. The recipient devices apply
the delivered software updates to their system. In this
way, the deployment chain automatically operates with
frequent software updates for a number of devices. Due
to these characteristics of the deployment chain, once any
point of the deployment chain is compromised, the attack
is not easily detected and affects a number of devices.
For example, the attack on the deployment chain of SK
Communications in South Korea, 2011 [1], could compro-
mise a number of targets and have resulted in the theft of
personal information of more than 35 million people.
In IoT environments, a large portion of low-end devices

are operating. We cannot guarantee that all of them have
security-aware update mechanisms, namely, it is hard to
expect sophisticated software validation in the low-end
devices, such as IoT light bulbs. To effectively protect
deployment chain in IoT environments, the network itself
should verify the integrity of software updates on behalf of

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-016-0746-6-x&domain=pdf
http://orcid.org/0000-0002-5513-0836
mailto: taekyoung@yonsei.ac.kr
http://creativecommons.org/licenses/by/4.0/

Lee and Kwon EURASIP Journal onWireless Communications and Networking (2016) 2016:250 Page 2 of 9

the low-end devices. For the purpose, network monitor-
ing approaches such as intrusion detection system (IDS)
or deep packet inspection (DPI) are being used to detect
attacks by investigating packets with predefined rules or
algorithms.
When applying the network-side protections to the IoT

environments, we should also take into account themobil-
ity of IoT devices. Conventional approaches, e.g., code
signing and checksum, are based on the complete infor-
mation of a software. However, the mobility of the devices
hinders to get a complete program code at a single net-
work position. A network entity has to decide whether an
attack is happening or not with only a part of information.
Even in that case, we need to protect mobile IoT devices
from sophisticated attacks as an extended security service
of mobility management.
Protections under limited environments due to mobility

and capacity should care about effectiveness and concen-
trate on attacks customized to the environments. Gen-
erally, the network-support protections have focused on
checking integrity of contents without any information.
This content- or payload-agnostic approaches treat soft-
ware in the same way as they check data. Code and data
are different; the program code can be executed; thus, it
has semantics. However, the approaches cannot ensure
the semantics of a program code is intact. If the pro-
tections rely on syntactic methods only, adversaries can
effortlessly hide the attacks by modifying a tiny portion
of the program code. Furthermore, these attacks are more
effective in mobile networks, since a network entity can
investigate only a part of the program code. The binary
code itself in a software update server can be replaced by
a forged one before disseminating it [1]. During the deliv-
ery, like software cracking [2–4], the attackers can execute
the limitedmodification attacks byminimizing the change
within a few bytes. Just flipping a bit can complement the
jump condition of the key branch from jl (<) to jge (≥).
We can sum up the requirements to effectively check

the integrity of software updates in mobile networks as
follows: (1) the semantics changes of malformed software
updates should be checked in the binary code and (2) the
changes should be able to be detected by network moni-
tors, i.e., watchdogs, as well as recipient devices to support
all ranges of devices. Therefore, we propose CodeDog, a
lightweight approach to check semantics integrity in an
incomplete code. CodeDog can inspect and verify control
flow semantics in all the software objects covering from a
fragmented binary code to a whole program. To do so, we
carefully implantmarkers in the binary code that statically
shows valid control transfers. Thus, in-network watch-
dogs can early check the changes of software updates and
support the low-end devices that cannot perform compli-
cated integrity checks. The recipient device can employ
the markers in the process of software attestation.

The contributions of this paper are:

1. We propose a lightweight method to check the
integrity of control flow semantics for IoT and
mobile environments. The proposed method
transforms the binary code of program text into a
verifiable form with semantics markers. Thus, it can
prove the developers’ intention is unchanged in
software update with respect to control flows.

2. To effectively detect the attacks, CodeDog checks the
integrity in mobile network as well as the recipient
devices. The semantics markers also are valid in the
fragments of the binary code. Hence, the watchdogs
in mobile networks investigate the binary code of
software updates from packets, and the recipient
devices validate the received software updates and a
whole program code for later software attestation.

