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Abstract

Wireless mesh network (WMN) is an emerging technology for the last-mile Internet access. Despite extensive research
and the commercial implementations of WMNs, there are still serious fairness issues in the transport layer, where the
transmission control protocol (TCP) favors flows with a smaller number of hops to flows with a larger number of hops.
TCP unfair behavior is a known anomaly over WMN that attracts much attention in recent years and is the focus of this
paper. In this article, we propose a distributed network monitoring mechanism using a cross-layer approach that
deploys reinforcement learning techniques (RL) to achieve fair resource allocation for nodes within the wireless mesh
setting. In our approach, we deploy Q-learning, a reinforcement learning mechanism, to monitor the dynamics of the
network. The Q-learning agent creates a state map of the network based on the medium access control (MAC)
parameters and takes actions to enhance TCP fairness and throughput of the starved flows in the network. The
proposal creates a distributed cooperative mechanism where each node hosting a TCP source monitors the network
and adjusts its TCP parameters based on the network dynamics. Extensive simulation results and testbed analysis
demonstrate that the proposed method significantly improves the TCP fairness in a multi-hop wireless environment.
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1 Introduction
Enhancing transmission control protocol (TCP) fairness
over wireless mesh networks (WMN) is a significant
research area that attracts researchers’ attention for the
past decade. TCP was first designed for wired net-
works and performs well over wired infrastructure; as
such, when wireless networks were introduced, TCP was
adopted to wireless environment. However, the funda-
mental differences between wireless and wired mediums
result in substandard performance of TCP over wire-
less networks. Wireless multi-hop networks are especially
affected by TCP unfairness as TCP favors flows with
smaller number of hops in WMNs [1]. In a wired set-
ting, the network topology is well defined and each node
has a comprehensive knowledge of the available network
resources. Therefore, TCP is capable of assigning a fair
share of network resources to each flow. However, in
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a wireless multi-hop network, each node has a partial
knowledge of the available network topology and cre-
ating a unified map of the links and collision domains
using feedback messages is extremely costly in terms of
overhead. As such, TCP is not capable of a fair resource
allocation over WMN [1–5].
TCP unfairness increases remarkably in uplink traffic

where nodes transmit data to the gateway [1]. Findings
of [1] over a real WMN and many similar studies moti-
vated us to propose a fair resource allocation mechanism
in transport layer overWMNdespite an unfairMAC layer.
Our proposal uses a distributed mechanism to monitor
the network anomalies in resource allocation and tune
TCP parameters accordingly. Each TCP sourcemodels the
state of the system as a Markov decision process (MDP)
and uses Q-learning to learn the transition probabilities
of the proposed MDP based on the observed variables.
To maximize TCP fairness, each node hosting a TCP
source takes actions according to the recommendations
of the Q-learning algorithm and adjusts TCP parame-
ters autonomously. Our algorithm preserves autonomy
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of each node in decision-making process and does not
require a central control mechanism or control mes-
sage exchange among nodes. Unlike the existing machine
learning solutions, i.e., TCP ex Machina, our proposal is
compatible with the computational capacity of the current
infrastructure. We call our approach Q-learning TCP. The
contributions of this paper can be summarized as:

• Modeling the multi-hop network as an MDP in each
TCP source and using Q-learning algorithm to
monitor and learn the dynamics of the network and
the proposed MDP.

• Finding a cross-layer distributed and scalable solution
for TCP fairness over multi-hop networks with no
extra overhead. Our proposal enhances TCP fairness
over multi-hop networks in favor of flows traversing
a longer number of hops with negligible impact on
flows with a shorter number of hops via changing
TCP parameters cooperatively based on the
recommendation of the Q-learning algorithm.

• Enhancing TCP fairness by a factor of 10 to 20%
without any feedback messaging and no incurred
overhead to the medium.

The rest of this paper is organized as follows: an
overview of the available TCP solutions is given in
Section 2. Section 3 is a detailed description of our
algorithm followed by the implementation specifics in
Section 4. Performance evaluation of our proposed algo-
rithm is presented in Section 5 via extensive simulation
and testbed experimentation. A discussion on implica-
tions of Q-learning TCP along with a comparison with
available fairness techniques is presented in Section 6.
Throughout this paper, we measure fairness using Jain’s
fairness index.

2 Related works
Different approaches have been proposed in the literature
to address the problem of TCP unfairness over wireless
mesh networks [2–11]. The existing literature on TCP
fairness solutions overmulti-hopwireless networks can be
categorized into cross-layer designs e.g [12–21], and lay-
ered proposals, e.g., [22–34]. While layered proposals aim
to keep the end-to-end semantic of TCP intact, the cross-
layer designs use the information from different layers to
adjust TCP parameters.
Random early detection (RED) is among one of the

first proposals to enhance TCP fairness over wired con-
nections. Neighborhood RED (NRED) is a cross-layer
adaptation of RED for wireless multi-hop settings [15].
NRED is implemented in MAC and uses channel utiliza-
tion from physical layer to calculate the probability of
packet dropping. The main disadvantage of NRED is the
use of broadcast messages to inform the neighboring node

about packet dropping probabilities. In [16], the gateway
uses a centralized cross-layer explicit congestion notifica-
tion algorithm (ECN) to notify the nearby TCP sources
that it favors the farther flows and allows them to use
more network resources [16]. The fact that the gateway
uses a centralized mechanism along with feedback mes-
sages makes ECN less favorable for WMN [16]. In [13], a
cross-layer solution is proposed that uses network coding
in each hop with a different rate to improve TCP through-
put, the computational over head of network coding along
with the hop-by-hop feedback and rate estimation creates
a bottle neck for computational resources of the network.
In another instance of cross-layer approach [14], authors
used a hop-by-hop congestion control mechanism for fair
resource allocation; however, themechanism in [14] intro-
duces a heavy inter-node and intra-node control traffic.
In [35], another hop-by-hop mechanism is discussed that
collects information from physical layer and MAC layer
to approximate channel utilization in each hop. The esti-
mation of channel utilization is based on carrier sensing
which might not be very accurate in some scenarios.
CoDel is another cross-layer example that uses active

