
Kim and Lee EURASIP Journal onWireless Communications and
Networking  (2016) 2016:287 
DOI 10.1186/s13638-016-0782-2

RESEARCH Open Access

Polar codes for non-identically distributed
channels
Jangseob Kim and Jungwoo Lee*

Abstract

We introduce new polar coding schemes for independent non-identically distributed parallel binary discrete
memoryless channels. The first scheme is developed for the case where underlying channels are time invariant (the
case of a deterministic channel parameters), while the other schemes deal with a scenario where underlying channels
change based on a distribution (the case of random channel parameters). For the former case, we also discuss the
importance of the usage of an interleaver Q to enhance system reliability, and for the latter case, wemodel the channel
behavior of binary erasure channels. It is shown that the proposed polar coding schemes achieve a symmetric capacity.
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1 Introduction
The polar codes previously introduced in [1] are a coding
scheme that achieves the symmetric capacity of any dis-
crete memoryless channel (DMC) by exploiting channel
polarization phenomena. The block error rate converges
to zero as the code length N goes to infinity.
One disadvantage of polar codes is their dependency

on the underlying channel. If a channel is unknown to a
transceiver, communication becomes unreliable and erro-
neous decoding can result, since the code design is based
on a different channel. The performance gap due to imper-
fect channel knowledge was analyzed in [2], and a robust
approximation technique has been proposed for this mis-
match. In [3], it was demonstrated that polarization is
possible even under a non-stationary channel.
In this paper, we propose an approach to the design of

polar codes in the parallel channel model based on a mar-
tingale process and extend the model to the case in which
the channel parameters are no longer fixed but exhibit
some random behaviors. In addition, we briefly discuss
the importance of the usage of the proper interleaver Q.
The communication scenario in which the transmit-

ter and the receiver do not know the channel parameter
but know the domain (set) to which it belongs is known
as the compound channel scenario [4]. The authors of
[4] defined the compound channel capacity as the rate
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at which one can reliably transmit data without knowing
the underlying channel parameter. In [5] and [6], polar
codes that achieve the compound channel capacity were
proposed. In [5], the unknown channel is deterministic
during a codeword transmission, and in [6], the authors
dealt with a deterministic compound parallel channels
model.
Parallel channels are used to model statistical behaviors

of communications in conveying multiple data simulta-
neously between nodes, connected with multiple links.
The internal structure of storage systems or singu-
lar value decomposed multiple-input multiple-output
(MIMO) channels are an example of parallel channel
models. In these channels, the links do not need to be
the same, and their statistical behaviors can differ. The
question then arises about whether the parallel chan-
nel capacity is achievable via polar codes. In [7, 8], it is
demonstrated, under a non-identically distributed chan-
nel assumption, that when all channel parameters (CP) are
given to the transceiver, polar codes can achieve the capac-
ity in both degraded and non-degraded channel settings.
In this paper, we show that the polarization phe-

nomenon occurs in the parallel channel model and pro-
vide proof of achievability of polar codes for general
binary discrete memoryless channels (B-DMC), under a
non-identically distributed assumption, where determin-
istic CPs are given. Second, in contrast to previous liter-
ature, we also consider a case where CPs that describe
binary erasure channels (BECs) are realizations of some
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random variables, and only their probability distributions,
and not their exact values, are known to the transmitter
and the receiver.
This is similar to the compound channel scenario, since

the transmitter does not know the CPs but differs since the
CPs, which are a realization of random variables, might
differ. The system model is depicted in Fig. 1. The role of
the interleaver in this figure is discussed in the last part of
the second section.
Developing polar codes for the randomly varying chan-

nel scenario is one of the noticeable issues. For the ith
transmit BEC at time instant η, assume that an erasure
probability εi(η) is a realization of a random variable ε

that follows a distribution fε . In this case, conventional
polar coding schemes fail to achieve the capacity since the
encoder and the decoder do not know the exact value,
εi(η), of the underlying channel. For example, in flash
memories, the statistical responses of the voltage thresh-
old may change asymmetrically with time and with the
number of accesses to the cells. As the storage capacity
increases, it is inefficient for a storage controller to trace
and probe the exact states of every block or cell.
The remainder of this paper is organized as follows.

