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Abstract

Massive multiple-input-multiple-output (MIMO), also known as very-large MIMO systems, is an attracting technique in
5G and can provide higher rates and power efficiency than 4G. Linear-precoding schemes are able to achieve the
near optimal performance, and thus are more attractive than non-linear precoding schemes. However, conventional
linear precoding schemes in massive MIMO systems, such as regularized zero-forcing (RZF) precoding, have
near-optimal performance but suffer from high computational complexity due to the required matrix inversion of large
size. To solve this problem, we utilize the Cholesky-decomposition and Sherman-Morrison lemma and propose CSM
(Cholesky and Sherman-Morrison strategy)-based precoding scheme to the matrix inversion by exploiting the asymptoti
cally orthogonal channel property in massive MIMO systems. Results are evaluated numerically in terms of
bit-error-rate (BER)and average sum rate. Comparing with the Neumann series approximation of inversing matrix, it is
concluded that, with fewer operations, the performance of CSM-based precoding is better than conventional
methods in massive MIMO configurations.

Keywords: Massive MIMO, Cholesky-decomposition, Sherman-Morrison lemma, Neumann series, RZF, CSM-based
precoding

1 Introduction
Massive multiple-input multiple-output(MIMO), i.e.,
MIMO with large numbers of transmit and/or receive
antennas (massive MIMO technology), is widely accepted
as one of the key enabling technologies for next gener-
ation(e.g., 5G) wireless communication systems [1, 2].
However, with the increasing of the number of dimen-
sions, using conventional MIMO algorithms may not be
suitable any more in terms of computational efficiency
and new methods must emerge.
Realizing massive MIMO systems has to solve some

challenges in practice, one of which is the low-complexity
and near-optimal precoding scheme. Conventional pre-
coding methods can be divided into nonlinear-precoding
and linear precoding. The optimal precoding is the non-
linear which is called dirty paper precoding (DPC) [3],
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which can effectively eliminate the interference between
different users and achieve optimal performance. How-
ever, the most serious drawback of the nonlinear-
precoding schemes is high complexity which is unfriendly
to hardware. The other nonlinear-precoding schemes,
such as lattice-aided precoding [4], can achieve the close-
optimal capacity with reduced complexity, but they are
still unaffordable when the dimension of the MIMO sys-
tem is large or the modulation order is high. Fortunately,
due to the characters of massive MIMO systems, such as
the columns of channel matrix are asymptotically orthog-
onal [5] and the channel hardening [6], the linear pre-
coding schemes, such as RZF precoding and MMSE pre-
coding, can also achieve the near-optimal capacity, which
makes a better trade-off between the complexity and the
performance. However, these schemes require computing
unfavorable matrix inversion of large size. To solve this
problem, based on Neumann series approximation algo-
rithm, [7] proposed the Neumann-based precoding which
can reduce the complexity by converting the matrix inver-
sion into a series of matrix-vector multiplications. Then,
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[8–10] proposed SOR-based, LSQR-based, and TPE -
based schemes, respectively, which are all basedNeumann
serise. But, these algorithms’ the reduction in complexity
is not obvious and do not consider the property of positive
defined Hermitian matrix.
In this paper, we propose CSM-based precoding to

reduce the complexity of matrix inversion for classi-
cal RZF or MMSE precoding. This is motivated by the
fact that the matrix which needs to be inversed in
RZF or MMSE precoding is a positive definite Hermi-
tian matrix and tends to be diagonal dominant in mas-
sive MIMO systems [1], which provides the potential to
utilize the Cholesky-Decomposition [11] and Sherman-
Morrison lemma [12]. We also conclude that CSM-based
precoding can enjoy a better performance and lower com-
putation complexity than the Neumann-based precoding
and SOR-based precoding. The impact of the algorithms
in the average sum rate and BER are evaluated and com-
pared via numerical simulations.
Notation: lower-case and upper-case boldface letters

denote vectors and matrices, respectively; (·)T , (·)H , (·)−1,
det(·) and tr(·) denote the transpose, conjugate transpose,
matrix inversion, determinant and trace, respectively; C
denotes the set of complex numbers, IN is the N × N
identity matrix.

