
Vázquez and Míguez EURASIP Journal onWireless Communications and
Networking  (2016) 2016:276 
DOI 10.1186/s13638-016-0768-0

RESEARCH Open Access

On the use of the channel second-order
statistics in MMSE receivers for time- and
frequency-selective MIMO transmission
systems
Manuel A. Vázquez1,3* and Joaquín Míguez2,3

Abstract

Equalization of unknown frequency- and time-selective multiple input multiple output (MIMO) channels is often
carried out by means of decision feedback receivers. These consist of a channel estimator and a linear filter (for the
estimation of the transmitted symbols), interconnected by a feedback loop through a symbol-wise threshold
detector. The linear filter is often a minimummean square error (MMSE) filter, and its mathematical expression
involves second-order statistics (SOS) of the channel, which are usually ignored by simply assuming that the channel
is a known (deterministic) parameter given by an estimate thereof. This appears to be suboptimal and in this work we
investigate the kind of performance gains that can be expected when the MMSE equalizer is obtained using SOS of
the channel process. As a result, we demonstrate that improvements of several dBs in the signal-to-noise ratio needed
to achieve a prescribed symbol error rate are possible.
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1 Introduction
The main appeal in using a multiple input multiple output
(MIMO) wireless communication system stems from the
fact that the channel capacity increases linearly with the
minimum between the number of transmitting antennas
and that of receiving antennas [1]. Unfortunately, the com-
plexity of optimal MIMO detectors (which minimize the
probability of either symbol or sequence detection errors)
grows exponentially with the number of input streams and
the order of the channel, if the latter is frequency-selective
[2]. Therefore, suboptimal equalization algorithms that
avoid this computational burden are needed in order to
take advantage, in a practical setup, of the increase in
capacity that a MIMO channel can offer. Additionally, in
most real-world scenarios, the channel is unknown and
must be estimated prior to data detection. A decision
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feedback equalizer (DFE) type of receiver [3–7] is then an
appealing choice due to its ease of implementation and
the good trade-off between computational complexity and
performance that it achieves.
Figure 1 shows a simple DFE scheme. The main blocks

are an adaptive channel estimation algorithm and a linear
filter. The latter takes a channel estimate and the observa-
tions at the receiver front-end to produce linear estimates
of the transmitted symbols. These estimates are either
real or complex numbers, depending on the modulation
format. A threshold detector is used to convert them
into hard symbol decisions, i.e., discrete estimates chosen
from the symbol alphabet based on a minimum distance
rule. We assume that the detector operates symbol-wise
in order to keep the computational effort limited. The
decisions at the output of the detector are fed back to
the channel estimation block, so that they can be used
to improve the subsequent channel estimates. Usually,
the detected symbols are also employed to cancel inter-
symbol interference (see, e.g., [8] and Section 3 in this
article), but this is omitted in the figure for simplicity. We
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Fig. 1 Schematic representation of a DFE receiver. The figure
illustrates the working a simple DFE receiver. The block z−1

represents a delay of one symbol period

remark that the receiver is nonlinear, due to the threshold-
ing operation, yet its computational complexity is similar
to that of a linear receiver combined with an adaptive
channel estimation algorithm [9], ([7] Chapter 16).
Any linear filter is amenable to be used in a DFE struc-

ture. However, the use of the minimummean square error
(MMSE) filter has become widespread because it offers an
attractive trade-off between noise amplification and inter-
ference cancelation [10]. Many joint data detection and
channel estimation algorithms (see, e.g., [11–14]) rely on
the linear MMSE filter to carry out the equalization of
an unknown MIMO channel. In every case, and to the
best of our knowledge, the point estimates of the chan-
nel impulse response (CIR) provided by the corresponding
estimator are used by the MMSE filter as if they were the
true CIR. However, the estimates are actually statistics of
the true channel and, as such, have a mean and a covari-
ance matrix, the latter measuring the uncertainty we have
about their accuracy.When the Kalman filter (KF) [15, 16]
is used to estimate the channel, both statistics, the mean
and the covariance matrix of the channel become avail-
able, but even then the usual approach (e.g., in [11, 17])
consists in taking the mean of the estimate as if it were the
true channel and ignore the information provided by the
covariance matrix. In this paper, we argue that significant
performance gains can be expected by taking advantage
of the second-order statistics (SOS) of the channel, with
a low impact on the computational complexity of the
receiver. To be specific, we show that reductions of several
dBs in the signal-to-noise ratio (SNR) needed to attain a
prescribed symbol error rate (SER) can be achieved using
the proposed scheme. The main contributions of this
work are the design and implementation of the new linear
MMSE equalizer that exploits the second-order statistics
of the channel, as well as extensive computer simulations
showing the gains that can be expected from the proposed
method as compared to the conventional one.
The remaining of this paper is organized as follows. In

Section 2, the discrete-time baseband equivalent signal
model of a MIMO transmission system with frequency-
and time-selective channel is described. The standard

linear MMSE equalizer is briefly reviewed in Section 3.
Our extension thereof using the channel SOS is intro-
duced in Section 4. Section 5 outlines the DFE schemes
resulting from the investigated equalizers. In Section 6, we
show and discuss the results of extensive computer sim-
ulations to compare the performance of the conventional
DFE MMSE receiver (that ignores the channel SOS) and
the proposed DFE SOS-MMSE scheme. Finally, Section 7
is devoted to the conclusions.

1.1 Summary of notation
Given a time-indexed sequence of (column) vectors,
xa, xa+1, · · · , xb, we denote by xa

b
the column vector con-

structed by stacking, in order, all the vectors between xa
and xb (including both), i.e.,

xa
b

=
[
x�
a x�

a+1 · · · x�
b

]�
.

An identity matrix of order k is denoted by Ik , whereas
0N ,M is an N × M all-zeros matrix. If N = M, we simply
write 0N . For a vector x, x(i) represents its ith element,
and given a matrix A, a(i) refers to ith column.