queuemanagement on selected bottle neck links, i.e., links
with large queuing delay. CoDel uses spacing in trans-
mission times as the queue management method over
bottle neck links. CoDel has to run on all the hops/routers
within TCP flow path; hence, the implementation requires
infrastructural change which is not practical. D2TCP is a
recent variation of TCP for on-line data intensive applica-
tions that uses varying rate based on a deadline set by the
application and the congestion condition of the network
reported by ECN [20]. D2TCP is a cross-layer approach
that needs compatibility in both application layer and
routing protocol to perform effectively which is a huge
disadvantage.
TCP-AP, another instance of the cross-layer method,

attempts to eliminate the reliance of TCP fairness solution
on feedback messages [18]. The approach of [18] relies
on the information from the physical layer to infer the
fair share of each node of network resources. The main
drawback of TCP-AP is the reliance on received signal
strength indication (RSSI) which is not an accurate esti-
mate of receiver power level. As such, TCP-AP still needs
to get feedback from the receiver to function effectively.
In [21], a cross-layer algorithm, MHHP, is proposed that
assigns higher priority to flows traversing larger number
of hops. AlthoughMHHP improves TCP fairness inmulti-
hop environment, the design does not accurately reflect
the dynamic nature of the wireless environment.
Unlike cross-layer approaches, layered solutions pre-

serve the end-to-end semantic of the open systems
interconnection model (OSI). According to [22], the
binary back-off mechanism, request-to-send/clear-to-
send signaling (RTS/CTS), and the end-to-end congestion
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mechanism play key roles in TCP unfairness. In [22], a
MAC layer solution is proposed in which each access
point calculates the fair share of incoming and outgo-
ing flows in terms of flow rates and broadcasts the rates
to other nodes. Reference [24] is another MAC layer
approach in which nodes negotiate to set up a fair trans-
mission schedule throughout the network. The proposed
methods in [22] and [24] rely on feedback messages which
increases the network overhead significantly. In [26], a
layered approach is proposed that uses the TCP adver-
tised window and delayed ACK to control flow rates of
different flows. The algorithm in [26] only works in sce-
narios where all flows are destined to the gateway. TCP
Veno [32], another instance of layered solution for TCP,
gained a lot of attention in recent years due to its bet-
ter performance over wireless settings; Veno is basically
an integration of TCP Vegas into TCP Reno and does not
contribute to the fairness significantly.
Among the end-to-end solutions to enhance TCP per-

formance, there are few that use machine learning as an
interactive tool to observe network dynamics and change
TCP parameters based on some prediction of the net-
work behavior. Sprout is a good example of the interactive
transport layer protocols [33]. Sprout uses the arrival
time of packets to predict how many bytes the sender
can successfully transmit without creating congestion in
the network while maximizing network utilization. The
main disadvantage of Sprout is the fact that it needs to
run over CoDel to outperform other TCP variants; as
such, it requires changes to the infrastructure to enable
active queue management. TCP ex Machina, also known
as Remy, is another end-to-end interactive solution that
uses machine learning to create a congestion control algo-
rithm which controls packet transmission rate based on
the perceived network model by the learning algorithm
[34]. The main disadvantage of TCP ex Machina is its
resource-intensive nature that results in lengthly learning
time. It takes almost forever for a single Linux machine
to come up with a congestion algorithm suitable for a
specific network using TCP ex Machina. Hence, TCP ex
Machina requires a separate set of nodes with extensive
computational ability to learn the networkmodel and then
the model has to be loaded into any nodes within the net-
work. Any changes in the network dynamics requires TCP
ex Machina to repeat the costly re-learn process.
Q-learning TCP uses reinforcement learning algorithm

(RL) to monitor and learn the characterstics of the net-
work; however, it distinguishes itself from [12, 16–34]
by covering the unique characteristics of WMN. First, it
does not use any feedback messages unlike the major-
ity of the above fairness solutions which is crucial for
saving the valuable bandwidth in WMN. Second, it uses
RL algorithm to learn the characteristics of the network
using minimal computational resources contrary to TCP

ex Machina or Sprout. Third, it only requires minimal
changes in the source node which is vital for practical-
ity/feasibility of the design. None of [12, 15–34] address
all the unique characteristics ofWMN stated above in one
solution.

3 Q-learning TCP architecture
In our approach, each TCP source is equipped with a Q-
learning agent that sees the world as an MDP. Q-learning
is a class of reinforcement learning algorithms (RL) first
introduced byWatkins et al. [36]. RL algorithms are based
on the basic idea of learning via interaction. The learner
module is called an agent, and the interactive object which
is the subject of learning is the environment. During the
learning process the time is divided into decision epochs.
In each decision epoch, the agent receives network statis-
tics in the form of state space variables. The agent uses
the received information to determine the state of the
MDP; then, the agent takes an action via fine-tuning TCP
parameters. In the next decision epoch, the environment
responds with the new state. The learning agent uses a
reward function to receive feedback on the consequences
of the taken action on TCP fairness.
The interaction between the agent and the environment

helps the agent to construct a mapping of the possible
states-actions. The agent mapping is called the policies
and shows how the agent changes its decisions based on
the different responses from the environment. As time
passes, the mapping gets more inclusive and the agent
learns almost all the possible (state, action) pairs and their
associated reward/penalty values and can cope with any
changes in the environment. The memory of the agent of
the possible rewards based on the (state, action) pairs is
kept in a matrix calledQ. The rows ofQ represent the cur-
rent state of the system, and the columns represent the
possible actions leading to the next state. At the beginning
of the learning process, the learning agent does not know
about the rules of the MDP other than the states and the
possible actions; therefore, Q is initialized to 0. After each
decision epoch, Q is updated as in Eq. (1).