In the second section, we analyze the polarization pro-
cess on a time-invariant non-identical parallel channel.
This corresponds to a parallel channel with determin-
istic CPs which could differ to each other. In the third
and fourth sections, an independently non-identically dis-
tributed channel model with random CPs is discussed. In
these sections, we assume that only the distributions of
the CPs of each channel, W(i), (∀i ∈ [1,N]), are known to
an encoder and decoder. In the third section, the CPs may
change in a block-by-block manner; however, their states
are maintained within a block. In the fourth section, in
contrast to the third section, CPs may change even within
a block. In the fifth section, we discuss a special case of
partially dependent channels and show that polar codes

Fig. 1 System model. Non-identically distributed parallel channels.
Interleaver Q is inserted to make a set of virtually ordered transmit
channels from {W(j)} to {W ′

(j)}, j ∈ [1,N]. By applying the interleaver,
{W(j)} is sorted in a way that maximize the reliability and the
achievable rate

based on the q-ary input can achieve the capacity. In the
final section, concluding remarks are provided.

2 Non-identical channels with deterministic CP
LetW : X → Y denote a general symmetric binary input
memoryless channel (B-DMC) and WN : XN → YN

denote a vector channel. If channels are independent but
not identical, then WN (yN1 |xN1 ) = ∏N

i=1W(i)(yi|xi) where
W(i) : Xi → Yi, such that their transition probabilities
p(i)(y|x) and p(j)(y|x) may differ if i �= j. In parallel chan-
nels, a non-identical channel may correspond to a trans-
mission scenario through links with different qualities. In
terms of the channel model, this can be interpreted as a
fast-fading channel in a time or frequency domain. This
corresponds to the case when the time duration or the fre-
quency gap between adjacent channels is larger than the
coherence time or coherence frequency, respectively.
As in [1], given any B-DMCW(i), the same definitions of

the symmetric capacity and the Bhattacharyya parameter
are adopted as performance measures

• Symmetric capacity

I
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W(i)

)
�
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• Bhattacharyya parameter
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According to Proposition 1 in [1], the two parameters
satisfy
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For later use, we denote the bit channelW (i)
N by

W (i)
N

(
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1 |ui
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(
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where N = 2n is the code length.
In this section, channels are assumed to be independent

and not identically distributed, and the CPs are known to
the transmitter and the receiver. For BEC with εN1 , these
erasure probabilities may differ and are known in advance
to the encoder and the decoder. Let us denote the sum
symmetric capacity by Is = ∑N

1 Ii, where Ii = I(Xi;Yi),
and the sample mean by E[Ii]= Is

N . Then, the following
theorem holds.

Theorem 1 For any set of B-DMCs {W(i)}, i ∈ [1,N], for
arbitrary small δ ≤ 0, there exist polar codes that achieve
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sum capacity Is, in the sense that as N, which is the power of
2, goes to infinity, the fraction of indices i ∈ [1,N] satisfies

|{i|I
(
W (i)

N

)
∈ (1 − δ, 1] }|
N

→ Is
N

|{i|I
(
W (i)

N

)
∈ [0, δ)}|

N
→ 1 − Is

N
.

For simple notations, denote Z(i)
N � Z

(
W (i)

N

)
and I(i)N �

I
(
W (i)

N

)
. To prove the above theorem, we first need to

clarify the recursive structures of W (i)
N , Z(i)

N , and I(i)N . Sec-
ond, we need to prove that the values of I(i)N and Z(i)

N
converge to {0, 1} as the code length N increases. For
the second proof, the martingale convergence theorem
and (3) will be used. These statements are proved via
Lemma 1, Lemma 2, and Proposition 1. After proving
Lemma 2, we summarize the proof of the theorem.

For a kernel F =
[
1 0
1 1

]

of the generator matrix

GN = BNF⊗n, the recursively evolving structure of(
W (i)

N ,W (i)
N

)
	→

(
W (2i−1)

2N ,W (2i)
2N

)
is similar to that of the

recursive equation in [1], except for the last recursions for
the length 2.

Lemma 1 Suppose
(
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)
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(
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)

for some set of binary input channels. Then,
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where the last recursive channel relations is a mapping
such that

(
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(
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The evolution of the parallel channel transition proba-
bilities is depicted in Fig. 2. Observe that the structure is

still recursive, but the number of inputs and the outputs
of each evolution is identical.
The proof of the Lemma 1 directly follows from [1].

The last recursion derives from the independently and
non-identically distributed parallel channel environment.
We now extend Propositions 4–7 in [1], which were

proved under the i.i.d. condition, into the non-identically
distributed DMC case. This extension was performed in
previous literatures, in the names of “parallel channels”
[7, 8] and “non-stationary channels” [3] with the measure
of the symmetric capacity.

2.1 Evolution of symmetric capacities
In this subsection, we consider the symmetric capacities
of the recursively achieved bit channels. By inserting (6)
and (7) into the definition of the symmetric capacities (1),
the following proposition holds.