2 Signal model
2.1 Time- and frequency-selective MIMO channel
We consider a MIMO communication system with Nt
transmitting antennas and Nr receiving antennas sepa-
rated by a time- and frequency-selective (MIMO) channel.
The discrete-time baseband-equivalent model describing
the transmission can be written as (see, e.g., [18])

yt =
m−1∑
i=0

Ht(i)st−i + gt , (1)

where yt is aNr×1 vector containing the observations col-
lected at time t, m is the number of taps (usually referred
to as the order) of the frequency-selectiveMIMO channel,
Ht(i) is the (time-varying) Nr ×Nt channel matrix associ-
ated with the ith tap, st is a vector of sizeNt×1 comprising
the symbols transmitted at time t, and gt is anNr×1 vector
of independent additive white Gaussian noise (AWGN)
components with zero mean and variance σ 2

g .
Grouping the matrices associated with the different taps

of the channel, Ht(i), i = 0, . . . ,m − 1, in a single overall
channel matrix,

Ht = [Ht(m − 1) Ht(m − 2) · · · Ht(0)] , (2)

of size Nr × Ntm, allows Eq. (1) to be written in a more
compact form as

yt = Htst−m+1
t

+ gt , (3)

where st−m+1
t

is aNtm× 1 vector that stacks all the symbol
vectors involved in the tth observation,

st−m+1
t

=
[
s�t−m+1 s�t−m+2 · · · s�t

]�
. (4)
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While non-standard, the notation in (4) shows explicitly
that vector st−m+1

t
is constructed by stacking simpler vec-

tors in order and indicates the time indexes of the first
(t − m + 1 in this case) and last (t here) elements to be
stacked. These features should ease the understanding of
some formulas in the sequel.
The evolution of the channel is modeled by means of

an autoregressive (AR) process driven by white Gaussian
noise1 [11]. For the sake of generality, we consider an AR
process of order R, whose analytical description is given by

Ht =
R∑

r=1
arHt−r + Vt , (5)

where ar , r = 1, . . . ,R, are the coefficients of the process
and Vt is a Nr × Ntm matrix with independent and iden-
tically distributed (i.i.d.) Gaussian random variables (r.v.)
with zero mean and variance σ 2

v .
Equations (3) and (5) can be seen, respectively, as the

observation and state equations of a random dynamic
system in state-space form. Since both equations are lin-
ear and the corresponding noise processes are Gaussian,
the Kalman filter (KF) can be applied to exactly compute
the posterior probability distribution of the time-varying
MIMO channel when the symbols are available.
In order to do so while using the standard KF equations,

we first need to gather the whole state of the system (here,
the channel at the last R time instants) in a single vec-
tor and rewrite the state and observation equations in
terms of it. Matrix Ht can be represented as a vector in
a straightforward manner by, e.g., stacking all its columns
one upon another. In particular, if we let ht(j) denote the
jth column of matrixHt , then the NrNtm × 1 vector

ht =
[
ht(1)� ht(2)� · · · ht(Ntm)�

]�
(6)

contains the same coefficients as matrix Ht . Using this
vectorial notation and taking into account that, according
to Eq. (5), the channel at a certain time instant depends
on the channel at the R previous time instants, the state of
the system at time t can be represented by the vector

ht−R+1
t

=
[
h�
t−R+1 h�

t−R+2 · · · h�
t

]�
. (7)

The state equation of the system can then be written in
terms of this augmented channel vector as

ht−R+1
t

= Qht−R
t−1

+ vt , (8)

where vt is a NrNtmR × 1 vector with i.i.d. Gaussian r.v.’s
of zero mean and variance σ 2

v in the last NrNtm positions
and zeros in the rest, and the state transition matrix,Q, is
defined as

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0NrNtm INrNtm 0NrNtm · · · 0NrNtm

0NrNtm 0NrNtm INrNtm 0NrNtm
...

...
...

. . . . . . 0NrNtm
0NrNtm 0NrNtm · · · 0NrNtm INrNtm
a1INrNtm a2INrNtm · · · · · · aRINrNtm

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(9)

with 0NrNtm denoting anNrNtm×NrNtm all-zerosmatrix,
and INrNtm an identity matrix of order NrNtm.
The observation (Eq. (3)) can also be easily rewritten in

terms of the augmented channel vector, ht−R+1
t

, as

yt = Stht−R+1
t

+ gt (10)

where

St =
[
0Nr×NrNtm(R−1) st−m+1

t
(1)INr st−m+1

t
(2)INr · · ·

st−m+1
t

(Ntm)INr

]
.

(11)

We use the dynamic system in state-space form speci-
fied by Eqs. (10) and (8) (which is equivalent to that given
by Eqs. (3) and (5)) to track the unknown time-varying
MIMO channel by means of a KF.

2.2 Stackedmodel
When a channel is time dispersive, a reliable detection
of the transmitted symbols usually requires smoothing.
It entails taking into account the observations yt:t+d (the
parameter d ≥ 1 being the smoothing lag) in order to
detect the vector st containing the symbols transmitted at
time t. In such case, it is useful to consider an equation
that relates a tall vector of stacked observations with the
transmitted symbols, namely,

yt
t+d

= Ht,dst−m+1
t+d

+ gt
t+d

, (12)

where yt
t+d

=
[
y�
t , y�

t+1, · · · , y�
t+d

]�
, and the Nr(d + 1) ×

Nt(m + d) composite channel matrix is defined as

Ht,d =
⎡
⎢⎢⎢⎢⎢⎢⎣

Ht(m − 1) Ht(m − 2) · · · Ht(0) 0Nr×Nt · · · 0Nr×Nt

0Nr×Nt Ht+1(m − 1) · · · Ht+1(1) Ht+1(0)
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0Nr×Nt
0Nr×Nt · · · 0Nr×Nt Ht+d(m − 1) · · · · · · Ht+d(0)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(13)

Equation (12) involves symbol vectors st−m+1, · · · , st−1,
which, at time t, have already been detected. It is conve-
nient to identify their contribution to the stacked obser-
vations vector, yt

t+d
. Let us decompose the overall channel

matrixHt,d as

Ht,d =
[
H‡

t,d Ht,d
]
, (14)
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where the submatrices H‡
t,d and Ht,d encompass, respec-

tively, the first Nt(m − 1) and last Nt(d + 1) columns
of Ht,d. Then, the vector of stacked observations can be
rewritten as

yt
t+d

=
[
H‡

t,d Ht,d
] [

st−m+1
t−1
st
t+d

]
+ gt

t+d

= H‡
t,dst−m+1

t−1
+ Ht,dstt+d

+ gt
t+d

,
(15)

where the termH‡
t,dst−m+1

t−1
contains the contribution of the

symbols transmitted up to time t − 1, and can be treated
as causal inter-symbol interference.