new value
︷ ︸︸ ︷

Qt+1(st , at) = (1 − α)

old value
︷ ︸︸ ︷

Qt(st , at) +

learned value
︷ ︸︸ ︷

α[ r(st , at)
︸ ︷︷ ︸

reward observed after performing at in st

+
estimated future value

︷ ︸︸ ︷

γ max
a

Qt(st , at)]

(1)

Equation (1) is called the Q-learning or Ballard rule [37].
The objective of the Q-learning rule is to inform the agent
of the possible future rewards along with the immedi-
ate rewards of the latest action. α is the learning rate of
the agent and determines the importance of the newly
acquired reward. α varies between 0 and 1. A factor of 0
causes the agent not to learn from the latest (action, state)
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pair, while a factor of 1 makes the agent to only consider
the immediate rewards without considering the future
rewards. γ is the discount factor and determines the
importance of future rewards. γ varies between 0 and 1. A
0 discount factor prohibits the agent from acquiring future
rewards, while a factor of 1 pushes the agent to only con-
sider future rewards. We use a polynomial learning rate
(

α = 1
(1+t)2

)

as it has a faster convergence rate [38]. A dis-
count factor of γ = 0.9 is suggested by the literature to
encourage the agent into a comprehensive discovery of the
(action, state)map [36]. The learning process continues as
long as the network is up and running; it basically works
as a memory that can be adjusted according to network
changes.
In the following sub-sections, we present a detailed

overview of the key factors of Q-learning TCP including
states, action set, reward function, and transition proba-
bilities.

3.1 States
The state space of our proposed Q-learning algo-
rithm in each TCP source is in the form of S =
(fairness index, aggressiveness index). To measure fair-
ness index in each decision interval, the agent uses Jain’s
fairness index as in Eq. (2):

Jtk(x1, x2, ..., xn) =
(

�i=n
i=1xi

)2

n × �i=n
i=1x

2
i
, (2)

where xi is the data rate of flow i, n is the number of flows
that are originated from or forwarded by node k, and Jtk is
the Jain’s fairness index at node k at decision epoch t. The
Jain’s fairness index is a continuous number that varies
between 0 and 1; with 0 the worst fairness index and 1 an
absolute best fairness condition. To tailor the Jain’s fair-
ness for a discrete state space, we divided the [ 0, 1] inter-
val to p sub-intervals [ 0, f1] , (f1, f2] , . . . , (fp−1, 1]. Instead
of using a continuous fairness index, we quantize it to
have manageable number of states. Number of states is
important in convergence of the learning algorithm.
The aggressiveness of each TCP source in each decision

epoch is measured as in Eq. (3):

G(i) = number of packets originated from node i
total number of packets forwarded by node i

.

(3)

The aggressiveness index is a continuous amount that
varies between 0 and 1. To tailor the aggressiveness index
for discrete state space, we divided the [ 0, 1] interval to
q sub-intervals [ 0, g1] , (g1, g2] , . . . , (gq−1, 1]. As such, the

state space of the MDP is in the form of Eq. (4) with the
size of p × q.

S = {(ft , gt)|ft ∈ {0, f1, . . . , fp} and gt ∈ {0, g1, . . . , gq}}
(4)

Choosing a suitable value for p and q is a critical task.
A small p or q shrinks the state space and positively
affects the convergence rate; however, larger quantization
intervals disturb the transparency of the changes in the
system to the reward function. Reward function uses the
state of the system as a decision criterion to reward or
penalize the latest (state, action) pair. Our extensive sim-
ulations and testbed experimentation show that choosing
3 ≤ q ≤ 4 and 3 ≤ p ≤ 4 provides the Q-learning TCP
with enough number of states to significantly increase
the fairness index of the network and convergence
rate.
Fairness index obviously is a good indicator of how well

the Q-learning TCP is doing in terms of enhancing the
fairness. However, fairness index is not enough to make
a decision on fairness of the TCP source. Therefore, we
define aggressiveness index to indicate if a TCP source
is fair to other TCP sources or not. The aggressiveness
index calculates the share of the TCP source located on
a specific node in the outgoing throughput of the node.
A high-aggressiveness index along with a low fairness
index in a TCP source triggers the learning agent to make
changes to the TCP parameters and to force the TCP
source to be more hospitable towards other flows. The
desirable state for the learning agent is the state with a
high fairness index and an aggressiveness index of Tfair .
Tfair is the fairness threshold of the node. The fairness
threshold depends on the number of flows originating and
passing through the node and the priority of each flow.
As an example, if three flows are passing via a node, and
two other flows are originating from the node, assuming
the same priority for all five flows, the fair share of the
node from network resources and the fairness threshold
is 2

5 . Any aggressiveness index above fairness threshold is
an indication of the unfair resource allocation by the TCP
source on the node.
Both fairness index and aggressiveness index are calcu-

lated based on the number of packets received or trans-
mitted in each decision epoch in the TCP source. As such,
both variables are accessible in each node and there is no
need to get a feedback from other nodes. Let us emphasize
that the objective of our MDP is to enhance TCP fairness
cooperatively and accomplish this objective via moving
towards the goal state; therefore, choosing fairness index
and aggressiveness index as state variables of our MDP is
justified.
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3.2 Action set
The Q-learning agent uses the action set to constrain
TCP aggressive behavior. Findings of [1] suggested that
the maximumTCP congestion window size plays a crucial
role in the aggressive behavior of TCP. However, putting a
static clamp on TCP congestion window size might cause
an under-utilization of the network resources. Therefore,
to avoid any under/over-utilization of network resources,
we use a dynamic clamp on TCP congestion window
size. The learning agent dynamically changes the maxi-
mum congestion window size of TCP without interfering
with the congestion control mechanism via the action
set. As such, TCP uses the standard congestion control
mechanism along with a dynamic clamp on the conges-
tion window to limit any aggressive window increase. The
agent uses the action functions in Algorithm 1 to change
TCP parameters in each decision epoch.

