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Abstract

Although promising the formidable configuration, vigorous evolution, and satisfactory performance,
software-defined networking (SDN) is in its initial period all the same. Some essential issues still remain not
completely resolved, and the scalability of control plane is the most intractable one with the explosive increase of
network traffic. To address this issue, many researchers have proposed multiple controllers to realize logically
centralized control layer. Our previous research has proposed multi-controller load balancing approach called
HybridFlow. In this paper, taking advantage of HybridFlow, we propose anM-N policy multiple-controller sleeping
mode by switching off redundant controllers when the system is in the light traffic condition. We use queuing theory
to model the operation procedure of controllers and formulate the energy consumption management issue as a 0-1
integer linear programming model. Through turning off the redundant controllers when the system is in the scenario
of light traffic, the total energy consumption of the whole system can be cut down. Simulation results reveal that the
proposedM-N policy multiple-controller sleeping mode achieves superior energy efficiency compared to no sleeping
mode and N policy sleeping mode. However, it introduces tolerable time delay.
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1 Introduction
Radar networks have achieved great success with more
fragile waveform design and diversity. Waveform diver-
sity is the technology that allows one or more sensors
on board a platform to automatically change operating
parameters, e.g., frequency, gain patten, and pulse repe-
tition frequency (PRF) to meet the varying environments
[1, 2]. It has long been recognized that judicious use
of properly designed waveforms, coupled with advanced
receiver strategies, is fundamental to fully utilize the
capacity of the electromagnetic spectrum [3]. It is fuel-
ing a worldwide interest in the subject of waveform design
and the use of waveform diversity techniques [4, 5]. Based
on the definition of waveform diversity, radar networks
need to gain the characteristics of targets and environ-
mental information interactively and change firing wave-
form flexibly so as to optimize performance of detection,
tracking, and anti-interference. So that it is necessary to
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improve the flexibility of software and hardware in radar
networks. SDN has a potent advantage in the flexibility of
networks.
With the TCP/IP protocol, Internet has achieved great

success. However, burgeoning trends in the information
and communication technologies (ICT) domain, espe-
cially along with the appearance of emerging technologies
such as cloud computing and big data analysis, these tech-
nologies have added further demands on the flexibility
and agility of computer networks. To solve current issues
and embarrassment of Internet, some clean-slate archi-
tectures have been suggested by research communities
to build the future Internet architecture. SDN is touted
as one of the most promising paradigms [6]. It is an
approach to building computer networks that separates
and abstracts elements of these systems, which promises
to dramatically simplify network control and provide a
flexible platform to implement a series of applications [7].
One important traits of SDN is that it allows logical cen-
tralization of feedback control with better decisions based
on global network view and cross-layer information via a
famous protocol called Openflow [8].
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In the early days of Openflow, only a single controller is
proposed. With the increase of network scale and scala-
bility requirements [9], the single controller is the choke
point of SDN. In Openflow, the important feature is flow
table, which makes the control plane flexibly configure
the data plane. The switches in the data plane become
“stupid” packet forwarding devices. However, when a new
flow arrives which is strange for this switch, the switch will
send this “novel” packet to the controller by a packet-in
message [8]. The controller makes decisions using current
global network view to deal with the received packet-in
messages, which also stores the forwarding decision in
the flow-mod message to reply the switch. Fatally, a single
controller cannot satisfy the demand of large-scale net-
work. In the [10], the evidence is given. It analyzes the
real traffic of China Education Network and finds that the
maximal number of flows per second is about 3 million.
In this situation, the controller is in the enormous pres-
sure due to the capacity limitation of flow table in TCAM.
The throughput of NOX with a single thread is about
21,000 messages per second. Using the multi-threading
technique, Maestro [11] improves the controller’s perfor-
mance, but the throughput of a single controller is still far
away from 3 million. Thus, it can be seen that improving
the scalability and reliability of control plane is extremely
urgent.
However, using multiple controllers to constitute a log-