2.3 Kalman filtering
The KF [15] provides the optimal solution to the problem
of estimating the state of a dynamic system in state-space
form when its state and observation equations are linear
and their corresponding noises are Gaussian.
In the problem at hand, the state of the system at time

t is given by the augmented channel vector, ht−R+1
t

, and
Eqs. (8) and (10) can be seen as, respectively, the state
and observation equations of a dynamic system in state-
space form. Since the above constraints of linearity and
Gaussianity are met, the KF can be used to compute
the probability density function of the state conditional
on the available observations, p(ht−R+1

t
|y0, · · · , yt). How-

ever, the observation equation involves knowing, at time
t, matrix St , which includes all the symbols transmitted
between time instants t − m + 1 and t. In practice, only
estimates of the symbols transmitted up to time t − 1
are available at time t, and hence we aim at the (pre-
dictive) distribution of the state conditional on all the
past observations and previously detected symbols, i.e.,
p(ht−R+1

t
|y0, · · · , yt−1, s̃0, · · · , s̃t−1) with s̃t denoting the

vector containing the hard estimates of the symbols in st .
Every expectation in the remaining of the paper is also
(implicitly) conditional on the same information, and we
denote it as Et−1[ ·]. For example, the posterior mean of
the CIR at time t + k (k ≥ 0) conditional on y0, · · · , yt−1
and s̃0, · · · , s̃t−1 is written as Et−1[ht+k] and the poste-
rior cross-covariance between ht+k and ht+k′ , k, k′ ≥ 0, is
denoted Et−1[ht+khHt+k′ ].
Notice that here the KF only yields an approximate

solution insofar as it depends on the goodness of the
previously detected symbols fed to it.

3 Linear MMSE smoothing
In order to detect the symbols transmitted at time t over a
frequency-selective channel, it is usually a good approach
to first remove the contribution of the already detected
symbols from the observations vector [8]. At the sight of

Eq. (15), we can obtain causal-interference-free observa-
tions as

zt
t+d

:= yt
t+d

− H‡
t,dst−m+1

t−1
(16)

= Ht,dstt+d
+ gt

t+d
. (17)

Computing zt
t+d

from yt
t+d

entails knowing vector st−m+1
t−1

,
which encompasses symbol vectors st−m+1, · · · , st−1.
These are unknown but previous estimates thereof are
available at time t and can be used as a surrogate. Hence,
in practice, the stacked symbols vector st−m+1

t−1
in Eq. (16)

is replaced with vector, s̃t−m+1
t−1

that contains hard estimates
of the same symbols. This is a common approximation
for the design of DFEs, and it usually makes sense under
the assumption that the receiver is operating with a suf-
ficiently low symbol error probability. Throughout the
paper, we rely on this approximation, which amounts to
taking the previously detected symbols as if they were the
truly transmitted symbols, i.e.,

s̃t−m+1
t−1

= st−m+1
t−1

. (18)

Assuming the causal interference is properly canceled,
the linear MMSE estimation of the symbols transmitted at
time t considering the observations up to time t + d can
be easily derived from Eq. (17) (see, e.g., [19]). In partic-
ular, let the Nr(d + 1) × Nt(d + 1) matrix Ft represent
the response of a linear system. Then, estimates of the
transmitted symbols are computed as 2

ŝt
t+d

= FHt ztt+d
, (19)

and, in order to minimize the mean square error of these
estimates, the response matrix can be computed by solv-
ing the optimization problem

Ft = argmin
Ft

Et−1

[∣∣∣FHt ztt+d
− st

t+d

∣∣∣
2
]
. (20)

Since the ultimate aim is to estimate st but we are using
observations up to time t + d, we refer to the linear sys-
tem whose response is given by Ft in (20) as an MMSE
smoother.
Equation (20) poses a quadratic optimization problem

and it is straightforward to obtain the closed-form solu-
tion (see, e.g., [2])

FHt = Et−1

[
st
t+d

zHt
t+d

] (
Et−1

[
zt
t+d

zHt
t+d

])−1
. (21)

Again, if we assume that the causal inter-symbol
interference has been completely removed from the
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observations, so that these are given by Eq. (17), then the
expectations on the right-hand side of Eq. (21) can be
shown to be

Et−1

[
st
t+d

zHt
t+d

]
= σ 2

s Et−1
[
HH

t,d
]

(22)

Et−1

[
zt
t+d

zHt
t+d

]
= Et−1

[
Ht,dstt+d

sHt
t+d

HH
t,d

]
+σ 2

g INr(d+1),

(23)

where σ 2
s denotes the variance of the symbols and it has

been taken into account that the noise at time t is white
and independent of the channel process and the symbols
transmitted up to t − 1, and that the channel and the
symbols are a priori independent.
The expectation on the right-hand side of Eq. (23) is

usually approximated, to the best of our knowledge, by
dealing with the channel matrixHt,d as if it were a known
given (deterministic) parameter, and hence

Et−1

[
Ht,dstt+d

sHt
t+d

HH
t,d

]
= Ht,dEt−1

[
st
t+d

sHt
t+d

]
HH

t,d

= σ 2
s Ht,dHH

t,d.
(24)

Substituting (24) into Eq. (23) yields

Et−1

[
zt
t+d

zHt
t+d

]
= σ 2

s Ht,dHH
t,d + σ 2

g INr(d+1), (25)

and combining Eqs. (22) and (25) in Eq. (21) yields the
final expression for the response of the conventional linear
MMSE smoother,

FHt = σ 2
s HH

t,d

(
σ 2
s Ht,dHH

t,d + σ 2
g INr(d+1)

)−1
. (26)

So far, we have assumed the channel is a known (deter-
ministic) parameter. However, this is not usually the case
in practice, and the common approach to tackle this prob-
lem consists in replacing, whenever necessary, the (true)
channel matrix with its expectation. Notice that here this
entails a twofold approximation. On one hand, even when
assuming that the symbols up to time t − 1 have been
detected exactly, at best one can only obtain approximate
causal-interference-free observations as

zt
t+d

≈ yt
t+d

− Et−1
[
H‡

t,d

]
st−m+1
t−1

. (27)

On the other hand, taking the true channel matrix in
Eq. (26) to be equal to its expectation results in the
following approximation for the linear MMSE filter

FHt ≈ σ 2
s Et−1

[
HH

t,d

] (
σ 2
s Et−1

[
Ht,d

]
Et−1

[
HH

t,d

]
+ σ 2

g INr(d+1)
)−1

.

(28)

At the sight of Eqs. (13) and (14), in order to obtain
Et−1

[
H‡

t,d

]
and Et−1

[
HH

t,d

]
on the right-hand side of

Eqs. (27) and (28), respectively, we need the expecta-
tions of the matrices Ht ,Ht+1, . . . ,Ht+d. At time t, the
expectation of the channel matrix Ht is given by the pre-
dictive distribution of the KF, which takes into account the
observations and symbols vectors up to time t − 1. How-
ever, the expectations of the matricesHt+1, . . . ,Ht+d have
to be computed as well. In order to do so, we simply use
Eq. (5) (the state equation of the system) to expand the
expected channel matrix at time t, i.e.,

Et−1
[
Ht+k

] =
R∑

r=1
arEt−1

[
Ht+k−r

]
, k = 1, . . . , d.