Algorithm 1Q-learning action set
1: if action = decrease then
2: δ = 50%
3: decreases the TCP maximum window size by δ

4: else if action = increase then
5: increases the TCP maximum window size by δ

6: else
7: no change to maximum congestion window size
8: end if

The Q-learning TCP does not interfere with the conges-
tion control mechanism of TCP, only changes the maxi-
mumTCPwindow size; the maximumwindow size can be
decreased up to slow start threshold. In our algorithm, we
used δ as 50% of the latest increase/decrease of the cur-
rent TCP maximum window size. The above action set,
which resembles a binary search behavior, serves perfectly
in a dynamic environment. At the beginning of the learn-
ing process, the maximum congestion window size is set
either to 65536 bytes [39] or the amount allowed by the
system. The learning agent starts searching for the opti-
mized maximum TCP window size by halving the current
maximum TCP window size. As such, the search space
decreases into half. The agent chooses either half ran-
domly due to the random nature of the search algorithm
in the beginning of the learning process. The agent starts
swiping the search space using the decrease( ), increase( ),
and stay( ) functions and uses the reward function as the
guide to the optimum state. During the learning process,
the agent develops a memory and uses its memory after
convergence as a series of policies to handle any changes
in the dynamics of the system. As a result, in any state,
the learning agent knows how to find its way to the opti-
mum clamp. The Q-learning agent converges when all

the available action series and their associated reward are
discovered.

3.3 Transition probabilities
Another element of theMDP is the transition probabilities
which are unknown in our design. When the transition
probabilities of an MDP are unknown, RL methods such
as Q-learning are used to calculate the transition proba-
bilities. P(st|st−1, a) is the transition probability from state
st−1 to state st taking action a. In an MDP, the states are
Markovian and Eq. (5) holds.

p(st|st−1, st−2, . . . , s0, a) = p(st|st−1, a) (5)

In our proposed model, the state space is in the form of
S = (fairness index, aggressiveness index). Both fairness
and aggressiveness indices depend on the number of pack-
ets transmitted or received in the most recent decision
epoch. Therefore, any state transition only depends on the
latest state of the system. As such, all states are Markovian
and Eq. (5) holds for our model.

3.4 Reward function
According to [40], an efficient reward function should
have the following conditions:

• the reward function must have a uniform distribution
for states far from the goal state.

• the reward function must point in the direction of the
greatest rate of increase of reward in a zone around
the goal state.

Choosing a Gaussian reward function in the form of
Eq. (6) complies with the above conditions. The Gaussian
function is almost uniform in states far from the goal state,
and has an increasing gradient in a belt around the goal
state that directs the learning agent towards the desirable
state.

R(s′|s, a) = βe−
d(s′ ,s∗)

2σ2 (6)

The reward function that we use for our model is in
form of Eq. (7), which is a summation of fairness reward
function and network utilization reward function.

R(s, a) = βue
− d(us ,us∗ )2

2σ2u + βf e
− d(fs ,fs∗ )2

2σ2f (7)

us and us∗ are the the network utilization factor in states
s and s∗. Network utilization factor is the accumulative
throughput of all the incoming and outgoing flows in a
node. fs and fs∗ are the Jain’s fairness index in states s and
s∗. s∗ is the goal state.
There is always a trade off between fairness and the

throughput/efficiency of the network. In a highly effective
network, the utility function is focused onmaximizing the
aggregated throughput of the network which might not be
optimized based on fairness. In our scheme, we optimize
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TCP performance based on both fairness and through-
put. To create a balance between the two, we use the
aggressiveness index (throughput control factor) and fair-
ness index (fairness control factor). The aggressive nodes
have to compromise the throughput in favor of starved
nodes to increase the fairness index of the network. In our
mechanism, the reward function includes both fairness
and throughput. One has to keep in mind that optimizing
TCP performance based on both fairness and throughput
results in some compromise on throughput to increase the
fairness. Moreover, quality of service (QoS) can be added
to our scheme via the reward function. Putting different
weights on either throughput or fairness via changing the
coefficients in reward function (βu,βf , σu, σf ) can result in
different levels of QoS.

4 Integration of Q-learning agent and TCP
The Q-learning process interacts with TCP via the action
set. The learning agent receives the statistics of the net-
work in each decision epoch and based on the memory of
the learning process and the state of the system, the agent
selects an action. The interaction between the Q-learning
agent and TCP can be best described in an example.
Assume that the learning agent chooses the action series
in Fig. 1 and decreases the TCP maximum window size to
a specific amount.
As a result of the new clamp in each decision epoch,

the learning agent receives a reward or penalty from the
reward function. The learning agent tries all the possi-
ble combinations during the learning process and creates
an inclusive map of the action series (polices) and their
respective rewards. After the learning process converges,
any changes in the network dynamics can be handled
instantly using the memory map of the agent. As such,
Q-learning TCP adapts the TCP parameters instantly
based on the changes in traffic condition and network

Fig. 1 An example of the Q-learning agent interaction and TCP
maximum congestion window size

conditions. Our proposed mechanism is presented in
Algorithm 2.