Proposition 1 Suppose
(
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) 	→ (W (1)
2 ,W (2)

2 )

for any binary input discrete channels. Then,
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Proof of (8) Equation (8) can be proved as follows:

I
(
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2

)
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(
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2

)
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(
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) + I
(
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)
.

Since the mapping from a message vector U2
1 to an

encoded codeword is deterministic through a genera-
tor matrix G2, no information loss occurs between the
third equation and the forth equation. Also, the fifth
equation derives from the independency among the trans-
mit channels.

To prove (9), we focus on the second bit channelW (2)
2

I(W (2)
2 ) = I(U2;Y1,Y2,U1)

= I(U2;Y2) + I(U2;Y1,U1|Y2)
= I(X2;Y2) + I(U2;Y1,U1|Y2)
= I

(
W(2)

) + I(U2;Y1,U1|Y2)
≥ I

(
W(2)

)
. (11)
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Fig. 2 Recursive parallel channel transitions N = 8. Note that the number of inputs and the outputs of each evolution is identical

Since the value of mutual information is always non-
negative, I(·) ≥ 0. By inserting (11) into (8), we obtain
I
(
W (1)

2

)
≤ I

(
W(1)

)

However, ambiguity remains about whether (9) and (10)
are true based on this relation and (11), since there are no
additional conditions on the qualities of transmit channels
W(i), i ∈ [1,N] that make them order with measures of the
symmetric capacity I(·) or the Bhattacharyya parameter
Z(·).
Now, we can consider three necessary conditions for (9)

and (10) to be true: (1) I
(
W(1)

) ≤ I
(
W (2)

2

)
, (2) I

(
W(2)

) ≥
I
(
W (1)

2

)
, and (3) I

(
W(1)

) ≤ I
(
W(2)

)
.

Conditions 1 and 2 can be easily verified and hold for
any set of BECs, binary symmetric channels (BSCs), and
binary-input additive white Gaussian noise (BI-AWGN),
and thus satisfy (9) and (10). However, the first and the
second inequalities do not hold in general B-DMCs. Then,
the third condition, I

(
W(1)

) ≤ I
(
W(2)

)
, should be sat-

isfied to achieve (9) and (10). For channels of N = 2,
where I(W(1)) ≥ I(W(2)), the third condition can be
achieved simply by swapping

(
W(1),W(2)

) 	→ (
W(2),W(1)

)

without degrading the achievable rate. This operation is
available since the channel parameters are exposed to the

transceiver in advance. Therefore, we can conclude that
(9), (10), and Proposition 1 are true for any B-DMCs.
In general, we can extend these relations to the case of

N = 2n(n ≥ 1). The following relations are thus true for
all given channel parameters.

I(2i)2N ≤ min
{
I(i)N

(
W[1:N]

)
, I(i)N

(
W[N+1:2N]

)}

(12)

I(2i−1)
2N ≥ max

{
I(i)N

(
W[1:N]

)
, I(i)N

(
W[N+1:2N]

)}

(13)

I(2i−1)
2N + I(2i)2N = I(i)N

(
W[1:N]

) + I(i)N
(
W[N+1:2N]

)
. (14)

The equality holds between I(2i)2N and I(2i−1)
2N if and only

if the underlying channels are either perfect or completely
noisy.
According to (12)–(14), we can observe that the gap

between these two evolved symmetric channel capacities
I(2i−1)
2N and I(2i)2N increases as recursions are repeated (or as
the code length N is doubled). In addition, their values
are lower and higher than those of the previous values,
respectively. Recalling that I(·) ∈ [0, 1], a conjecture can
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be formed suggesting that the evolved I(2i−1)
2N and I(2i)2N con-

verge to one of the extremal values, 0 or 1, as the process
is repeated. We can now prove this conjecture with the
aid of the concept of the martingale process and bounded
martingale convergence theorem in the following
subsection.

2.1.1 Martingale process In
Following the notation of the random tree process in [1],
we first define the random sequence {In} such that I(i)N 	→
In

(
bn1

)
, where In

(
bn1

) ∈ {In} is represented as Ibn1 . Let us
introduce an average sequence En to replace Ibn1 such that
En

(
bn1

) = E[ Ibn1 ]. Based on the channel transitions in
Fig. 2 and the definition of the average sequence, we can
draw the alternative graphical transitions for each stage n
as depicted in Fig. 3. The following lemma then shows that
{In} is a martingale process.

Lemma 2 {In} is a martingale under average sequence
{En} in the sense that E[ In+1|En]= En, where Ibn1 ∈ {In}
and En

(
bn1

) = E[ Ibn1 ]

Proof Lemma 2 can be proved from the chain rule of
mutual information that preserves rate.