ically centralized control plane is a famous solution. The
issues of multiple controllers have been studied in the
literature [12, 13]. In [12], Ethane mainly applies mul-
tiple controllers to provide fault tolerance. In [14, 15],
researchers have proposed distributed controller imple-
mentations called HyperFlow and Onix. These imple-
mentations use multiple controllers to manage the entire
network and exchange cross-layer information to make
sure the consistency of global information, which achieves
the logical centralization in the domain and improves
the scalability of control plane. The author of [13] pro-
poses BalanceFlow, which is a controller load balanc-
ing architecture for wide-area network. BalanceFlow uses
CONTROLLER X action for switches and elects a super
controller to flexibly adjust the flow request.
Obviously, with the appearance of multiple controllers,

the energy consumption of SDN will increase observably.
Energy efficiency of operating an Internet-scale system is
a growing concern due to the increasing energy costs. It is
reported that the Information and Communication Tech-
nology (ICT) sector is responsible for up to 10% of global
energy consumption, and 51% of that is attributed to
telecommunication infrastructure and data centers. The
US Environment Protection Agency (EPA) estimates that
servers and data centers could consume 100 billion kilo-
watt hours at a cost of 7.4 billion dollars per year, which
is equivalent to the output of 30 nuclear power plants.

Hence, the energy consumption of networks cannot be
ignored. As an emerging future network architecture, we
need to pay attention to the research of energy consump-
tion in SDN foreseeingly. In [10], it proposes a dormant
multi-controller model which allows parts of idle con-
trollers to enter the dormant state for saving system cost,
and when the queue length in the system increases and
surpasses threshold N, the system activates all dormant
controllers to provide service that we called as N policy
sleeping mode in the following paragraph.
In this paper, based on previously proposed multi-

controller load balancing approach called HybridFlow, we
propose anM-N policy multiple-controller sleepingmode
by switching off redundant controllers when system is
in the light traffic condition. We use queuing theory to
model the operation procedure of controllers and for-
mulate the energy consumption management problem
as an 0-1 integer linear programming model. We pro-
pose the M-N policy, which works as follows: when the
queue length in HybridFlow system is under light condi-
tion and super controller detects the whole queue length
of multiple controllers hitting the thresholdM, then starts
algorithm to close some appropriate controllers based on
the principle of minimum cost function. Selected con-
trollers transfer their loads to other controllers accord-
ing to the principle of load balancing and minimum
transmission overhead and time delay and go to sleep-
ing mode. Then, the sleeping controllers return to work
when N packets have been accumulated during the sleep-
ing period. Compared with N policy sleeping mode, our
proposed mode can improve energy efficiency. However,
with improving energy efficiency, M-N policy sleeping
mode introduces more time delay. In addition, based on
simulation, with different M and N, there is the funda-
mental tradeoff between energy consumption and time
delay.
The rest of this paper is organized as follows. In

Section 2, the system model is given. On this foun-
dation, the energy efficiency issue to resolve is formu-
lated. The sleeping algorithm is introduced in detail in
Section 3. Simulation results are presented and discussed
in Section 4. Finally, we conclude this study in Section 5.

2 Systemmodel
In this section, we briefly present an overview of Hybrid-
Flow, the network topology, energy consumption model,
and queuing theory model.

2.1 Overview of HybridFlow
As shown in Fig. 1, HybridFlow’s control plane consists of
one super controller and several clusters, where each clus-
ter contains some controllers called cluster controllers.
Note that we only indicate a finite number of controllers
in Fig. 1, and switches in the data plane are ignored.
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Fig. 1 HybridFlow architecture

The controller enables to communicate with other con-
trollers which are in the same cluster directly, and con-
trollers which belong to different clusters connect with
others via super controller. Under such a communicated
mechanism, network status is synchronized between all
the cluster controllers, such as global view information,
topological information, and routing paths. Super con-
troller is a special device which has the following function
modules: forwarding, storage, calculation, timing, etc. Its
main functions are to collect the load status from cluster
controllers, correlatively calculate and forward. In addi-
tion, super controller connects the cluster controllers
from different clusters respectively and monitors the load
status of each cluster controller.