Algorithm 2Q-learning TCP algorithm of node i
1: action set ={decrease,increase,stay}
2: absorbing state = (fgoal , ggoal)
3: while not in goal state do
4: for every t seconds do
5: get the number of sent packet by node i
6: for each flow being forwarded by node i do
7: get the number of sent packets
8: end for
9: calculate the fairness index ft , based on (2)

10: calculate the aggressiveness index gt , based on (3)
11: determine the state according to (4)
12: calculate the reward rt based on (7)
13: update the Qmatrix according to (1)
14: choose the action with maximum Q value
15: take the action (inform TCP)
16: end for
17: end while

As depicted in Algorithm 2, the MAC layer collects
the number of sent packet of each flow passing through
the node and sends them to the learning agent which is
located in TCP source every t seconds (t is the length
of decision epoch). The learning agent uses the latest
information to calculate the aggressiveness and fairness
index and determines the current state of the system. The
reward function module uses the current state of the sys-
tem, previous state of the system, and the latest action
to calculate the immediate reward of the agent based on
the latest (state, action) pair. When the agent obtains the
immediate reward, it updates the Q-matrix based on the
Ballard equation, Eq. (1). Finally, the agent chooses an
action based on the recent Q-matrix and informs TCP
to adjust its maximum window size based on the chosen
action. We are using a delayed reward system because the
agent has to wait for the system to settle down in a specific
state to figure out the instant reward.

5 Performance evaluations
Q-learning TCP is specifically aimed toward a wireless
mesh network environment; as such, all the simulations
and testbed are designed to present the interaction of TCP
and the unique characteristics of the wireless mesh set-
ting. In this section, we present the numerical results of
our proposed method and demonstrate the effectiveness
of our fairness mechanism compared to TCP, TCP-AP,
and TCP ex Machina.
We first evaluate the performance of the Q-learning

TCP in a multi-hop setting in which all the nodes are
located in the same wireless domain and participate in the
optimization process in Section 5.1., Section 5.3 presents
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the performance of Q-learning TCP over a testbed with
real data in an office environment.

5.1 Chain opology
The chain topology is a great scenario to evaluate the
effectiveness of Q-learning TCP over WMN, because it
can create a competitive environment for flows with dif-
ferent number of hops which is the main feature of each
wireless mesh topology. We use Jain’s fairness index and
the flow throughput as the comparison metric param-
eters. We set up a multi-hop network of three nodes
located in a chain topology with 150 m spacing between
neighboring nodes, Fig. 2. Each node is equipped with a
802.11b network interface. Nodes 1 and 2 are equipped
with an FTP source that transmits packets to node 3. The
transmission range is around 250 meters, and the carrier
sensing range is around 550 m for each wireless inter-
face. The data rate for IEEE 802.11b is 2 Mbps and the
RTS/CTSmechanism is on. Each TCP packet carries 1024
bytes of application data.
For the Q-learning scheme, we have to determine the

state space of the system and the reward function. As
mentioned in Section 3, the fairness index and aggressive-
ness index are values between 0 and 1. For fairness index,
we divided the [ 0, 1] interval into four sub-intervals,
f = {[ 0, 0.5), [ 0.5, 0.8), [ 0.8, 0.95), [ 0.95, 1] }. For aggres-
siveness index, we split [ 0, 1] interval into three sub-
intervals, g = {[ 0, 0.5), [ 0.5, 0.8), [ 0.8, 1] }. We can split
both fairness index and aggressiveness index into smaller
sub-intervals and provide more control for the learning
agent to tune TCP parameters for more desirable results.
Although having smaller intervals facilitates the learning
agent decision making, an increase in number of intervals
increases the state space size and slows down the learning
process convergence rate. After the quantization, the state
space reduces to (8):

s = {(f , g)|f = {0, 0.5, 0.8, 0.95} , g = {0, 0.5, 0.8}} (8)

The above state space provides each node in the network
with a realistic understanding of the resource allocation

Fig. 2 Chain topology – three nodes, two flows

of the neighboring nodes. The immediate reward func-
tion that we use for our Q-learning TCP is in the form
of Eq. (7). We run each simulation for 30 times for 95%
confidence interval. The length of each simulation is
1000 s.
Figure 3 shows the throughput changes during the

learning process. At the beginning of the learning pro-
cess, the Q values are all zero; therefore, the agent starts
a systematic search to determine the effect of each action
on the state of the system. Because we choose a Gaussian
reward function, the Q-learning agent gradually moves to
states adjacent to the goal state. The systematic search
behavior exists during the simulation, but the range of the
search circle diminishes as the learning process converges
to the goal state. As depicted in Fig. 3, at the beginning
of the learning process, the throughput of both flows fluc-
tuates. As time goes by, the fluctuation of both flows
dwindles to negligible amount. As the learning process
progresses, the agent visits each state sufficient number
of times to find the best policy (the best maximum TCP
window size) to maximize its acquired rewards. Eventu-
ally the learning agent in node 2 converges to the s =
(0.95, 0.5), where 0.95 is the fairness index and 0.5 is the
aggressiveness index of node 2.
To investigate the convergence of the learning algo-

rithm, we calculated the average learning rate, Fig. 5.
The average learning rate of the process is calcu-
lated as 1