(29)

4 MMSE smoothing using the channel SOS
The proposed MMSE detector treats the channel as
an unknown (multidimensional) random variable (as
opposed to a deterministic known parameter), and takes
advantage of its second-order statistics rather than just
its expectation. Additionally, it avoids performing explicit
interference cancelation, since this cannot be performed
exactly. In order to do so, it aims to detect the transmitted
symbols by solving the optimization problem

Ft = argmin
Ft

Et−1

[∣∣∣FHt ytt+d
− st

t+d

∣∣∣
2
]
, (30)

which is exactly the same as that posed by Eq. (20) replac-
ing zt

t+d
with yt

t+d
. Hence, the solution is

FHt = Et−1
[
st
t+d

yt
t+d

] (
Et−1

[
yt
t+d

yHt
t+d

])−1
. (31)

Through straightforward algebraic manipulation, one
can show

Et−1

[
st
t+d

yHt
t+d

]
= σ 2

s Et−1
[
HH

t,d
]

(32)

Et−1

[
yt
t+d

yHt
t+d

]
= Et−1

[
Ht,dstt+d

sHt
t+d

HH
t,d

]

+ Et−1

[
H‡

t,dst−m+1
t−1

sHt−m+1
t−1

H‡H
t,d

]
+

+ σ 2
g INr(d+1), (33)

where we have used that vector st−m+1
t−1

is known
because the expectations are conditional on the previously
detected symbols and we are assuming these match the
truly transmitted ones (see Eq. (18) and the surrounding
discussion).

4.1 The observation autocorrelation matrix

From Eq. (33), computing Et−1

[
yt
t+d

yHt
t+d

]
actually

amounts to the calculation of Et−1

[
Ht,dstt+d

sHt
t+d

HH
t,d

]
and
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Et−1

[
H‡

t,dst−m+1
t−1

sHt−m+1
t−1

H‡H
t,d

]
. Regarding the first expecta-

tion, if we let ht,d(j) denote the jth column of matrix Ht,d
and st

t+d
(j) denote the jth element within vector st

t+d
, then

the expectation Et−1

[
Ht,dstt+d

sHt
t+d

HH
t,d

]
can be rewritten

as

Et−1

[
Ht,dstt+d

sHt
t+d

HH
t,d

]
= Et−1

[(
Ht,dstt+d

) (
Ht,dstt+d

)H]

= Et−1

⎡
⎣

⎛
⎝

Nt(d+1)∑
i=1

ht,d(i)stt+d
(i)

⎞
⎠

×
⎛
⎝

Nt(d+1)∑
j=1

hHt,d(j)s
∗
t
t+d

(j)

⎞
⎠

⎤
⎦

=
Nt(d+1)∑

i=1

Nt(d+1)∑
j=1

Et−1
[
ht,d(i)hHt,d(j)

]

Et−1

[
st
t+d

(i)s∗t
t+d

(j)
]

= σ 2
s

Nt(d+1)∑
i=1

Et−1
[
ht,d(i)hHt,d(i)

]
,

(34)

where the third equality follows because the symbols from
time t onwards are a priori independent of the channel
at time t and subsequent time instants, while the fourth
equality holds because of the (also a priori) independence
between different symbols,

Et−1

[
st
t+d

(i)s∗t
t+d

(j)
]

=
{

σ 2
s , i = j

0, i �= j . (35)

Similarly, if h‡t,d(i) refers to the ith column in matrix
H‡

t,d, and st−m+1
t−1

(i) to the ith symbol within vector st−m+1
t−1

(assumed known), we have

Et−1

[
H‡

t,dst−m+1
t−1

sHt−m+1
t−1

H‡H
t,d

]
= Et−1

[(
H‡

t,dst−m+1
t−1

) (
H‡

t,dst−m+1
t−1

)H]

= Et−1

⎡
⎣

⎛
⎝

Nt(m−1)∑
i=1

h‡t,d(i)st−m+1
t−1

(i)

⎞
⎠

×
⎛
⎝

Nt(m−1)∑
j=1

st−m+1
t−1

(j)h‡Ht,d (j)

⎞
⎠

⎤
⎦

=
Nt(m−1)∑

i=1

Nt(m−1)∑
j=1

st−m+1
t−1

(i)s∗t−m+1
t−1

(j)

Et−1
[
h‡t,d(i)h

‡H
t,d (j)

]
.

(36)

where, once again, we have used that the expectation is
conditional on all the previously detected symbols and

hence, assuming these were exactly detected, vector st−m+1
t−1

is known.

4.2 Channel cross-correlation matrices
Equations (34) and (36) involve computing the cross-
correlation between different columns of matrices Ht,d
and H‡

t,d, respectively. These are submatrices of Ht,d (see
Eq. (14)), and hence their columns are ultimately columns
from Ht,d. In particular, if we let ht,d(j) denote the jth
column of matrixHt,d, then

ht,d(j) = ht,d(j + Nt(m − 1)), 1 ≤ j ≤ Nt(d + 1)
(37)

h‡t,d(j) = ht,d(j), 1 ≤ j ≤ Nt(m − 1),
(38)

and every required cross-correlation is ultimately between
columns ofHt,d. The structure of a column from the latter
can be inferred from Eq. (13). Specifically, the jth column
ofHt,d is given by

ht,d(j) =

⎡
⎢⎢⎢⎢⎣

h̆t(j)
h̆t+1(j)

...
h̆t+d(j)

⎤
⎥⎥⎥⎥⎦
, (39)

where

h̆t+i(j) =
{
ht+i(j − iNt), 0 ≤ i ≤ d, iNt < j ≤ (i + m)Nt
0Nr×1, otherwise,

(40)

is a Nr × 1 column vector.
We compute the cross-correlation between any pair

of columns in Ht,d, by way of their means and cross-
covariance matrix, as

Et−1
[
ht,d(i)h

H
t,d(j)

]
= Et−1

[
ht,d(i)

]
Et−1

[
hHt,d(j)

]

+ �ht,d(i),ht,d(j),
(41)

where �ht,d(i),ht,d(j) stands for the cross-covariance matrix
betweenNr(d+1)×1 (column) vectors ht,d(i) and ht,d(j).
The expectation of every column, ht,d(i), i =

1, . . . ,Nt(m + d), in matrix Ht,d is readily available from
the expectation of the entire matrix, Ht,d, which can be
obtained in a straightforward manner as explained at the
end of Section 3. As for the cross-covariance �ht,d(i),ht,d(j),
it is given, at the sight of Eq. (39), by

�ht,d(i),ht,d(j) =

⎡
⎢⎢⎢⎢⎢⎣

�h̆t(i),h̆t(j) �h̆t(i),h̆t+1(j) · · · �h̆t(i),h̆t+d(j)

�h̆t+1(i),h̆t(j) �h̆t+1(i),h̆t+1(j) · · ·
...