2.2 Network topology
HybridFlow consists of a super controller and x*y cluster
controllers, and we set X={1,...,x} which denotes the set of
x clusters, Y={1,...y} which determines the set of y clus-
ter controllers in one cluster, and cluster controller j in i
cluster is denoted as cluster controllerij, for short as CCij.
Without loss of generality, we assume the number of clus-
ter controllers in each cluster is the same. The approach
could be extended to other scenarios. The cluster can be
modeled as the directed full connection graph G={V, E},
where we let the elements in set V denote the nodes in
the graph G and the elements in set E represent the edges
in the graph G. In addition, we assume that all of clus-
ter controllers enable to go to sleep when receiving the
centralized configuration command message from super
controller, and the sleeping cluster controller enables to
awaken itself when its queuing length exceeds a certain
value.

2.3 Energy consumption model
Warkozek et al. [16] introduces the energy model for
servers, which considers the server as a black box mod-
eling, depending on a few parameters and inputs, whose
advantage is the possibility to be generalized with an
acceptable error of estimation. And in [16], the energy
consumption of servers is expressed as a nonlinear func-
tion of the CPU usage of the server, presenting in (1).
In this case, server’s power is formulated as a quadratic
function of CPU usage.

y = Pidle + (Pmax − Pidle) ∗ (2u − ur) (1)

where Pidle is the energy consumption when there is no
load; Pmax is the energy consumption when there is full
load; u is the percentage of CPU usage due to the load;
and r is a parameter whose value is found by experimental
measurements, and the proper value of r should minimize
the quadratic error of estimation. But in this paper, we just
need to know the relative value of energy consumption,
which is sufficient to determine the effect of the proposed
algorithm in this paper, and there is no need to calcu-
late the absolute value of energy consumption accurately.
Based on the above consideration, we assume r = 2 in this
paper.

2.4 Queuing theory model
We use queuing theory to model the arrival, processing,
and departure of packet-in message in cluster controllers
with shutting down time and starting time as shown
in Fig. 2.
In addition, we consider each of controllers receives

packet-in messages from the data plane independently,
thus they can bemodeled as an independent single service
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Fig. 2 Energy consumption of the cluster controller with shutting
down time and starting time

window mixed system queuing model M/M/1/m, where
the time interval of messages arriving at CCij follows the
negative exponential distribution with parameter λij, the
time of CCij processing one message follows the nega-
tive exponential distribution with parameter μij, and the
maximum number of queuing packets in each cluster con-
troller ism. If there aremmessages queuing in the cluster
controller, the newcome message will be discarded imme-
diately, which is called instant refused system. If service
rate is less than arrival rate (μij < λij), the departure
rate is less than the arrival rate which will result in the
congestion and packet loss in the control plane. In this
paper, we consider a multiple-controller sleeping mode by
switching off redundant controllers when system is in the
light traffic condition. So we set μij > λij in the paper.
State-flowMarkov chain is shown in Fig. 3. Under the con-
trol of super controller, there are x*y queuing models in
HybridFlow.
In the state 0: λij*p0=μij*p1, so p1= (λij/μij)*p0=ρij*p0,

where ρij=λij/μij < 1;
In the state 1: λij∗p1 = μij∗p2, so p2 = (λij/μij)∗p1 = ρij

∗p1 = ρ2
ij ∗ p0;

...
In the state m − 1: λij*pm−1=μij*pm, so pm=

(λij/μij)*pm−1=ρm
ij *p0; where pk , k = 0, 1, . . .m is the

probability of k messages in system when it is in steady
state. We have (2)

m∑

k=0
pi =

m∑

k=0
ρk
ijp0 = 1 − ρm+1

ij

1 − ρij
p0 = 1, (2)

and we can deduce (3) and (4):

p0 = 1 − ρij

1 − ρm+1
ij

(3)

pk = 1 − ρij

1 − ρm+1
ij

ρk
ij k = 1, 2, . . . ,m (4)

and the expectation of messages waiting delay in the CCij
is derived in (5).