2 Design
2.1 Attacks on software updates
The goal of an attacker is to alter the behavior of the soft-
ware. To do so, the attacker can replace a whole code
itself with a forged binary code or modify a portion of
it. In order to keep the attacks undetectable and sustain-
able, they tried to minimize the changes. Traditionally,
software cracking has a similar purpose, changing a target
control flow while keeping other flows intact. For exam-
ple, flipping one bit of key branch instructions can incur a
completely different behavior.

2.2 Integrity of control flow semantics
The semantics of program consists of data abstractions
and control flows. Checking complete semantics is the
best for detecting changes in the software, but it needs
computationally expensivemethods, such as flawless sym-
bolic executions. IoT devices are constrained in compu-
tation and power to support such expensive operations.
Hence, we narrow our focus on more effective targets;
CodeDog detects the change of control flow in the pro-
gram binary code. To do so, it injects semantics markers
to the binary code before and after control transfer state-
ments. The semantics markers also bear the conditions of
branches. Thus, unintended changes in control flows can
be revealed with only semantics markers in the program
code.

2.3 Process overview
Awhole process of CodeDog is shown in Fig. 1. When ini-
tiating software updates, a developer or an administrator
prepares the payload for software deployment chain. The
developer writes down or updates the source code and
then hands it over to the payload generator of CodeDog in
order to build the payload of the marker-injected binary
code. The payloads are transmitted as packets through the

Lee and Kwon EURASIP Journal onWireless Communications and Networking (2016) 2016:250 Page 3 of 9

D
ep

lo
ym

en
t ch

ain
 o

f so
ftw

are u
p

d
ates

Shared
keys

P
ay

lo
ad

 g
en

er
at

io
n

Verify
a whole
program

code

Verify
frag-

ments

Watch-
dogs

Key mgmt
module

Source
code

Analyze
control Inject

slots

Source
code

w/ slots

Compile Place
markers

Binary code
w/ semantics

markers

Binary code
w/ semantics

markers

Packets

Developer
(admin.) Recipient

Devices

Binary code
w/ semantics

markers

Reassemble

Fig. 1 CodeDog: process

mobile network of the deployment chain. While transmit-
ting the packets, code watchdogs monitor the mobile net-
work and detect the unintended modification in advance.
The recipient devices then check semantics integrity in
the software updates reassembled from the packets and
perform further verification. When generating the mark-
ers in the payload generator and verifying them during the
delivery process, CodeDog uses a secret key to authen-
ticate the markers. For the purpose, a key management
module handles the distribution of keys as shown in Fig. 1.
The secret keys are shared with components in the whole
process; thus, any group key management schemes can
be applied to the key management module. The detailed
process for the payload generator and the integrity checks
are explained in the following sections, Section 3 and
Section 4.

2.4 Features of CodeDog
Two-step marker injection Injecting markers into pro-
gram binary code may alter the address of program text,
and it skews the target address of control transfer instruc-
tions. Thus, binary rewriting requires a painful job to
update all the address of control transfer instructions even
in the position-independent code (PIC). This is the reason
why binary rewriting on a code is being used in limited
ways. In order to avoid the problem, we first inject empty
slots to a source code to prepare space for the semantics
markers and compile the source code. At the binary code,
the slots will then occupy spaces for markers. We fill the
slots by computing semantics markers for that position.
Since space for markers already exists at compile time, no

address of the program code needs to be changed; thus,
no additional binary rewriting is required.

Semanticsmarkers Semantics markers are placed before
and after direct control transfers. In a binary code, all
the direct control transfers will be transformed as con-
ditional or unconditional jump instructions. In a source
code, we have more control statements: if, while,1
goto, break, continue, etc. Both if and while have
a condition, true and false branches. Thus, we put a jump
marker (slot) immediately above the control statement,
and a true-branch marker at the beginning of the true
branch and vice versa. Figure 2 shows the position of
slots, which will be markers after compilation, for if and
while. A jump marker is inserted before both if and
while. For if, the branch for the then block has a true
marker and the other branch has a false marker.2 For
while, a true marker is put in front of the loop body.
When the while loop ends, a false marker is placed
at the exit. The semantics markers for a control trans-
fer instruction forms a group. A semantics marker has a
validator as a hash value of an identification (ID) of the
marker group, an indicator of branch (jump/true/false),
the opcodes of the immediate previous and next instruc-
tions, and a shared key. Thus a marker is locked in the
position and can be verified with the shared key.