(E{n(s,a)}) , where E{n(s, a)} is the average num-
ber of times each (state, action) pair is visited by the
agent. According to [36], a deceasing average learn-
ing rate is an indication of the Q-learning convergence
process.
Figure 5 shows that the learning rate approaches 0 which

guarantees the convergence of the learning algorithm.
Figure 6 shows the changes of network utilization factor
as the learning progress. As depicted in Fig. 6, the net-
work utility factor fluctuates widely at the beginning of
the learning process. However, the network utility fac-
tor settles to a value within the desirable range when the
learning process converges. The same pattern can be seen
in Jain’s fairness index of the network, as demonstrated
in Fig. 4. The wide fluctuations of the fairness index are
visible during the systematic search of the learning agent
in the beginning of the learning process. As the learning
process converges to the desirable state, the Jain’s fairness
index of the network settles and the fluctuations become
negligible.
We compare our scheme with TCP-AP [18] and TCP

ex Machina [34]. We implemented TCP-AP based on the
algorithm in [18]. In TCP-AP, the sending rate is limited
based on the changes in RTT.
Figure 7 graphs the performance of TCP-AP, TCP,

Q-learning TCP, and TCP ex Machina. TCP-AP per-
forms closely to our learning method in terms of the
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Fig. 3 Throughput changes of the flows in the chain topology of Fig. 2. Each cycle is equivalent of 40 s

fairness index of the network. However, the fair resource
allocation in TCP-AP comes at the cost of network util-
ity. The drop in the network utility factor in TCP-AP
is caused by the frequent pauses in data transmission.
TCP ex Machina, on the other hand, performs similar to
standard TCP; the reason behind this behavior of TCP
ex Machina over the multi-hop wireless setting is that

the learning mechanism in TCP ex Machina is optimized
for wired settings and the re-learning process requires
a great deal of computational resources which almost
is impossible to be done on the current wireless nodes
within a reasonable amount of time. Table 1 represents
the comparison of Q-learning with TCP-AP and TCP ex
Machina.

Fig. 4 Jain’s fairness index in the chain topology of Fig. 2. Each cycle is equivalent of 40 s
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Fig. 5 Learning rate (proof of convergence) in topology of Fig. 2. Each learning cycle consists of 40 s

5.2 Larger scale WMN
To evaluate our proposed algorithm further with non-
static traffic pattern and a random mesh topology, we
generate a random topology in ns2, as illustrated in Fig. 8.
There exist six flows in the network; all flows are des-
tined towards node 0 and are originated from nodes 8,
3, 5, 7, 1, and 4. To study the performance of Q-learning

TCP under non-static data traffic, we programmed all the
sources to generate data for random length intervals and
intermittently.
As depicted in Fig. 9, the resource allocation in legacy

TCP is severely unfair as nodes 8, 1, and 4 are starving
while nodes 3 and 7 aggressively consume the band-
width. However, the Q-learning TCP pushes node 3 to

Fig. 6 Network utilization factor (kbytes/s)in topology of Fig. 2. Each learning cycle consists of 40 s
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Fig. 7 Performance comparison between legacy TCP, Q-learning TCP, TCP-AP, and TCP ex Machina

decrease its network share and provide more transmis-
sion chance for other nodes. The learning agent of node
5 also indicates an unfair resource allocation and forces
node 5 to slow down the data sending rate. On the other
hand, node 8 experiences an undergrowth of the conges-
tion window size and starts to increase the sending rate
as node 5 decreases the sending rate. Node 3 and node
5 cooperatively provide other nodes with more sending
opportunities by decreasing the sending rate which results
in an increase in node 8 sending rate. On the other side
of the network, node 7 consumes a bigger portion of the
bandwidth compared to node 1; therefore, the Q-learning
TCP forces node 7 to decrease its sending rate and provide
other nodes with more sending opportunities. A compar-
ison of TCP, TCP-AP, TCP ex Machina and Q-learning
TCP is presented in Table 2.
TCP-AP outperforms both TCP and Q-learning TCP in

fair resource allocation in the scenario of Fig. 8. However,
the high fairness index of TCP-AP comes at the cost of
drastic decrease in network utilization by a factor of 50%.
The reason behind the extreme decrease in network util-
ity factor in TCP-AP is the over-estimation of RTTs and
excessive overhead caused by feedback messages. TCP ex

Table 1 Network metrics parameters for different TCP variations
of Fig. 2

TCP variation Jain’s fairness index Network utility

Legacy TCP 89% 509 Kbps

TCP-AP 99% 83 Kbps

TCP ex Machina 84% 694 Kbps

Q-learning TCP 99% 468 Kbps

Machina performs as poor as legacy TCP and causes one
of the flows to starve completely.
To investigate the convergence of the learning process,

we graphed the learning rate of the learning process for
nodes 3, 5, and 7 in Fig. 10. The agent learning rate for
all three nodes converges to 0 as the learning process pro-
gresses. The learning rate of node 3 is higher that the two
other nodes, the reason for this behavior is that node 3
has to make more changes to get to the optimum state.
More changes translate into more state transitions and
consequently a higher convergence rate.

5.3 Testbed
To evaluate the performance of Q-learning TCP in real
world setting, we set up a testbed in a real office environ-
ment along with other network users in the office, Fig. 11.
The blue nodes in Fig. 11 are the employees with their lap-
top (MacBook Pro or MacBook Air) who connect to the
Internet via Router R1 (extender) or R2. Routers R1 and
R2 connect to the Internet through the gateway (purple
node). We add node B which is both a source and for-
warder node. Node B can forward to R1 and R2; moreover,
we set up a static routing table inside node B that forwards