2 Systemmodel
We consider the typical downlink transmission of a mas-
sive multi-user MIMO system, where each base station
(BS) in cells is equipped with N antennas and com-
municates with K single-antenna users(K � N) [1].
Meanwhile, we also assume that channel state informa-
tion (CSI) is known at the BS perfectly, which is a common
assumption in massive MIMO systems [13, 14] and can
be acquired by the training pilot [15]. More importantly,
we assume that time division duplex (TDD) protocols
are used so that the channel vectors are equal for both
directions. In time division duplex (TDD) massive MIMO
systems, the BS estimates the uplink channel by using the
pilots that users send in the uplink, and then the down-
link CSI can be easily acquired by using existing channel
reciprocity in TDD systems.
In the downlink, the received signal at ith user in jth cell

is:

yj,i = hj,ixj,i + nj,i (1)

where, xj,i is the transmit signal after precoding in jth cell
and hj,i represents the random channel vector from jth
cell’s BS to ith user. And nj,i is additive white Gaussian
noise (AWGN) and follows the distribution CN(0, σ 2

n ).
The channel vector from jth cell’BS to ith user can be
specified as below form:

hj,i = κj,iR1/2
j,i zj,i (2)

where, zj,i is small scale fading vector that is inde-
pendent and identically distributed (i.i.d) zero mean,
circularly-symmetric complex Gaussian random variables
CN(0, 1), κj,i is large scale fading coefficient which is
accounted by path loss and shadow fading of each ith user
that changes slowly and can remain constant over a coher-
ence time interval and known prior and Rj,i is the channel
covariance matrix.
Thus, the received vector in jth cell, denoted by yj =

[
yj,1, yj,2, yj,3 · · · yj,K

]T ∈ CK×1, at the receiver is given as:

yj = Hj · xj + nj (3)

where, Hj = [
hj,1,hj,2,hj,3 · · · hj,N

] ∈ CK×N is the down-
link channel matrix, which contains small scale fading
factor, large scale fading coefficient and channel covari-
ance matrix. xj ∈ CN×1 is signal vector after precoding
which satisfies the power limitation E[

∥
∥xj

∥
∥2
2 ]≤ K . And

nj ∈ CK×1 is additive white Gaussian noise (AWGN) and
follows the distribution CN(0, σ 2

n ).
For massive MIMO systems, linear-precoding is usually

considered, so we have

xj = Tj · sj, (4)

where Tj = [
tj,1, tj,2, tj,3 · · · tj,K

] ∈ CN×K is the precod-
ing matrix, and sj = [

sj,1, sj,2, sj,3 · · · sj,K
]T ∈ CK×1 is the

transmitted signal vector for K users. We also denote the
total transmit power constraints at BS in jth cell as

tr
(
H j · HH

j

)
= Pj, (5)

where Pj is the total transmit power in jth cell.
In the next section, we will analyze the existing clas-

sic massiveMIMO precodingmethod (i.e., RZF precoding
and MMSE precoding), as well as the proposed CSM-
based scheme.

3 Low-complexity linear-precoding scheme in
massive MIMO

In this section, we first give a basic background of the con-
ventional RZF precoding andMMSE precoding. Then, we
give the relative knowledge of Cholesky-decomposition
[11] and Sherman-Morrison lemma [12]. After that, we
prove that CSM-based precoding has a lower computa-
tional complexity and better performance thanNeumann-
based precoding and SOR-based precoding. Finally, we
give the pseudo code of CSM-based precoding algorithm.

3.1 Conventional RZF andMMSE precoding
The conventional RZF precoding and MMSE precoding
matrix can be expressed, respectively, as [6]:

TRZF = ρRZF · HH · (H · HH + φ · IK )−1 (6)

TMMSE = ρMMSE·HH ·(H · HH + (
σ 2
n · nt

) · IK )−1 (7)
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Thus, the classical RZF precoding andMMSE precoding
matrix in jth cell is:

TRZF ,j = ρRZF ,j · HH
j · (Hj · HH

j + φ · IK )−1 (8)

= ρRZF ,j · HH
j · W−1

RZF ,j (9)

TMMSE,j = ρMMSE,j ·HH
j · (Hj · HH

j + (
σ 2
n · nt

) · IK )−1

(10)