...
...

. . .
...

�h̆t+d(i),h̆t(j) · · · · · · �h̆t+d(i),h̆t+d(j)

⎤
⎥⎥⎥⎥⎥⎦
,

(42)
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where �h̆t+k(i),h̆t+l(j)
, k, l = 0, . . . , d is the cross-covariance

between vectors h̆t+k(i) and h̆t+l(j). In particular the entry
at the (u,w) position of �h̆t+k(i),h̆t+l(j)

is the covariance
between the uth element of h̆t+k(i) and the wth element
of h̆t+l(j). Notice that when both vectors in the sub-
script are the same, this yields the (self-)covariance matrix
�h̆t+k(i),h̆t+k(i)

= �h̆t+k(i)
.

Recall from Eq. (40) that h̆t+k(i) for k = 0, · · · , d, and
i = 1, · · · ,Nr(d + 1), is either an all-zeros (column)
vector or a column from matrix Ht+k . Thus, when com-
puting the cross-covariance between vectors h̆t+k(i) and
h̆t+l(j), if one of the vectors (or both) is all-zeros, then
�h̆t+k(i),h̆t+l(j)

= 0Nr . On the contrary, if both vectors are
different from the all-zeros column vector, then h̆t+k(i)
must be a column frommatrixHt+k , and h̆t+l(j) one from
matrixHt+l. In that case, let us assume h̆t+k(i) = ht+k(n)

and h̆t+l(j) = ht+l(q) for some n, q ∈ {1, · · · ,Ntm}, so
that �h̆t+k(i),h̆t+l(j)

= �ht+k(n),ht+l(q).
In order to compute �ht+k(n),ht+l(q) for k, l ∈ {0, . . . , d}

and n, q ∈ {1, · · · ,Ntm}, we consider two different cases.
On one hand, if k = l then �ht+k(n),ht+k(q) is ultimately
the cross-covariance between columns n and q of matrix
Ht+k and can be obtained from the KF. Indeed, we can
make the KF evolve from time t up to time t + k when no
new information is available by taking k predictive steps.
This yields predictive statistics for ht+k (a vectorial rep-
resentation of Ht+k), and from its covariance matrix it
is straightforward to obtain the cross-covariance matrix,
�ht+k(n),ht+k(q) between any pair of columns ht+k(n) and
ht+k(q) withinHt+k . On the other hand, if k �= l then

�ht+k(n),ht+l(q) = Et−1
[(
ht+k(n)−Et−1

[
ht+k(n)

])(
ht+l(q)

−Et−1
[
ht+l(q)

])H]
(43)

= Et−1
[
ht+k(n)hHt+l(q)

]

− Et−1
[
ht+k(n)

]
Et−1

[
hHt+l(q)

]
, (44)

and from Eqs. (43) and (44), it can be shown (see
Appendix 7 for details) that, for k < l,

�ht+k(n),ht+l(q) =
R∑

r=1
ar�ht+k(n),ht+l−r(q), (45)

which allows for the recursive computation of the cross-
covariance between any given two (different) columns in
matrices Ht ,Ht+1, . . . ,Ht+d. Notice that when k > l, we
can still use the above formula since

�ht+k(n),ht+l(q) = �H
ht+l(q),ht+k(n).

It is interesting to note that, when R = 1, Eq. (45)
becomes

�ht+k(n),ht+l(q) = a1�ht+k(n),ht+l−1(q)

= · · · = al−k
1 �ht+k(n),ht+k(q). (46)

Since a KF estimating the augmented channel vector
defined in Eq. (7) yields, at time t, the cross-covariance
matrices �hk(i),hl(j) with k, l = t − R + 1, . . . , t and
i, j = 1, . . . ,Ntm, Eq. (45) allows the recursive com-
putation of all the cross-covariance matrices needed
to obtain, according to Eq. (42), the cross-covariance
matrix �ht,d(i),ht,d(j), for any pair of columns in Ht,d. To
summarize,

• Equations (45), (42), and (41) together yield the
channel cross-correlation matrices
Et−1

[
ht,d(i)h

H
t,d(j)

]
in closed form;

• Equations (41), (34), (37), (36), (38), and (33) yield the

observation autocorrelation matrix Et−1

[
yt
t+d

yHt
t+d

]
.

4.3 The SOS-MMSE smoother
Having computed the stacked observations autocorrela-
tionmatrix given by Eq. (33), it is straightforward to plug it
into Eq. (31), along with right-hand side of (32), to obtain
the final expression for the proposed MMSE smoother
that exploits the channel SOS explicitly,

FHt = σ 2
s Et−1

[
HH

t,d
]
⎛
⎝σ 2

s

Nt(d+1)∑
i=1

Et−1
[
ht,d(i)hHt,d(i)

] +

+
Nt(m−1)∑

i=1

Nt(m−1)∑
j=1

st−m+1
t−1

(i)s∗t−m+1
t−1

(j)Et−1
[
h‡t,d(i)h

‡H
t,d (j)

]

+σ 2
g INr(d+1)

⎞
⎠

−1

.

(47)

Notice that, at the sight of the right-hand side of Eq. (47),
the proposed MMSE detector takes advantage of the pre-
viously detected symbols. Hence, causal-interference can-
celation is still being performed, although in an implicit
manner (as opposed to the explicit causal-interference
cancelation carried out by the conventional MMSE
detector).
In order to ease the implementation of the proposed

scheme, Pseudocode 1 gives an overview of the neces-
sary steps to obtain the MMSE smoother at time t when
the order of the AR process used to model the channel
dynamics is R = 1. The extension to higher order AR
processes is straightforward (the procedure is essentially
the same), though some care is needed to build up the
involved cross-covariance matrices in an adequate order.
Assuming the smoothing lag, d, is approximately equal

to the memory of the channel3, m, the complexity of the
proposed receiver when R = 1 is O(N3

r N3
t m4). This is
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Pseudocode 1 Proposed SOS-MMSE smoother at time t when R = 1
1: for k = 1, · · · , d do
2: use KF equations over the dynamic system described by (10) and (8) with St = 0Nr×Ntm and yt = 0Nr×1 to get the predictive

mean, Ĥt+k := Et−1
[
Ht+k

]
, and covariance matrix, �ĥt+k

, of Ht+k given observations, y0, · · · , yt−1, and the previously
detected symbols, s̃0, · · · , s̃t−1.