Marker verification A group of markers are verified
together for a control transfer instruction. Since they
have complete information for the control transfer, the
same verification process can be performed regardless of
whether they come from fragments or a whole code. Thus,
we can use the code watchdogs, which monitor the wire-
less network to detect attacks from binary code fragments.
The recipient devices also have a whole updated program
binary code. The program binary code with semantics

if

then
block

else
block

true maker false maker

jump maker

while

loop
body

true maker

false maker

jump maker

jump maker

target maker

Fig. 2Marker positions for if and while

Lee and Kwon EURASIP Journal onWireless Communications and Networking (2016) 2016:250 Page 4 of 9

markers can be repeatedly checked in the software attesta-
tion process. To prevent the attacker from illegally gener-
ating semantics markers, the marker is protected by a key.
We assume the key is shared with the payload generator,
code watchdogs, and the recipient devices.

3 Payload generator
In this section, we handle the detailed step for the payload
generator. In the payload generator, CodeDog builds pay-
load from the source code handed over by developers or
administrators of the IoT devices.

3.1 Source code inspection
At the first step for making payload, CodeDog inspects the
source code and discovers control transfer statements in
it. Depending on the control transfer statements, we place
slots of different types around them. Slots and markers
have four types: T = jump, target, true, and false. In addi-
tion, every slot group has an indicator for marker calcula-
tion in the next step. To place a slot at a chosen location,
we use an inline assembly code of the prefetchnta
instruction. The prefetchnta is also used to set a label
on the program code in CFI [5] since it does not incur side
effects. Thus, the slot in an inline assembly form is shown
as

__asm__("prefetchntaT || Si");
where Si is a 30-bit slot indicator for the ith slot group
and T is a 2-bit type indicator. || is the operator for
concatenation.
We put slots for unconditional and conditional control

transfer statements. Figure 3 illustrates the position of
slots.

• Unconditional control transfers: Like goto, break,
and continue, for unconditional control transfer
statements, we put a jump slot before the statements
and a target slot at the target position.

• Conditional control transfers: Depending on a
condition, the conditional control transfer statements
select a jump target between a true and a false

branch. As shown in Fig. 2, we put a jump slot
immediately before the conditional control transfers,
such as if and while, and place true and false slots
at the beginning of the corresponding block. That is,
for if, we put a true slot at the “then” block. If “else”
block exists, we put a false slot at it. Otherwise, we
put it immediately after the “then” block. For while,
we place a true slot at the beginning of the loop body
and a false immediately after the loop body.

3.2 Marker injection
Abstractions in the source code are removed during com-
pilation, but the slots remain at the same position in the
binary code as they are put in the source code. CodeDog
then computes a marker value for each slot and replaces
the operand of the slot with it. A marker consists of a
group ID i and a validator, V . The validator V is used to
verify the marker is securely located. It is a hashed value
of a group ID i, a type indicator T , the first byte of the
opcode of the immediate previous and next instructions of
the marker (opp and opn, respectively), and a key K, which
is provided by the key management module:

V = H(i‖T ‖opp‖opn‖K)

Due to the limited operand space, we truncate the least
significant bits (LSBs) of the two values and concatenate
them with its type. Thus, a marker valuem is

m = (T ‖ i|14 ‖ V|16) ,
where |x is the operation for x-bit truncation of the LSB.
Since V has the information (opcode) of the previous and
next instructions, m is valid at the current position; thus,
the marker is locked to the position. However, before
calculating V and m, CodeDog may change the type of
markers. It depends on the compilers what assembly code
will be emitted for a conditional control transfer state-
ment. For example, the assembly code for if of> (greater
than) may be jle (jump if less/equal) of the comple-
mented (¬) condition, which jumps to the else block. For
consistent results, we redefine T of the marker at the tar-
get address (taken branch) of the conditional jump as true.