= ρMMSE,j · HH
j · W−1

MMSE,j, (11)

where WRZF ,j = (Hj · HH
j + φ · IK ) and WMMSE,j =

(Hj · HH
j + (

σ 2
n · nt

) · IK ). The φj is regularized param-
eter which can be adaptively selected according to the
different CSI, σ 2

n is noise power and nt is number of
transmitted antenna [6, 16]. And, the ρRZF ,j or ρMMSE,j
is the power normalization factor which makes RZF pre-
coding or MMSE precoding satisfy the power limitation.
Therefore, ρRZF ,j and ρMMSE,j can be computed by:

ρRZF ,j =
√√
√
√

K

tr
(
WRZF ,j · WH

RZF ,j

) (12)

ρMMSE,j =
√√
√
√

K

tr
(
WMMSE,j · WH

MMSE,j

) (13)

So, the signal vector x can be rewritten as:

x = TRZF · s = ρ · HH · W−1
RZF · s (14)

or

x = TMMSE · s = ρ · HH · W−1
MMSE · s (15)

We can observe from the (9) or (11) that a matrix
WRZF or WMMSE inversion of K × K size is required
which means that the high computational complexity is
unexpected and unacceptable. If we compute the inver-
sion directly, the resource of hardware would be wasted
greatly. Therefore, combining the property of matrix
WRZF or WMMSE and some mathematic knowledge such
as Cholesky-Decomposition [11] and Sherman-Morrison
lemma [12], we design a low-complexity precoding
scheme to solve this problem.

3.2 CSM-based precoding
To reduce the computational complexity for precoding,
we propose to use CSM-based scheme to avoid the
complicated matrix inversion of large size in RZF or
MMSE precoding. First, it is necessary to verify that the
matrixWRZF andWMMSE are positive definite Hermitian

matrix. Here, assuming an arbitrary nonzero vector t ∈
CN×1, then we can certificate that

t · WRZF · tH = t · (H · HH + φ · IK ) · tH (16)

= t · H · (t · H)H + t · (φ · IK ) · tH > 0 (17)
and

t ·WMMSE · tH = t · (H ·HH + (
σ 2
n · nt

) · IK ) · tH (18)

= t · H · (t · H)H + t · (
(
σ 2
n · nt

) · IK ) · tH > 0. (19)
Meanwhile,

WH
RZF = (H · HH + φ · IK )H = WRZF (20)

and

WH
MMSE = (H · HH + (

σ 2
n · nt

) · IK )H = WMMSE .
(21)

So, the important conclusion that WRZF and WMMSE
are positive definite Hermitian matrix is clear. Due to RZF
precoding is as same as MMSE precoding in decompo-
sition and inversion process. Therefore, we just utilize
the RZF precoding as an example to demonstrate the
CSM-based scheme. Now, we can utilize the Cholesky-
decomposition [11] to decompose the matrix WRZF as

WRZF = L · LH , (22)
where matrix L is the lower triangular matrix. Then, we
have knowledge that

W−1
RZF = (LH)−1 · L−1. (23)

Thus, computing the inversion of matrix WRZF can be
transformed into computing the inversion of matrix L .
Continue to utilize the Sherman-Morrison lemma [12]
to iterate the process of computing the L′s matrix inver-
sion. Here, we should introduce the Sherman-Morrison
lemma [12].
SupposeA is an invertible square matrix and x, y are col-

umn vectors. Suppose furthermore that 1+yH ·A−1 ·x �= 0
and (A+x·yH) is invertible. Then, the Sherman-Morrison
formula states that

(
A + x · yH)−1 = A−1 − A−1 · x · yH · A−1

1 + yH · A−1 · x . (24)

This lemma inspires us that we can utilize iteratively
method to calculate several times’ simple matrix inversion
instead of computing directly complex matrix inversion
and eventually simplify the high computational complex-
ity to lower computational complexity.
In order to keep our computational complexity lower,

we have to continue to decompose matrix L:

L = D + L
′
, (25)
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where D = diag(l1,1, l2,2, · · ·, lK ,K ) is the diagonal matrix
which is diagonal component of L and L′ = (l

′
1, l

′
2, · · ·,

l
′
K−1, 0) is a matrix based on L which the diagonal ele-
ments of L are replaced by zero.
Based on above the idea, we can calculate the inversion

of matrix L. First, the matrix should be rewritten as the
following form:

L = D + L
′

(26)

= D+ l
′
1 · e1 + l

′
2 · e2 + · · · + l

′
K−1 · eK−1 + 0 · eK , (27)

where ei is the ith row of identity matrix IK , l
′
i is the ith

column of matrix L′ . Thus, we can compute the inversion
by:

L−1 = (FK−2 + l
′
K−1 · eK−1)

−1 (28)

= (FK−2)
−1 − (FK−2)

−1 · l′K−1 · eK−1 · (FK−2)
−1

1 + eK−1 · (FK−2)
−1 · l′K−1

,

(29)

where FK−2 = D +
K−2∑

i=1
l
′
i · ei. Therefore, we should

continue to the inversion of FK−2:

FK−2
−1 = (FK−3 + l

′
K−2 · eK−2)

−1 (30)

= (FK−3)
−1 − (FK−3)

−1 · l′K−2 · eK−2 · (FK−3)
−1

1 + eK−2 · (FK−3)
−1 · l′K−2

,

(31)

where FK−3 = D+
K−3∑

i=1
l
′
i · ei. And so on, we can compute

that

F1
−1 = (F0 + l

′
1 · e1)−1 (32)

= (F0)
−1 − (F0)

−1 · l′1 · e1 · (F0)
−1

1 + e1 · (F0)
−1 · l′1

, (33)

where F0 = D. Due to the D matrix is diagonal matrix,
its inversion process is simple and efficient. Therefore,
the whole process of inversion can be calculate by basic
mathematical process and simple process of iteration.
Finally, we can compute the inversion of L by iterating

K − 1 times.

3.3 Complexity
We evaluate the computational complexity in terms of
required number of complex multiplications which is
more dominant and complex than other operations for the
total computational complexity.

According to [17], we have knowledge that the
Cholesky-decomposition can be decomposed quickly and
accurately by hardware such as FPGA. So, the computa-
tional complexity of the decomposition can be ignored.
Observing the numerator (F i−1)

−1 · l′i · ei · (F i−1)
−1 in

(29) or in (31), the column vector of l
′
i and the row vec-

tor of ei have many zero elements (much more than half ).
Utilizing computing features of sparse matrix and vector
from [18, 19], we have knowledge that the computational

complexity of (F i−1)−1·l′i ·ei·(F i−1)−1

1+ei·(F i−1)−1·l′i
isO(4K +1). Thus, after

K − 1 times of the iterative process, the whole computa-
tional complexity of L−1 is O(4K2 − 3K − 1) . Thus, we
achieve that the computational complexity of CSM-based
RZF precoding is O(4K2).
In [7], the Neumann-based precoding is

W−1 ≈
N∑

n=0
(IK − D · Z)n · D, (34)

where D = diag( 1
w1,1

, 1
w2,2

, · · ·, 1
wK ,K

) . Thus, when the
N ≥ 3 , the complexity of the Neumann-based precod-
ing isO(K3), whichmeans the reduction in the complexity
of RZF precoding is not obvious. On the other hand, the
computational complexity of proposed CSM-based pre-
coding is O(K2) . When L = 2 , complexity of Neumann-
based precoding reduces to O(K2) , but its performance
would be greatly reduced.
In [8], the SOR-based precoding which is an improve-

ment of Neumann is utilizing (22) to calculate the result
ofW−1 · s by iterating
t(i+1) = (D + ωL)−1

(
ωs + (

(1 − ω)D − ωLH
)
t(i)

)
, (35)

where the D and L are diagonal component and lower tri-
angular component respectively and satisfyW = D+L+
LH . t(i+1) denote the result after (i+ 1)th iterator. ω is the
relaxation parameter and can be computed by

ω = a · e−b·(M/K) + c. (36)

Here, a = 0.404, b = 0.323 and c = 1.035. According
the analyze the SOR scheme’s computational complex-
ity and performance, we have knowledge that when the
times of iterating is i = 3, its performance of sum
rate is near optimal but the performance of BER worse
than CSM-based precoding, even its complexity isO(4K2)
which is as same as CSM-based scheme. Therefore, CSM-
based precoding has lower computational complexity
than Neumann-based precoding and SOR-based precod-
ing and better performance.