Lqij =
m−1∑

k=0
kpk+1

= ρ2
ijp0

m−1∑

k=1
kρk−1

ij

= ρ2
ijp0

(
1 − ρm

ij

1 − ρij

)′

= ρ2
ijp0

1 − ρm−1
ij

[
m − (m − 1)ρij

]

(1 − ρij)2

=
ρ2
ij

[
1 − mρm−1

ij + (m − 1)ρm
ij

]

(
1 − ρij

) (
1 − ρm+1

ij

)

= ρij

1 − ρij
− mρm+1

ij + ρij

1 − ρm+1
ij

(5)

We can achieve the expectation of processed messages
number Lserij in (6), because the number of messages
which are being processed is 0 (when CCij is idle) or 1
(when CCij is active). The expectation of message num-
bers in CCij is (7). The average number of messages
arriving at CCij per unit time is (8).

Lserij = 1 × (1 − p0) + 0 × p0 = ρij − ρm+1
ij

1 − ρm+1
ij

(6)

Lsij = Lqij + Lserij

= Lqij +
ρij − ρm+1

ij

1 − ρm+1
ij

= ρij − (m + 1)ρm+1
ij + mρm+2

ij

(1 − ρij)
(
1 − ρm+1

ij

)

= ρij

1 − ρij
− (m + 1)ρm+1

ij

1 − ρm+1
ij

(7)

λeij = λij(1 − pm) (8)

Fig. 3 Loadnotice signaling format
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Based on Litter’s Law and (5), (7), and (8), we get average
waiting time for messages in (9) and average staying time
(which consists of average waiting time and processed
time ) for messages in (10).

Wqij = Lqij
λeij

=
ρij

[
1 − mρm−1

ij + (m − 1)ρm
ij

]

μij(1 − ρij)
(
1 − ρm

ij

)

= ρij

μij
(
1 − ρij

) − mρm
ij

μij
(
1 − ρm

ij

)

(9)

Wsij = Lsij
λeij

= 1 − (m + 1)ρm
ij + mρm+1

ij

μij
(
1 − ρij

) (
1 − ρm

ij

)

= 1
μij(1 − ρij)

− mρm
ij

μij
(
1 − ρm

ij

)

(10)

3 Multi-controller sleepingmanagement
algorithm

In this section, we present the energy consumption man-
agement algorithm inHybridFlow and formulate this issue
as 0-1 integer linear programming model, then utilize the
M-N policy sleeping control in the system.

3.1 Problem formulation
The minimization problem of energy consumption can be
formulated as 0-1 integer linear programming problem as
follows:

mintr(P ∗ S′) = min
(
p11s11 + p12s12 + . . . + p1ys1y

+p21s21 + . . . + pxysxy
)

(11)

subject to

tr(MA ∗ S′) ≥ sum(C)

tr(MA ∗ S′) ≥ sum(Lq)
(12)

where

1. MA: it is largest queue length matrix, in which MAij
is the largest queue length in CCij and after queue
length surpasses MAij, the extra messages will be
discarded.

2. C : it is current queuing length matrix, in which cij is
queuing length of CCij currently.

3. P : it is energy consumption matrix, in which pij is the
energy consumption value of CCij at this moment

which can be calculated with formula (1) and matrix
MA, C. For example, pij calculates as follow:

Pij = Pidle + (Pmax − Pidle)

(
2

cij
MAij

−
( cij
MAij

)2
)

(13)

4. S : it is switch matrix, in which sij takes the value of 1
if the CCij is active, and 0 otherwise.

5. Lq: it is average queuing length matrix, of which the
corresponding element is the average queuing length
in CCij, calculated by (5).

6. tr(): it is the trace of matrix.

In the above optimization, the first constraint represents
after closing a part of cluster controllers; other clusters
enable to accommodate the assigned load. The second
constraint ensures system would not discard load because
of the limitation of system capacity.