goto label1

jump slot

target slot

label1:

if (condition) {

jump slot

} else {

}

true slot

false slot

while (condition) {

jump slot

}

true slot

false slot

target slot

jump slot

Fig. 3 Position of slots for unconditional/conditional control transfer statements

Lee and Kwon EURASIP Journal onWireless Communications and Networking (2016) 2016:250 Page 5 of 9

Likewise, we redefine T of the marker located next (not
taken branch) to the conditional jump as false.
Figure 4 shows the process to CodeDog for goto and

if. CodeDog first injects slots and sets the marker value
at the binary code. For goto statement, only jump and
target markers are used, but the conditional jump if
statement uses true and false markers. Note that the if
condition was < in the source code but the binary code
employs jle; thus, the types of slots and marker are
exchanged.

4 Integrity checks
4.1 Different levels of fragmented software updates
A software update payload does not have to hold a com-
plete program. In the mobile network of the deployment
chain, we need to take into account the different levels of
fragmented binary code: (1) diff ’ed binary code and (2)
packet fragments. Depending on the size of changes from
the old version, we first choose either a whole program
or a set of fragments of changed parts, called “diff,” to
transmit. The diffs are fragments of the binary code com
from the different position of the program. The deploy-
ment chain then splits the binary object into packets to
deliver them through mobile networks. Thus, when we
check the integrity of software updates in the middle of
networks, we need to inspect the binary fragments. For-
tunately, CodeDog injects the semantics markers in the
binary code itself. We can verify control flow semantics
without knowledge of the whole program. It is incremen-
tal: as we collect more semantics markers, we can verify
more control flows. When we have a whole program code,
CodeDog can prevent attacks from all the modification of
control flows.

4.2 Integrity checks in a code watchdog
CodeDog supports the integrity checks of software
updates through network monitoring like surveillance
watchdogs.We call the entities performing the in-network

attack detection on software updates as “code watchdog.”
A code watchdog monitors (via overhearing wireless net-
works) the software update packets. In this way, even
low-end devices that do not have the ability to check soft-
ware updates can be protected by the code watchdogs
since the code watchdogs are aware that undiscovered
modification attacks are happening tomobile/IoT devices.
The code watchdog monitors network traffic through

mobile networks and triggers software update inspec-
tion when it collects the software update packets. First,
it recovers a fragmented part of the software updates
from the collected packets. Packet monitoring of the code
watchdog is a semi-stateful process. It cannot store all
the session information of passing-by traffic. However,
the internet data traffic is bursty so that a small group
of packets in the same session are collected together.
After recovering the fragment, to identify all the seman-
tics markers in the fragments, the code watchdog searches
the prefix of semantics markers, such as the opcode of
prefetchnta. And then, the code watchdog validates
every identified semantics marker:

1. Validate the position of the semantics marker. The
code watchdog computes V ′ from i, T (given in the
marker), opp, opn (collected from the previous and
next instructions in the fragment binary), and the
shared key K (obtained from the key management
module). If V ′ is the same as V , the marker is valid.

2. If the type T of the semantics marker is jump, find
the successive branch instruction.

(a) If the branch is unconditional, find the target
marker at the jump address and check
whether it is valid and has the same group ID.

(b) If the branch is conditional, find the true
marker at the target address and falsemarker
at the following instruction. And then, check
the validity of both tags.

Fig. 4 Example of the CodeDog process to inject slots and set semantics markers

Lee and Kwon EURASIP Journal onWireless Communications and Networking (2016) 2016:250 Page 6 of 9

3. If the type T of the semantics marker is other than
jump, remember the position for later checking
triggered by the jumpmarker of its group.