3.4 Pseudo code of CSM-based precoding algorithm
In this part, we only give the pseudo code of core part of
the CSM-based precoding which is the process of calcu-
lating the inversion of matrixW .
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Algorithm 1 CSM-based precoding algorithm
1: INPUT: matrixW
2: initialize Ik and decompose matrixW to matrix L
3: decompose the matrix L to the matrix D and matrix

L′

4: decompose the matrix L′ to the form as l
′
1 · e1 + l

′
2 ·

e2 + · · · + l
′
K−1 · eK−1 + 0 · eK

5: form = 0 to K − 1 do
6: ifm = 0 then
7: calculating the inversion of F0
8: calculating the formula that (F0)−1 −

(F0)−1·l′1·e1·(F0)−1

1+e1·(F0)−1·l′1
9: earning the inversion of F1

10: else
11: utilizing the results F−1

m−1 which is obtained last
iteration

12: calculating the formula that (Fm)−1 −
(Fm)−1·l′m+1·em+1·(Fm)−1

1+em+1·(Fm)−1·l′m+1
13: earning the inversion of Fm+1
14: end if
15: inversion of FK is the matrix L−1

16: end for
17: calculating the product of matrix L and matrix L−1

18: OUTPUT: matrixW−1

4 Simulation result
We provide the simulation results of average sum rate and
BER of the proposed CSM-based precoding in a 256 × 16
massive MIMO system and a 256 × 32 massive MIMO
system. For convenience, we set the regularized parame-
ter φ = K/SNR. The RZF precoding with exact matrix
inversion is also set as benchmark. We compare the per-
formance among RZF precoding, CSM-based scheme,
Neumann approximate series and SOR-based precoding
in one cell.
Figure 1 compares the average sum rate among RZF

precoding, CSM-based scheme, Nuemann-based pre-
coding and SOR-based precoding. From the figure, we
can observe that performance of CSM-based scheme as
well as RZF and better than the SOR-based precod-
ing and Neumann-based method. In addition, although
during the i increasing, e.g. i = 3 which means the
computational complexity of the SOR-based precoding
and Neumann-based method precoding are O(K3) and
O(4K2), respectively, the performance of SOR-based and
Neumann-based have improvement in different level, the
performance of Neumann and SOR are sitll close to but
less than CSM-based scheme. So, the performance of
CSM-based is the best among them.
Figures 2 and 3 show that the BER performance com-

parison in Rayleigh fading channels. From the two figures,

Fig. 1 Average sum rate performance comparison for 256 × 16
massive MIMO System in Rayleigh fading channels

we can obviously find that when the number of users goes
to large in massive MIMO systems, the BER performance
of all precoding schemes suffers from severe performance
loss due to the limited number of BS antennas in prac-
tical systems, but the CSM-based scheme loss less than
Neumann-based and SOR-based precoding which means
its Robust is the best among them. Then, it is clear that
when the i increasing, BER performance of Neumann-
based and SOR-based precoding have improvement in
some extend. But the BER performance of CSM-based
precoding is still better than that of Neumann-based pre-
coding and SOR-based precoding even i = 3 and close to
the RZF. In addition, as SNR increasing, the performance
of the proposed CSM-based precoding improves faster.

Fig. 2 BER performance comparison for 256 × 16 massive MIMO
system in Rayleigh fading channels
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Fig. 3 BER performance comparison for 256 × 32 massive MIMO
System in Rayleigh fading channels

5 Conclusions
In this paper, we exploit the special channel property
of massive MIMO systems and some mathematic lem-
mas to propose the CSM-based scheme to reduce the
computational complexity from O(K3) to O(K2). Mean-
while, CSM-based precoding scheme is able to achieve
the near-optimal performance by decomposition and iter-
atively approach the exact matrix inversion of large size
in RZF precoding or MMSE precoding. Simulation results
utilize the RZF-based precoding as an example to illus-
trate that when increasing the SNR and keeping the N/K
fixed, CSM-based precoding performances of BER and
average sum rate are better than Neumann series and
other schemes proposed based on Neumann series such
as SOR-based precoding. Moreover, CSM-based scheme
approaches the near-optimal performance of RZF precod-
ing in Rayleigh fading channels.
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