3: use Ĥt , Ĥt+1, · · · , Ĥt+d to build an estimate, Ĥt,d , ofHt,d using (13)

// computation of Et−1

[
Ht,dstt+d

sHt
t+d

HH
t,d

]

4: set S ← 0
5: for i = 1, · · · ,Nt(d + 1) do
6: from Eq. (37) obtain the index, i′, of the column within matrixHt,d such that ht,d(i) = ht,d(i′)
7: initialize the covariance matrix for the i′-th column of matrixHt,d : �ĥt,d(i′),ĥt,d(i′) ← 0Nr(d+1)
8: for k = 0, · · · , d do
9: from Eq. (40) obtain the index n such that h̆t+k(i′) = ht+k(n)

10: for l = k + 1, · · · , d do
11: from Eq. (40) obtain the index q such that h̆t+l(i′) = ht+l(q)
12: if h̆t+k(i′) or h̆t+l(i′) is 0Nr×1 then
13: continue to the next iteration of loop starting in line 10
14: obtain �ĥt+k(n),ĥt+k(q)

, the cross-covariance matrix between columns n and q of Ĥt+k by selecting the appropriate
coefficients from �ĥt+k

15: compute, according to Eq. (46), �ĥt+k(n),ĥt+l(q)
= al−k

1 �ĥt+k(n),ĥt+k(q)
16: set �h̆t+k(i′),h̆t+l(i′) ← �ĥt+k(n),ĥt+l(q)
17: insert �h̆t+k(i′),h̆t+l(i′) (and its transpose if k �= l) into the adequate position of matrix �ĥt,d(i′),ĥt,d(i′) according to (42)

18: obtain Et−1
[
ht,d(i′)

]
as the i′-th column of Ĥt,d

19: from �ĥt,d(i′),ĥt,d(i′) and Et−1
[
ht,d(i′)

]
compute Et−1

[
ht,d(i′)h

H
t,d(i′)

]
according to (41)

20: set S ← S + Et−1
[
ht,d(i′)h

H
t,d(i′)

]

// computation of Et−1

[
H‡

t,dst−m+1
t−1

sHt−m+1
t−1

H‡H
t,d

]

21: set S‡ ← 0
22: for i = 1, · · · ,Nt(m − 1) do
23: for j = 1, · · · ,Nt(m − 1) do
24: initialize the cross-covariance matrix between the i-th and j-th columns of matrixHt,d : �ĥt,d(i),ĥt,d(j) ← 0Nr(d+1)
25: for k = 0, · · · , d do
26: from Eq. (40) obtain the index n such that h̆t+k(i) = ht+k(n)

27: for l = 0, · · · , d do
28: from Eq. (40) obtain the index q such that h̆t+l(j) = ht+l(q)
29: if h̆t+k(i) or h̆t+l(j) is 0Nr×1 then
30: continue to the next iteration of loop starting in line 27
31: if k ≤ l then
32: obtain�ĥt+k(n),ĥt+k(q)

, the cross-covariance matrix between columns n and q of Ĥt+k by selecting the appropriate
coefficients from �ĥt+k

33: else
34: obtain �ĥt+k(n),ĥt+k(q)

as the transpose of �ĥt+l(q),ĥt+l(n)
, the cross-covariance matrix between columns q and n of

Ĥt+l by selecting the appropriate coefficients from �ĥt+l

35: compute, according to Eq. (46), �ĥt+k(n),ĥt+l(q)
= a|l−k|

1 �ĥt+k(n),ĥt+k(q)
36: set �h̆t+k(i),h̆t+l(j)

← �ĥt+k(n),ĥt+l(q)
37: insert �h̆t+k(i),h̆t+l(j)

into the adequate position of matrix �ĥt,d(i),ĥt,d(j)

38: obtain Et−1
[
ht,d(i)

]
and Et−1

[
ht,d(j)

]
as, respectively, the i-th and j-th columns of Ĥt,d

39: from �ĥt,d(i),ĥt,d(j), Et−1
[
ht,d(i)

]
and Et−1

[
ht,d(j)

]
compute Et−1

[
ht,d(i)h

H
t,d(j)

]
according to (41)

40: set S‡ ← S‡ + st−m+1
t−1

(i)st−m+1
t−1

(j)∗Et−1
[
ht,d(i)h

H
t,d(j)

]

41: return FHt = σ 2
s Ĥt,d

(
σ 2
s S + S‡ + σ 2

g INr(d+1)
)−1
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ultimately the complexity of runningmKFs, each one esti-
mating a state vector of length NrNtm (see lines 1–2 of
Pseudocode 1). Therefore, the computational complexi-
ties of the SOS-MMSE smoother and the conventional
MMSE smoother of Section 3 are of the same order.

5 DFE schemes
The two MMSE smoothers described in Sections 3 and
4 can be readily used in a DFE scheme that relies on a
Kalman filter for the channel tracking. In particular, we
aim at comparing the performance of

• a conventional MMSE DFE that neglects the SOS
generated by the KF, termed “MMSE + KF” in the
sequel, and

• the proposed SOS-based MMSE DFE, termed
“SOS-MMSE + KF”.

Figure 2 illustrates schematically the fundamental dif-
ferences between the MMSE + KF- and SOS-MMSE +
KF-based receivers. The KF yields the mean and the

interference
cancellation

channel mean

KF MMSE
channel covariance

matrix

z− 1

·

·

channel mean

KF SOS-MMSE
channel covariance

matrix

z− 1

·

·

(b)

(a)

Fig. 2 Data exchange between the KF and the aMMSE + KF and b
SOS-MMSE+KF receivers. The figure stresses the fundamental
difference between the conventional MMSE and the one proposed.
Notice how the channel matrix covariance given by the KF is fed to the
smoother in the lower figure, whereas it is discarded in the upper one

covariance matrix of the channel impulse response, and
both receivers make use of the former (along with the
observations) to obtain estimates of the symbols transmit-
ted. However, the proposed SOS-MMSE filter also takes
advantage of the covariance matrix whereas the conven-
tional MMSE neglects the information contained within
this statistic. Also notice that the proposed receiver does
not perform explicit interference cancelation (since this
cannot be carried out exactly), as opposed to the conven-
tional MMSE.