Table 2 Network metrics parameters for different TCP variations
of scenario 8

TCP variation Jain’s fairness index Network utility

Legacy TCP 75% 430 Kbps

TCP-AP 97% 240 Kbps

TCP ex Machina 71% 436 Kbps

Q-learning TCP 83% 403 Kbps
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Fig. 8 Random network topology – 10 nodes

packets from node A to node C without forwarding them
to R1 or R2. We implement the Q-learning mechanism as
a python suite based on Algorithm 2 in node B and node
A. The Q-learning mechanism communicates with the
transport layer via action functions in Section 3.2 in order
to tune TCP maximum congestion window size. While
all the users over the network continue their day to day
activity.
For node A, B, and C, we use raspberry pi as wireless

nodes in our testbed. Raspberry pi [41] is a tiny affordable
computer that can host multiple wired/wireless interfaces

and can be used either as a client node, a server node, a
router, or a forwarder node based on the available appli-
cation. We use FreeBSD [42] on client and server nodes
(nodes A and C) andWheezy [43], another flavor of Linux,
on nodes acting as router (node B). FreeBSD only supports
WiFi adapters in client mode and not host or forwarder
mode. As such, we use Wheezy for nodes in the mid-
dle that has to play a role in forwarding/routing packets.
We use TP-LINK nano USB adapters as 802.11 g WiFi
interface [44], as they are cheap and they work well with
FreeBSD and Wheezy.

Fig. 9 TCP flow throughput and network utility in kbytes/s for scenario of Fig. 8
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Fig. 10 Learning rate of nodes 3, 5, and 7 in scenario of Fig. 8

To generate real-world traffic profile over the testbed,
we use findings of Brownlee et al. in [45]. According to
measurements of [45] over two real-life networks, Inter-
net streams can be classified into two groups: dragonflies
and tortoises. Dragonflies are session with lifetime of
less than 2 s while the tortoises are the sessions with
long lifetimes, normally over 15 min. Authors of [45]
showed that although the lifetime of sessions are vari-
able; the lifetime distribution shape is the same for both
Tortoise and dragonflies and it does not not experience
rapid changes over time. Findings of [45] are critical to
the design of Q-learning TCP and its interaction in real

world; the fact that the distribution of the lifetime of the
streams does not change rapidly over time fits well with
the characteristics of Q-learning. Based on [45], 45% of
the streams have a lifetime of less than 2 s, 53% have a life-
time between 2 s and 15 min, and the rest has life times
more than 15 min (usually in the order of hours). We use
these findings to generate traffic on node A and B along
with the other existing day-to-day traffic within the office
network.
Table 3 shows the result of our measurement over

the testbed of Fig. 11. TCP Q-learning outperforms
TCP Reno on node A with the big margin of 85% of

Fig. 11 Testbed topology
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Table 3 A comparison between Q-learning TCP and TCP Reno

TCP variation Source Throughput
(Kbits/s)

95%Confidence
interval (Kbits/s)

TCP Reno node A 883 less than 100

TCP Reno node B 4003 less than 400

Q-learning TCP node A 1549 less than 400

Q-learning TCP node B 3877 less than 1000

increase in the average throughput. Node B which acts
as a source and a forwarder node has to compromise
its throughput to enhance the fairness of the net-
work. The average throughput of node B decreases
by 3% to accommodate a 85% boost in throughput of
node A which is a drastic increase with a minimal
compromise.
The larger confidence interval in Q-leanring TCP is

caused by the changes of the maximum congestion win-
dow size according to the optimal policy of Q-learning
during the discovery. As a side note, the initial con-
vergence time for the testbed is a few hours; however,
after the convergence, adjustment to any changes in the
network is almost immediate as the agent has already
discovered all the possible states.

6 Discussion and comparison
To propose an effective fairness solution for TCP over
wireless multi-hop networks one has to consider the
dynamic nature of the environment as an important
design factor. Meaning that a dynamic solution that
changes strategy based on the network condition is
required. Therefore, the effective solution requires two
characteristics: (a) monitoring/learning network condi-
tions (b) choosing the correct strategy based on the per-
ceived condition. Reinforcement learning methods meet
the design characteristics in (a) and (b). Among vari-
ous reinforcement learning methods, Q-learning fits our
needs the best, as it is a model-free technique. Meaning
that Q-learning can be used to find an optimal strategy-
selection policy for any given finite state Markov deci-
sion process. The above reasoning justifies our choice
of fairness solution for TCP over wireless multi-hop
settings.
The main purpose of Q-learning in this paper is to

decide which kind of action to take in the next time slot,
i.e., increase, decrease or maintain the maximum conges-
tion window size. Note that the best application of Q-
learning is to learn action-reward functions for stationary
settings, which can be proved to converge. It is true that
Q-learning can still get results in non-stationary environ-
ment, such as wireless settings, but the Q-learning agent
will take more time to be aware of the changes. Due to
the time-varying network conditions, sometimes rapidly,
the stationary assumption cannot always hold and it can

make Q-learning less suitable for wireless networks. How-
ever, there are ways to make sure that the convergence
rate stays within an acceptable range for dynamic environ-
ments. Using a learning rate of α = 1

(1+t)2 brings down the
convergence rate to a polynomial in 1

(1−γ )
, where γ is the

discount factor [38]. We use a learning rate of α = 1
(1+t)2

to ensure that our proposal complies with the dynamic
nature of the environment. We have to emphasize that
once the Q-learning TCP converges, the agent does not
need to re-learn the environment as it has already discov-
ered all the state-action pairs and their associated rewards
and can cope with any changes in the environment. In the
event of a drastic change in the environment, a fast con-
vergence rate helps the Q-learning to adjust its memory
fairly quickly.
Another consideration while using Q-learning for any

scenario is the computational overhead. Assuming that
in a specific scenario action ai alleviates the aggressive
behavior of a specific flow while keeping the throughput
at its maximum possible, and τ iteration is needed before
the algorithm converges. Then the overhead of the action
to the learning node is:

Overhead = 1
n − 1

�τ
t=1�

n
i=1,i�=jPi(t)O(ai) (9)

where Pi(t) is the probability of choosing action i at
iteration t and depends on the values in the Q matrix,
and the reward function. O(ai) is the overhead of per-
forming action ai and τ is the convergence time. n is
the number of states in the underlying MDP. Based on
[38], in a Q-learning scenario with a polynomial learn-
ing rate, the convergence time τ depends on covering
time L. Covering time indicates the number of iterations
needed to visit all action-state pairs with the probabil-
ity of at least 0.5 starting from any pair. The convergence
time τ is in the order of 	

(

L2+ 1
ω + L

1
1−ω

)

with the small-
est amount at ω = 0.77. In our fairness mechanism,
we have limited number of states and in each state the
agent has three actions to choose from; as such, both
covering time and convergence time are tractable in our
mechanism.
Comparing the Q-learning TCP with other well-known

existing fairness methods [8, 46, 47], the Q-learning TCP
does not incur any overhead to the network with the
expense of extra computation at each node. The focus of
LRED [8] is on enhancing TCP throughput over WMN
and fairness enhancement is not one of the design objec-
tives. However, the pacing mechanism of LRED enhances
the fairness as a side-effect at the cost of excessive trans-
mission delay. The extra transmission delay in LRED
pacing mechanism alleviates the hidden terminal issue;
however, the imposed delay is fixed in size and is not
adjustable to the dynamic nature of the WMN. NRED
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uses a dropping mechanism to decrease the competi-
tion and provide more resources for the starved flows.
However, the dropping probabilities are calculated and
broadcasted constantly which incurs a heavy overhead
to the shared medium. TCP-AP uses the received signal
strength indicator (RSSI) to infer information regard-
ing the hidden terminal issue; however, RSSI causes an
over-estimation of transmission delay in its pacing mech-
anism and decreases the TCP throughput drastically. As
such, TCP-AP still requires feedback messaging from the
neighboring nodes for hidden terminal distance calcula-
tions. TCP ex Machina, another comparable mechanism,
requires excessive computational resources for its conges-
tion control mechanism optimization which is not com-
patible with current network infrastructure resources.
Our method achieves the fairness enhancement of TCP
at a cost of reasonable extra computation of the machine
learning approach in each node. In WMN that the
shared medium is extremely valuable, flooding the net-
work with excessive feedback messages or under-utilizing
the links with excessive non-dynamic transmission delays
to enhance the fairness is not very cost efficient. How-
ever, Q-learning TCP trades the computational simplicity
in each node for TCP fairness. In a mesh setting, since the
mobility of each node is veryminimal, increasing the com-
putational capacity of the nodes is not very costly. A brief
comparison of LRED, NRED, TCP-AP, TCP ex Machina,
and Q-learning TCP is presented in Table 4.
It is noteworthy to mention that the complexity of Q-

learning TCP is polynomial with the number of states
and the convergence rate is tractable with a suitable state
space size as confirmed with the simulation and testbed
experiments.
Our findings confirm that in a wireless multi-hop

setting, each TCP source has to cooperate with others to
ensure a fair share of network resources for all end-users.
TCP allocates resources with the assumption of an inclu-
sive knowledge of the network topology and a reliable
permanent access to the medium for all the end-users.

However, in a wireless mesh setting, the end-user
knowledge of the network topology is partial and the
access to the medium is intermittent. As such, TCP needs
to collect information about other nodes to compensate
for the short comings of the underneath layers. The learn-
ing agent provides the TCP source with insight on existing
competition for network resources from other nodes. The
insight provided by the learning agent compensate for
the unfair behavior of the MAC and TCP in the wire-
less multi-hop environment by suppressing the aggressive
response of TCP. It is noteworthy that Q-learning TCP
inter-works well with any variation of TCP on the other
end-point because the changes to the TCP protocol stack
are only in the sender side and the learning mechanism
does not need any feedback from the receiver. The Q-
learning TCP only relies on the information collected by
the learning agent.

7 Conclusions
We have proposed a cross-layer monitoring and learn-
ing mechanism for fair resource allocation of TCP over
WMN that uses the information obtained from the MAC
layer to optimize TCP parameter to enhance the end to
end fairness within a network. The learning agent uses
the local fairness index and the aggressiveness index of
each node to decide if the node is starving or abusing the
network resources. We have used a reward function to
guide the learning agent in taking correct actions which
eventually allows us to solve the fairness problem in a dis-
tributed manner. We have compared our learning method
with legacy TCP and TCP-AP, and TCP ex Machina via
extensive ns2 simulations. Simulation results have demon-
strated the superiority of our proposed method within
wireless network. Moreover, we have studied the perfor-
mance of Q-learning TCP in a testbed. Testbed measure-
ments have proved that Q-learning TCP can be a great
candidate for transport protocol over current wireless
multi-hop networks with minimal changes only in TCP
source.

Table 4 A comparison between Q-learning TCP and other well-known TCP solutions

Fairness solution Fairness enhancement Throughput enhancement Disadvantage

LRED [8] Slight increase 5 to 30% increase Overhead caused by broadcast
messages and fixed transmission
delay

NRED [46] Effective increase (Jain’s fairness
index of 99% in a chain topology)

Up to 12% increase Excessive overhead caused by
broadcast messages (over 60%)

TCP-AP [47] Effective increase (Jain’s fairness
index of 99% in a chain topology)

Drastic decrease (up to 50%) Reliance on RSSI and excessive
transmission delay

TCP exMachina [47] Decrease (Jain’s fairness index of
84% in a chain topology)

Slight increase Excessive learning time and
computational resource
requirement

Q-learning TCP Effective increase (Jain’s fairness
index of 99% in a chain topology)

Slight decrease Medium computational overhead
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