3.2 Algorithm procedure
In this section, we describe the procedure of energy con-
sumption management algorithm in detail. The system is
started. All cluster controllers report their current load cij
to super controller every T seconds, namely the number
of packet-in messages queuing in each cluster controller,
using loadnotice signaling whose format is shown in Fig. 4.
When receiving loadnotice signaling, super controller

puts cij into matrix C correspondingly and does the fol-
lowing judgment:

{
sum(C) > M ∗ sum(MA), situation 1,
sum(C) ≤ M ∗ sum(MA), situation 2. (14)

where C is current queuing length matrix, MA is largest
queue length matrix, and M is the starting threshold in
M-N policy sleeping management algorithm. When situ-
ation 1 happens, the below algorithm will not be carried
out. Cluster controllers wait for the next cycle to report
loadnotice signaling. When situation 2 happens, it shows
that the system is in the light traffic condition and there
is no need to make all cluster controllers opened. Closing
some cluster controllers enables to reduce the energy con-
sumption of system. From (14), we can see that when M
becomes larger, the threshold of starting the algorithm is
bigger; the possibility of starting the algorithm is bigger,
then the possibility of closing controllers is bigger; more
controllers are to be closed in the system. In this case,

Fig. 4 State-flow Markov chain
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energy consumption declines, but when more controllers
are in sleeping mode, time delay of transferring sleeping
controllers’ packet-in messages increase. In a word, when
M becomes bigger, energy consumption decreases and
time delay increases. On the contrary, energy consump-
tion increases and time delay decreases. We can conclude
that there is fundamental tradeoff between energy con-
sumption and time delay with a different M. The simula-
tion which is shown in Section 4 also verifies the accuracy
of the above analysis.
Energy consumption management algorithm is trig-

gered. Using (11) and (12), the super controller knows how
many cluster controllers needs to be opened and counts
its number in (15). Which cluster controllers need to be
closed has CNopen

x∗y (which means combinatorial number)
kinds of possibilities.

Nopen = sum(S) (15)

In each scheme, super controller calculates the value of
cost function in (16) and selects the scheme with mini-
mum cost function.

cost = Tdelay

Esave
(16)

where Tdelay is time delay of transferring messages of
going to sleep controllers, which consists of Tone (the time
delay of transferring messages in one cluster) and Tacross
(the time delay of transferring messages across clusters) in
(17). Esave indicates saved energy calculated with (18).

Tdelay = Tone + Tacross

Tone = tone ∗ Packetinone
Tacross = tacross ∗ Packetinacross

(17)

Esave = (Pmax − Pidle)

[
2

( cij
MAij

)
−

( cij
MAij

)2
]

(18)

where tone and tacross can achieve by testing experiment.
Packetinone is the number of messages transferring in one
cluster, and Packetinacross is the number of messages trans-
ferring across clusters, which is calculated as follows.
The principle of messages transferring needs to be

shown clearly.

1. Priority to transferring messages within one cluster.
2. Messages which are more than the capacity of this

cluster are transferred across the cluster under the
control of super controller.

3. System distributes loads according to the method of
polling least-connection algorithm.

For example, assuming we calculate cost function of
closing CCij, based on the first principle, firstly, super
controller calculates Lsc in (19).

Lsc =
⎛

⎝
∑

k �=j
(MAik − cik)

⎞

⎠ − cij (19)

If Lsc ≥ 0, it shows that other cluster controllers in
cluster i enable to accommodate load from CCij. Accord-
ing to the first principle, all of load of CCij are allocated
within cluster i. Cluster controller CCij uses polling least-
connection algorithm to determine the number of load
distribution to other cluster controllers in the same cluster
which is called Packetinone . Firstly, cluster controller CCij
dispenses one message to the cluster controller which has
least messages at this moment; this operation leads to the
change of load distribution of the cluster. Secondly, cluster
controller CCij also dispenses one message to least mes-
sage controller. In this way, extra messages from cluster
controller CCij enable to load balance between active clus-
ter controller. The polling least-connection algorithm is as
follows.