When the code watchdog finds an invalid semantics
marker, it notifies the administrator of malformed soft-
ware updates and cancels the delivery to protect the recip-
ient devices. Note that for some semantics markers, it may
not find the corresponding markers of the same group in
the same fragment. However, it can still be used to validate
the position of the markers.

4.3 Integrity checks in the recipient devices
At the destination, a recipient device reassembles the
packets and get full software updates. Before applying
the software updates, it checks the semantics markers.
The process is the same as that of the code watchdog in
Section 4.2, but the device can check all the markers since
it has a complete software update with the program code
of the previous version. If the device can validate all the
markers at an appropriate position, it applies the software
update. Since the program code provided by CodeDog
bears the semantics markers, it can be used to detect
the modification of the program code in software attesta-
tion phases. Optionally, the markers can be rewritten at
the recipient device with their own secret information for
further protection.

5 Evaluations
5.1 Implementation
CodeDog can be applied to any programming language
and platforms, but, for evaluations, we choose C pro-
gramming language and x86 platform. We implemented
CodeDog in two parts. First, we employ CIL [6] for the
source code inspection and slot injection. And then, our
binary rewriter module in python sets the marker values.
In the slot injection, we define a new visitor in OCaml for
CIL’s control statements, such as Goto, If, and Loop.3
The visitor adds slots to the visited control statements.
Second, we implement the integrity checker in python.
Both the binary rewriter and the integrity checker use
ndisasm and binutils to get the disassembled code
from the binary code fragments.

5.2 Storage overhead
We tested CodeDog on the Juliet test suite from the NIST
Software Assurance Reference Dataset (SARD). From the
test suite, we choose 30 source codes in the categories
related to attacks on control flows, such as untrusted
search path, trapdoor, unchecked loop, unchecked error
condition, embedded malicious code, and logic bomb.
We checked the size of the compiled binary code with
CodeDog to see how much the injected semantics mark-
ers inflate the binary code. Figure 5 compares the size of

Fig. 5 Storage overhead of CodeDog

the binary code when it generated with and without the
semantics markers. The size of the binary code compiled
with the semantics markers is 76.6 kB. Compared with the
size without CodeDog which is 73.5 kB, we can see that
CodeDog causes 4.2 % storage overhead in the compiled
binary code.

5.3 Effectiveness of semantics marker protection
In a whole program code, the semantics markers can
detect all the illegitimate control transfers modified by
attackers. On the other hand, in a fragment, a code watch-
dog can find the modification of a control transfer state-
ment only if it can check all the markers that correspond
tot the statement together. Therefore, we evaluate the rate
of successful validation of markers in a fragmented binary
code.
We define the probability of all the markers is included

in the same fragment as the inclusion rate, I(M):

I(M) =
{ M−s

2s+M M > s
0 otherwise ,

where M is the size of the fragment and s is the marker
spread, the gap between the lowest and highest addresses
of markers in a group, namely, I(M) is the probability that
the range of a marker group is within a fragment.
We first check the distribution of the marker spread in

our dataset. Figure 6a is a histogram of the marker spreads
computed with our dataset. We can see in Fig. 6a that
most of the semantics markers are closely located. Simple
condition checking routines using if contribute the large
population of small marker spreads.

Fragment size We investigate the inclusion rate with
the marker spread of Fig. 6a by varying fragment sizes,
M. Figure 6b shows the inclusion rate of our dataset.
When the fragment size is 700, the inclusion rate is only
0.69. However, it grows to 0.82 and 0.898 when the frag-
ment size is 1500 and 3000 bytes, respectively. Note that
the maximum transmission unit (MTU) of Ethernet is
around 1500 bytes. Thus, the inclusion rate for 1500 and

Lee and Kwon EURASIP Journal onWireless Communications and Networking (2016) 2016:250 Page 7 of 9

Fig. 6Marker effectiveness in the binary code fragments. a Histogram of marker spreads. b Inclusion rate vs. fragment size

3000 means the probability of successful marker valida-
tion when the code watchdog inspects a single packet and
two sequential Ethernet packets, respectively.