6 Simulation results
In order to assess the performance of the proposed algo-
rithm, we have carried out computer simulations con-
sidering a system with Nt = 4 transmitting antennas
and Nr = 7 receiving antennas. The modulation for-
mat is BPSK and transmission is carried out in frames
of K = 300 symbol vectors (i.e., 1200 binary symbols
overall), including a training sequence of length T =
30 comprising symbols known to the receiver. This last
parameter has been selected empirically, after observing
that an increase thereof does not yield any noticeably per-
formance improvement while decreasing it has indeed
a negative impact. The training sequence is used at the
beginning of each data frame to obtain a rough estimate
of the channel impulse response. However, extending the
method to use pilot symbols instead of, or in addition to,
a training preamble is straightforward.
A flat power profile is assumed for the channel, and

every coefficient is initially (and independently) drawn
from a Gaussian distribution with zero mean and unit
variance. As for the channel model, an AR process of order
1 has been considered, i.e., R = 1. The coefficient of the
AR process is a1 = 1 − 10−5, and we evaluate the perfor-
mance of theMMSE + KF and SOS-MMSE + KF receivers
in terms of the symbol error rate (SER) considering two
different values for the variance of the channel noise, σ 2

v ,
each one studied in a section of its own4. Furthermore, dif-
ferent values for the channel order are explored in every
case.
In all the simulations, each data frame is generated inde-

pendently of all others (including the transmitted data, the
MIMO channel realization and the noise terms), and the
lag for theMMSE smoothers is set to d = m−1. The latter
condition guarantees that every symbol is detected using
all the related observations, and values of the smoothing
lag above m − 1 do not seem to yield a noticeable per-
formance gain. The results are averaged over 60, 000 data
frames.

6.1 Slow fading channel (σ 2
v = 5 × 10−3)

In this scenario, we consider a value of σ 2
v = 0.005 for

the variance of the noise in the AR process governing the
evolution of the channel (see Eq. (5)).



Vázquez and Míguez EURASIP Journal onWireless Communications and Networking  (2016) 2016:276 Page 10 of 14

Fig. 3 SER for several values of the SNR (dB) with σ 2
v = 0.005 andm = 1

Figure 3 compares the SER achieved by the algorithms
MMSE + KF and SOS-MMSE + KF for different values
of the SNR when the channel is flat (m = 1). In order
to reach a SER of 10−2, the method using the proposed
MMSE DFE requires roughly 0.4 dBs less SNR than the
method using the conventional MMSE DFE. This gap
largely widens as the SNR increases: for a SER of 5×10−3,
the curve for theMMSE + KF is more than 1 dB away from
that of the SOS-MMSE + KF. Notice that both methods
exhibit an error floor, but the one associated with the DFE
scheme introduced in this paper is lower.

When the channel is flat, only the present state of the
channel is needed (along with the observations) in order
to detect the symbols transmitted. On the other hand,
when the channel is dispersive, i.e., m > 1, not only
does the number of channel coefficients to be estimated
increase, but predictions of future channel states are also
necessary in order to perform both causal-interference
cancelation and smoothing. Overall, this results in less
reliable channel estimates being employed, and hence
accounting for their uncertainty becomes important. This
is illustrated in Fig. 4 that shows the performance of the

5 10 15 20 25 30 35
SNR (dBs)

1 0 -3

1 0 -2

1 0 -1

SER

MMSE + KF

SOS-MMSE + KF

Fig. 4 SER for several values of the SNR (dB) with σ 2
v = 0.005 andm = 3



Vázquez and Míguez EURASIP Journal onWireless Communications and Networking  (2016) 2016:276 Page 11 of 14

5 10 15 20 25 30 35
SNR (dBs)

1 0 -4

1 0 -3

1 0 -2

1 0 -1

1 0 0

SER

MMSE + KF

SOS-MMSE + KF

Fig. 5 SER for several values of the SNR (dB) with σ 2
v = 0.005 andm = 5

algorithms when m = 3. When comparing these results
to those obtained for m = 1, the SER achieved by the
MMSE + KF degrades over the whole range of SNRs on
account of this algorithm neglecting the channel SOS. On
the other hand, the SOS-MMSE + KF is able to success-
fully cope with the uncertainty in the channel estimates
and even sees a performance boost due to the increase
in diversity given by a higher channel order. As a conse-
quence, the proposed receiver now exhibits a more clear
advantage over the conventional one. Indeed, in order to
attain a SER of 10−2, the latter requires around 2.4 dBs
more SNR than the former. Figure 5 shows that when

the channel order is m = 5, the gap between the curves
of the SOS-MMSE + KF and MMSE + KF algorithms
widens even more. Moreover, the performance of the
SOS-based MMSE DFE improves slightly whereas that of
the conventional MMSE DFE further deteriorates.

6.2 Fast fading channel (σ 2
v = 0.01)

Increasing the variance of the channel noise has a twofold
effect. On one side, since the channel now changes more
rapidly and hence it is harder to track, the performance
of any receiver is expected to worsen. On the other side,
the channel evolving faster means that predictions about

5 10 15 20 25 30 35
SNR (dBs)

1 0 -3

1 0 -2

1 0 -1

SER

MMSE + KF

SOS-MMSE + KF

Fig. 6 SER for several values of the SNR (dB) with σ 2
v = 0.01 andm = 1
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5 10 15 20 25 30 35
SNR (dBs)

1 0 -3

1 0 -2

1 0 -1

SER

MMSE + KF

SOS-MMSE + KF

Fig. 7 SER for several values of the SNR (dB) with σ 2
v = 0.01 andm = 3

its future state are less reliable, and hence accounting for
their uncertainty is even more important (which should
benefit the SOS-based MMSE DFE). From a mathemat-
ical point of view, if the predicted channel estimates are
not accurate, then the elements in the covariance matrices
that enter Eq. (41) are non-negligible and so is their con-
tribution to the computation of the proposed MMSE DFE
in Eq. (47).
Figure 6 shows the performance of the algorithms in a

flat channel (m = 1). The SER of both DFEs degrades
in the medium-high SNR region, as compared to the pre-
vious scenario, but this penalty is larger in the case of

the MMSE + KF. Thus, the proposed MMSE DFE now
exhibits a more pronounced advantage over the conven-
tional MMSE (about 0.65 dBs for a SER of 10−2 and more
than 3 dBs for a SNR of 5 × 10−3).
Increasing the channel order in a fast fading channel

has a negligible effect on the performance of the SOS-
MMSE + KF5 but seriously harms that of the MMSE +
KF. In Fig. 7, it can be seen that, when the channel
order is m = 3, a SER of 10−2 requires ≈ 8.3 dBs
less SNR in the former than in the latter (recall that
in the previous scenario this gap was approximately
2.4 dBs).