Algorithm 1 Polling least-connection algorithm
Input:

The array of messages number of controllers which
receive loads,R;
The number of messages which need to be distributed
to others, P;

Output:
The array of messages number of controllers which
receive loads, R;

1: for i = 1; i < p; i + + do
2: selecting the minimum value in R calledminR;
3: minR + +;
4: end for

If Lsc < 0, based on the first and second principle, except
for load that cluster i can accommodate, a part of mes-
sages from CCij should be transferred across cluster. The
number of messages transferring in one cluster Packetinone
and the number of messages transferring across clusters
Packetinacross calculate by super controller based on polling
least-connection algorithm.
Using the above method, we can determine the number

of transferring messages in one cluster and across clus-
ters, then achieve Tdelay by (17) and Esave by (18). Based
on Tdelay and Esave, the super controller calculates cost
functions of each scheme by (16) and selects the scheme
of minimum cost function, generates load transferring
strategy, then sends sleeping messages and load trans-
ferring strategy to the selected cluster controllers. The
cluster controllers which receive sleeping messages trans-
fer all loads based on load transferring strategy from super
controller and go to sleep.
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Sleeping controllers detect the number of queuing
length. When queuing length surpasses threshold N
which is the threshold of setting up sleeping controllers,
sleeping controllers awaken themselves and continue to
deal with messages. Otherwise, cluster controllers are still
in sleeping mode. When N becomes larger, the threshold
of setting up sleeping controllers increases and sleeping
controllers have a longer sleeping time, which reduces
energy consumption. But in this case, packet-in messages
queuing in the sleeping controllers will wait for a longer
time, which gives rise to more time delay. In a word, when
N becomes bigger, energy consumption decreases and
time delay decreases. On the contrary, energy consump-
tion increases and time delay decreases. We can conclude
that there is also fundamental tradeoff between energy
consumption and time delay with a differentN. The simu-
lation shown in Section 4 also verifies the accuracy of the
above analysis. The algorithm and the actions performed
on each of its steps are shown as follows.

Algorithm 2 Multi-controller sleeping management
algorithm
1: The number of times system executing algorithm 2,

k0;
2: for k = 1 : k0 do
3: cluster controllers report loadnotice signaling every

T seconds;
4: if sum(C) > M ∗ sum(MA) then
5: return to 3;
6: else
7: Super controller calculates minimum of active

controller based on (11) and (12);
8: Super controller calculates cost function of each

scheme based on (16), (17) and (18), then selects
the minimum scheme of them;

9: Super controller send load transferring strategy
and sleeping messages to selected cluster con-
trollers;

10: Selected cluster controllers transfer their loads;
11: Selected cluster controllers go to sleep and detect

the number of queuing length
12: if number of queuing length in sleeping con-

troller < N then
13: return 11;
14: else
15: awaken themselves;
16: end if
17: end if
18: end for

4 Simulation results
In this section, we use computer simulation to evaluate
the performance of energy consumption management

algorithm. We first describe the simulation settings, then
present the simulation results.

4.1 Simulation settings
1. Simulation tools: we simulate the system and

algorithm in MATLAB.
2. Network topologies: the simulation is carried out in

the topology as follows: there are four cluster
controllers and one super controller in HybridFlow,
which is to,m = 2, n = 2, respectively labeled in
CC11,CC12,CC21,CC22. We assume the simulation
is event-based, and when the network works, cluster
controllers receive packet-in messages with
M/M/1/m queuing theory.

3. Parameter settings: the different seeds are employed
in the simulation, and performances are averaged to
estimate the performance of scheme. The values for
all parameters in the simulation are summarized in
Table 1.

4.2 Performance evaluation results
Figure 5 shows the total energy consumption of M-N
policy sleeping mode, N policy sleeping mode and no
sleeping mode with different average arriving rates. The
other parameters are shown in Table 2, and the largest
queue length in each cluster controller is the same, which
is 20. In Fig. 5, with the increase of arriving rates, the
total energy consumption is growing. The reason is that,
as the arriving rates is increasing, more Packet-In mes-
sages accumulate in the cluster controllers, which results
in the larger energy consumption due to load rising. In any
case of different arriving rates, we can see in Fig. 5 that
the energy consumption of HybridFlow with M-N pol-
icy sleeping mode is smaller than N policy sleeping mode
and without sleeping mode, which shows the validity of