Mobility We then check the effect of mobility to Code-
Dog. We investigate how code watchdogs can successfully
detect the modification attack for mobile devices of dif-
ferent mobilities. We set up a realistic ZigBee network
simulation based on [7]. The packet size is 127 bytes, and
software update traffic is generated in a constant bit rate
(CBR) of 10 packets/s. According to the findings of [7], we
assume the delivery ratio of packets is 0.4 with mesh rout-
ing. A mobile IoT device in a ZigBee network is randomly
located within the communication range of a watchdog
and then moves in the random waypoint model. It ran-
domly selects the next waypoint and its speed under a
given maximum speed. We assume the communication
range of a code watchdog is the same as that of a mobile
node. For simplicity, we also assume a code watchdog can
overhear packets of mobile nodes within its communi-
cation range. Figure 7 depicts the inclusion rate of the
fragments collected by a single code watchdog with dif-
ferent maximum speeds of mobile nodes. The result is
averaged out from 100 simulation runs each. With low
mobility, the code watchdog can successfully verify more
than 92 % of fragments but the inclusion rate decreases
inverse proportionally to mobility. However, even in a
high mobility of 29.5 m/s (>100 km/h), CodeDog can
verify more than 68 % packets with a single code watch-
dog. It can be improved with collaborative, multiple code
watchdogs.

6 Related work and discussions
6.1 IDS and software updates
Traditional IDS systems discover the attacks based on
well-defined rules. Khamphakdee et al. extend the Snort
rules for network probe attacks [8]. Besides predefined
rules, IDS researches focus on the statistics on packets
to detect abnormality in networks. Onat and Miri iden-
tify attacks based on the statistics information from the

last N packets [9]. Alam et al. also addressed the prob-
lems in secure dissemination of the software update [10].
However, it still detects attacks via examining the timing
patterns in software update. Like our watchdogs, Mo et al.
proposed the Area Agent System, which monitors nearby
area to detect intrusions [11]. The coordinator discovers
more collaborative attacks occurring in a wide area.
For software updates, a number of researches are pro-

posed to efficiently and securely deliver software updates.
Deluge is a protocol for software updates in wireless
sensor networks (WSNs) [12]. It takes into account the
reliable delivery of large objects in lossy wireless channel.
Recently, for IoT devices, the methods for secure software
updates are proposed in [13, 14].

6.2 Software attestation
Software attestation is a repeated process to check the
modification of software in devices. It is well developed
in wireless sensor network to identify compromised sen-
sor nodes. SWATT [15] is a challenge-response protocol

Fig. 7Mobility impact on the inclusion rate

Lee and Kwon EURASIP Journal onWireless Communications and Networking (2016) 2016:250 Page 8 of 9

to attest devices. A device requests the attestation pro-
cess by sending a challenge to a target device. The target
device computes a checksum value from memory con-
tents, which holds code and data, in a pseudo-random
access pattern of the seed given by the request. If the
testing device can generate the same checksum value, the
target device is verified. To improve the security, Pioneer
[16] is used for executing code and SCUBA [17] provides
a trustworthy platform for executing code on it.
A distributed scheme for software attestation is also

proposed in [18]. It calculates the checksum of the pro-
gram in advance and distributes the partial results to other
sensor nodes.

6.3 Discussions
The previous methods have mainly focused on protecting
contents from unspecified attacks. Thus, they concerned
the integrity of a whole content. Most of the previous
approaches assume that they can inspect a whole content
at once. However, for in-networkmonitoring, the assump-
tion is not always true. Only IDS works on the fragments
of contents (packets) to detect attempts of various attacks.
It generally uses pattern matching with signatures gener-
ated from known attack models. This approach is effec-
tive for high-speed detection of wide-spectrum attacks,
but the predefined signature patterns can be deceived in
sophisticated attacks. In that sense, CodeDog is advanta-
geous for securing software updates in mobile networks.
It can detect the modification in semantics from the
fragments of software objects.
Compared with the previous schemes, CodeDog has a