5 10 15 20 25 30 35
SNR (dBs)

1 0 -3

1 0 -2

1 0 -1

1 0 0

SER

MMSE + KF

SOS-MMSE + KF

Fig. 8 SER for several values of the SNR (dB) with σ 2
v = 0.01 andm = 5



Vázquez and Míguez EURASIP Journal onWireless Communications and Networking  (2016) 2016:276 Page 13 of 14

Results for the case in whichm = 5 are shown in Fig. 8.
Again, the advantage of the proposed method over the
conventional one is much more clear as the channel order
increases.

7 Conclusions
In this work, we have introduced an enhanced version
of the conventional MMSE equalizer for time-selective
MIMO channels that takes advantage of the posterior
second-order statistics of the channel provided by the
KF. Computer simulations show that the proposed SOS-
MMSEDFE yields significant performance gains (in terms
of SER) over the conventional MMSE in the medium-
high SNR region. In highly dispersive channels, the SNR
required for the proposed SOS-MMSE receiver to achieve
a certain SER can be several dBs lower than that required
by the conventional MMSE. This is especially true for
fast-varying channels, in which the uncertainty about the
channel estimates becomes important. Indeed, a mea-
sure of this uncertainty is given by the second-order
statistics of the channel, which are dismissed by the con-
ventional MMSE, but handled by the one introduced in
this paper.
It is important to point out that the application of the

SOS-aided MMSE filter introduced in this work is not
restricted to DFE receivers. On the contrary, the key idea
is very general and can be integrated into any MMSE-
based scheme as long as SOS of an unknown random
variable that is relevant for the filter (here, the channel)
are available.
One last remark is that the computational complexity of

the proposed SOS-MMSEDFE is of the same order as that
of the conventional scheme that neglects the channel SOS.

Endnotes
1 For all practical purposes, any model that is linear and

affected by Gaussian noise is amenable to be used here.
2Notice that (for the sake of mathematical convenience)

estimates of the symbol vectors st+1, st+2, · · · , st+d are
obtained at time t (using observations up to time t + d)
since they are also included in st

t+d
. However, they are

dismissed at that time and the actual estimates of the
symbols in st+i are computed at time t + i using the
observations up to time t + i + d.

3 This is a reasonable hypothesis since the smoothing lag
should be selected to account for, at least, the observa-
tions containing all the energy of the symbols transmitted
at time t. This obviously depends on the length of the CIR,
m, and it is common to set the smoothing lag to d = m−1.
This is also the case in the experiments whose results are
presented in Section 6.

4Notice that the higher the variance of the channel
noise, the more rapidly the channel coefficients fluctu-
ate. A faster varying channel can also be obtained by
decreasing the coefficient of the AR process, a1, which
determines the correlation between a channel coefficient
and itself at a different time instant.

5Here, the increase in diversity due to a higher channel
order is not enough to compensate for the rapid variation
of the channel coefficients.

Appendix
Computation of the cross-covariance�ht+k(n),ht+l(q)

with k < l
The qth column in matrixHt+l, ht+l(q), can be expressed,
according to Eq. (5), as

ht+l(q) =
R∑

r=1
arht+l−r(q) + vt+l, (48)

where vt+l is aNr×1 vector of i.i.d. Gaussian random vari-
ables (r.v.) with zeromean and variance σ 2

v . Its expectation
is then given by

Et−1
[
ht+l(q)

] =
R∑

r=1
arEt−1

[
ht+l−r(q)

]
. (49)

Notice that this last equation is just Eq. (29) restated
column-wise.
Substituting Eqs. (48) and (49) into (43), we obtain

�ht+k(n),ht+l(q) =Et−1

[
ht+k(n)

R∑
r=1

ar
(
hHt+l−r(q)

−Et−1
[
hHt+l−r(q)

])]+Et−1
[
ht+k(n)vHt+l

]

− Et−1

[
Et−1

[
ht+k(n)

] R∑
r=1

ar
(
hHt+l−r(q)

− Et−1
[
hHt+l−r(q)

]) ]
−

− Et−1
[
Et−1

[
ht+k(n)

]
vHt+l

]

(50)

Since we are assuming k < l, it is clear from
Eq. (5) that vectors ht+k(n) and vHt+l are independent
(the channel at time t+k < t+l is independent of the
noise affecting the channel in the future), and hence
Et−1

[
ht+k(n)vHt+l

]
= Et−1

[
ht+k(n)

]
Et−1

[
vHt+l

]
= 0

due the channel noise, vt+l, having zero mean. For the
same reason, the other expectation involving the chan-
nel noise, i.e., Et−1

[
Et−1

[
ht+k(n)

]
vHt+l

]
, is also zero
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since Et−1
[
ht+k(n)

]
is a constant. Therefore, Eq. (50)

becomes

�ht+k(n),ht+l(q) = Et−1

[
ht+k(n)

R∑
r=1

ar
(
hHt+l−r(q)

− Et−1
[
hHt+l−r(q)

])
]

−

− Et−1

[
Et−1

[
ht+k(n)

] R∑
r=1

ar
(
hHt+l−r(q)

− Et−1
[
hHt+l−r(q)

])
]

(and through straightforward algebraic manipulation)

=
R∑

r=1
ar

(
Et−1

[
ht+k(n)hHt+l−r(q)

]−Et−1
[
ht+k(n)

]
Et−1

[
hHt+l−r(q)

])

− Et−1
[
ht+k(n)

] R∑
r=1

ar
(
Et−1

[
hHt+l−r(q)

] − Et−1
[
hHt+l−r(q)

])
.

(51)

Since all the terms in the second summation of (51) are
zero, only the first summation is left and the equation can
be rewritten as

�ht+k(n),ht+l(q) =
R∑

r=1
ar

(
Et−1

[
ht+k(n)hHt+l−r(q)

]

− Et−1
[
ht+k(n)

]
Et−1

[
hHt+l−r(q)

])

=
R∑

r=1
ar�ht+k(n),ht+l−r(q), (52)

where Eq. (44) has been used in the last step of the
derivation.

Abbreviations
AWGN: Additive white Gaussian noise; AR: Autoregressive; BPSK: Binary
phase-shift keying; CIR: Channel impulse response; DFE: Decision feedback
equalizer; i.i.d.: Independent and identically distributed; KF: Kalman filter;
MIMO: Multiple input multiple output; MMSE: Minimummean square error;
r.v.: Random variable; SOS: Second-order statistics; SER: Symbol error rate
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