Table 1 Parameters setting in the simulation

Parameter Value Description

μ 30 μs Serving rate at all of cluster controllers

Simulation time 10 s The time of simulation

Pmax 10 J The energy consumption when there is full
load

Pidle 0.05 J The energy consumption when there is no
load

tone 0.02 ms The time of transferring one message in one
cluster

tacross 1 ms The time of transferring one message across
clusters

T 1 s The updating cycle for loadnotice signaling

N 10 The threshold of awakening sleeping
controllers

M 0.5 The threshold of executing the algorithm
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Fig. 5 Total energy consumption versus average arriving rates ofM-N
policy sleeping mode, N policy sleeping mode, and no sleeping mode

energy consumption management algorithm proposed in
this paper. At the beginning of curves of withM-N policy
sleepingmode andwithN policy sleepingmode, their per-
formance is similar, because when arriving rate is smaller,
cluster controllers are often idle, in which case, M-N pol-
icy sleeping mode’s advantage is not outstanding. As the
increase of arriving rates, its performance is prominent
gradually.
Figure 6 shows the relationship between average energy

consumption in a packet and average delay in a packet
of M − N policy sleeping mode, N policy sleeping mode
and no sleeping mode with different average λ. The other
parameters are shown in Table 2, and the largest queue

Fig. 6 Average energy consumption in a packet versus average delay
in a packet in different arriving rates ofM-N policy sleeping mode, N
policy sleeping mode, and no sleeping mode

length in each cluster controller is the same, which is 20. In
Fig. 6, it shows that the M-N policy sleeping mode and N
policy sleeping mode both lead to the reduction of energy
consumption but also introduce a longer time delay. Due
to load transferring in the same cluster and between dif-
ferent clusters, our proposed mode introduces more time
delay, but improves energy efficiency meanwhile.
Figure 7 shows the relationship between average energy

in a packet and average delay in a packet in different M
with the 25/ms of average arriving rate. We can observe
that larger M introduces more time delay in a packet, but
reduces average energy consumption in a packet. When
M gets larger, the threshold of starting the algorithm is
bigger; when the possibility of starting the algorithm is
bigger, then the possibility of closing controllers is bigger;
more controllers are to be closed in the system. Hence,
energy consumption decreases. When more controllers
are in sleeping mode, time delay of transferring sleeping
controllers’ packet-in messages increases. In a nutshell,
when M becomes bigger, energy consumption decreases
and time delay increases. On the contrary, energy con-
sumption increases and time delay decreases. We can also
conclude that there is the fundamental tradeoff between
energy consumption and time delay with a differentM.As
M is smaller, performance has an obvious change, which
is because the opening threshold in (14) will change a
lot with changing of M. Once M is larger than a certain
degree, and there is no more messages accumulating due
to the given average arriving rate, performance will be
stable. We can also conclude that there is fundamental
tradeoff between energy consumption and time delay with
a differentM.
Figure 8 shows the relationship between the average

energy consumption in a packet and average delay in a

Fig. 7 Average energy consumption in a packet versus average delay
in a packet with a differentM
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Fig. 8 Average energy consumption in a packet versus average delay
in a packet with a different N

packet of different N with the 25/ms of average arriving
rate. We can see that larger N can reduce average energy
consumption in a packet. The reason is that, when N
increases, the threshold of setting up sleeping controllers
is raised, and controllers will have a longer sleeping time,
which reduces average energy consumption. With the
increase of N, the delay is growing. The reason is that,
as the N is increasing, packet-in messages queuing in the
sleeping controllers wait for a longer time, which gives
rise to more time delay. Since larger N always reduces
average energy consumption, but inevitably increases
the average delay, we can conclude that there is the
fundamental tradeoff between energy and delay with a
different N.

5 Conclusions
In this paper, we have studied the method of switching
off cluster controllers based on HybridFlow architecture
to improve energy efficiency. First, we use queuing theory
to model the operation procedure of controllers, formu-
late the energy consumption management issue as a 0-1
integer linear programming model. Through turning off
the redundant controllers when the system is in the sce-
nario of light traffic, the total energy consumption of the
whole system can be cut down. Then, we present the pro-
cessing of energy consumption management algorithm
with M-N sleeping policy in details. Simulation results
show that proposed algorithm exhibits better energy effi-
ciency but introduces extra time delay. In further study,
we need to improve energy efficiency, and reduce the
time delay. Meanwhile, we need to find the relationship
between energy efficiency, time delay and thresholdM,N .
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