different approach for protecting IoT networks. We focus
on detecting mechanisms that can be applied in watch-
dogs. The detection of attacks may employ watchdogs
deployed in networks as in [11], but it is about a whole
framework as a holistic perspective rather than detect-
ing method against specified attacks. CodeDog provides
an effective method to the limited modification attack
for watchdogs. The code watchdogs of CodeDog verifies
the control semantics that reflects the actual behaviors
of the software. The software update methods, such as
[12–14], securely deliver special payloads, i.e., software
objects; however, they still tackle syntactic integrity, not
semantics. Even if we cannot keep safe the deployment
chain, the software attestation schemes on a WSN can
check the integrity of running programs after deploy-
ing software updates. The schemes of [15–18] assume
the sensor nodes in a WSN are identical or to get the
complete memory image of a target device in validating
checksum. However, mobile IoT networks consist of het-
erogeneous IoT devices. The previous methods, in that
case, have to handle a number of possibilities in combina-
tion of software objects and platforms. Thus, they are not
suitable for our case. The distributed approach of [18] can

provide improved security, but the checksum of software
objects is hard to update once the checksum is distributed
among sensor nodes. The quirk of IoT networks, frequent
software update, does not go with the limitation.

7 Conclusions
Secure software dissemination is critical in future wireless
networks. In-network monitoring is a preferred approach
for protecting low-end devices from the attacks by check-
ing the integrity of software update traffic. However, it
is difficult to get complete information for in-network
monitors on all software updates. Thus, with partial infor-
mation, the in-network monitors can be fooled in verifica-
tion of software updates. CodeDog presents a mechanism
to solve this problem. We implant the semantics mark-
ers to the binary code. The semantics markers are locked
in the position and indicate the control flows have been
unchanged. Hence, they should be valid in binary code
fragments, i.e., packets, as well as a whole program code.
The code watchdog, the in-network monitor of CodeDog,
inspects the software update packets to check the integrity
of control flow semantics. CodeDog provides an effec-
tive protection even in a fragment of a single packet with
4.2 % storage overhead. In this paper, we focus on the
integrity of control flow for preserving semantics in soft-
ware updates of WSNs, but the integrity of data flow is
also important for the software update protection. For our
future work, we are working on a method to efficiently
check the integrity of both control and data flows.

Endnotes
1We only use while to represent loops since for is a

syntactic sugar of while.
2 The type of markers can be exchanged at the marker

injection step. See Section 3.2.
3 In CIL, the Loop statement represents all kinds of

loops in C.
Acknowledgements
This work was supported by the National Research Foundation of Korea
(NRF-2015-R1A2A2A01004792). This work was also supported in part by the
Gachon University research fund of 2015 (GCU-2015-0054).

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Mathematical Finance, Gachon University, 1342
Seongnamdaero, Seongnam-si, South Korea. 2Graduate School of Information,
Yonsei University, 50 Yonseiro, Seoul, South Korea.

Received: 1 June 2016 Accepted: 2 October 2016

References
1. Command Five. SK hack by an advanced persistent threat (2011).

http://www.commandfive.com/papers/C5_APT_SKHack.pdf
2. P Craig, Software Piracy Exposed—Secrets from the Dark Side Revealed,

1st edn. (Syngress Publishing, Rockland, 2005)

http://www.commandfive.com/papers/C5_APT_SKHack.pdf

Lee and Kwon EURASIP Journal onWireless Communications and Networking (2016) 2016:250 Page 9 of 9

3. J Zhao, N Yao, S Cai, in Computer Science and Information Engineering, 2009
WRI World Congress On. A new method to protect software from cracking,
vol. 2 (IEEE, New York, 2009), pp. 636–638

4. C Eagle, The IDA Pro Book: the Unofficial Guide to theWorld’s Most Popular
Disassembler. (No Starch Press, San Francisco, 2011)

5. M Abadi, M Budiu, Ú Erlingsson, J Ligatti, Control-flow integrity principles,
implementations, and applications. Trans. Inform. Syst. Secur. (TISSEC).
13(1), 4:1–4.40 (2009)

6. GC Necula, S McPeak, SP Rahul, W Weimer, in International Conference on
Compiler Construction. CIL: intermediate language and tools for analysis
and transformation of C programs (Springer Berlin Heidelberg, 2002),
pp. 213–228

7. L-J Chen, T Sun, N-C Liang, An evaluation study of mobility support in
ZigBee networks. J. Signal Process. Syst. 59(1), 111–122 (2010)

8. N Khamphakdee, N Benjamas, S Saiyod, in Information and
Communication Technology (ICoICT), 2014 2nd International Conference On.
Improving intrusion detection system based on snort rules for network
probe attack detection (IEEE, New York, 2014), pp. 69–74

9. I Onat, A Miri, inWireless AndMobile Computing, Networking And
Communications, 2005.(WiMob’2005), IEEE International Conference On. An
intrusion detection system for wireless sensor networks, vol. 3 (IEEE, New
York, 2005), pp. 253–259

10. A Ashraful Alam, D Eyers, Z Huang, in Automation, Robotics and
Applications (ICARA), 2015 6th International Conference On. Helping secure
robots in WSN environments by monitoring WSN software updates for
intrusions (IEEE, New York, 2015), pp. 223–229

11. Y Mo, Y Ma, L Xu, in IT in Medicine and Education, 2008. ITME 2008. IEEE
International SymposiumOn. Design and implementation of intrusion
detection based on mobile agents (IEEE, New York, 2008), pp. 278–281

12. PK Dutta, JW Hui, DC Chu, DE Culler, in Proceedings of the 5th International
Conference on Information Processing in Sensor Networks. Securing the
deluge network programming system (ACM, New York, 2006),
pp. 326–333

13. J Liu, W Tong, in Internet of Things (iThings/CPSCom), 2011 International
Conference on and 4th International Conference on Cyber, Physical and
Social Computing. A framework for dynamic updating of service pack in
the internet of things (IEEE, New York, 2011), pp. 33–42

14. SG Hong, NS Kim, T Heo, in Consumer Electronics (ISCE), 2015 IEEE
International SymposiumOn. A smartphone connected software updating
framework for IoT devices (IEEE, New York, 2015), pp. 1–2

15. A Seshadri, A Perrig, L van Doorn, P Khosla, in SP ’04: Proceedings of the
2004 IEEE Symposium on Security and Privacy. SWATT: software-based
attestation for embedded devices (IEEE, Oakland, 2004), pp. 272–282

16. A Seshadri, M Luk, E Shi, A Perrig, L van Doorn, P Khosla, Pioneer: verifying
code integrity and enforcing untampered code execution on legacy
systems. ACM SIGOPS Oper. Syst. Rev. 39(5), 1–16 (2005)

17. A Seshadri, M Luk, A Perrig, L van Doorn, P Khosla, inWiSe ’06: Proceedings
of the 5th ACMWorkshop onWireless Security. SCUBA: Secure Code Update
By Attestation in sensor networks (ACM, New York, 2006), pp. 85–94

18. S Kiyomoto, Y Miyake, Lightweight attestation scheme for wireless sensor
network. International Journal of Security and Its Applications. 8(2), 25–40
(2014)

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Keywords

	Introduction
	Design
	Attacks on software updates
	Integrity of control flow semantics
	Process overview
	Features of CodeDog
	Two-step marker injection
	Semantics markers
	Marker verification

	Payload generator
	Source code inspection
	Marker injection

	Integrity checks
	Different levels of fragmented software updates
	Integrity checks in a code watchdog
	Integrity checks in the recipient devices

	Evaluations
	Implementation
	Storage overhead
	Effectiveness of semantics marker protection
	Fragment size
	Mobility

	Related work and discussions
	IDS and software updates
	Software attestation
	Discussions

	Conclusions
	Acknowledgements
	Competing interests
	Author details
	References