I(2i−1)
2N + I(2i−1)

2N = I(i)N
(
W[1:N]

)+ I(i)N
(
W[N+1:2N]

)
. (15)

By taking an average on both sides, one can get

E
[
In|bn1

] = 1
2
((In(bn1,W[1:N]) + In(bn1,W[N+1:2N]))

(16)

which is equivalent to En(bn1).
We can now exploit the ergodicity in B-DMCs. Let us

denote the sum symmetric capacity as Is = ∑N
1 Ii, where

Ii = I(Xi;Yi), and the sample mean as E[Ii]. Then, from

the ergodicity, E[Ii]= Is
N . Next, we borrow the tree pro-

cess representation and the corresponding notations from
Section 4 in [1].
A bit-channel W (i)

N=2n can be uniquely represented via
a binary sequence bn1: Wbn1 . For example, W (3)

8 	→ W011.
Using this, we abbreviate I(Wbn1 ) = I

(
W (i)

2n
)
into Ibn1 ,

where Ibn1 is an element of a set In. We use the same
notation in the definition of the average sequence En;
En

(
bn1

) = E[ Ibn1 ]= E[ In] which is the average over all the
elements of the set In. By exploiting En, we can draw a new
tree process as depicted in Fig. 3, and we have shown that
this process satisfies the property of a martingale process
via (16).
Recalling the following properties, we can conclude

that En converges to 0 or 1: (i) the symmetric capacity
is bounded by 0 and 1, such that 0 ≤ Ibn1 ≤ 1, and
(ii) a bounded martingale process converges to extremal
values, which is the same technique as that used in the
proof of [1].
Once En converges to one of the extremal values, we

can also conclude that In converges to the same extremal,
since En is defined as the average of In. From (16), the two
newly evolving terms are equidistant from En(bn1), so we
denote them using distances α: En(bn1)+α and En(bn1)−α.
When the martingale En(bn1) goes to 1, we have α → 0
since it is bounded above by 1. Similarly, when the martin-
gale En(bn1) goes to 0, we have α → 0 since it is bounded
below by 0. Therefore, we conclude that In also converges
to 0 or 1.
Consequently, it is concluded that sequence {In} is a

martingale sequence.

Since {In} is a bounded martingale sequence, it con-
verges to a random variable I∞ with probability 1. Fur-
thermore, from the martingale property, E[I∞]= E[I0],

Fig. 3 Graphical representation of the evolution of I(i)N for N = 8 parallel BECs
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which is equivalent to Is
N . By combining this relation with

the martingale property of the random sequence {In}, we
have

P(I∞ = 0) = 1 − Is
N

(17)

P(I∞ = 1) = Is
N

(18)

which concludes the proof of Theorem 1.
In summary, to prove Theorem 1, we showed that first,

polarization takes place by using the martingale process,
and second, the ratio of noiseless bit channels converges
to the symmetric capacity as N → ∞. This is because
this equivalently indicates that the block error converges
to zero as the code length goes to infinity as in [1].

2.1.2 Example on BECs
Consider BECs with εN1 , where εi can differ and N =
210, and we assume that they are chosen in the range of
[ 0.4, 0.5]. As is known, the BEC has a convenient prop-
erty such that IN can be described in a recursive form as
follows:

I(2i−1)
2N = 1 − Z2i−1

2N (19)

I(2i)2N = 1 − Z2i
2N ,

where

Z(2i−1)
2N = f (Z(i)

N (W[1:N]),Z(i)
N (W[N+1:2N])) (20)

Z(2i)
2N = g(Z(i)

N (W[1:N]),Z(i)
N (W[N+1:2N])).

Here, f (α,β) = α + β − αβ , g(α,β) = αβ , andW[1:N] =
{W(j)}Nj=1.
Figure 4 depicts the polarization phenomenon in I(i)N .

Observe that even under the non-identically distributed
channel condition, symmetric capacities are polarized
into {0, 1}. It should be verified that it approaches the
channel capacity as it is in the i.i.d. scenario. In Table 1,
the differences between the symmetric capacity and the
rate according to the exponent of n are shown. Here, the
difference is defined as Is−NR

Is . As can be seen, the size of
the differences decreases as n increases, which means that
the rate R approaches to the average symmetric capacity
Is
N . Equivalently, it can be said that Is is achievable in terms
of the sum rate.

2.2 Achievable scheme based on the symmetric capacity
2.2.1 Encoder
Given a set of B-DMCs {W (i)

N }, the encoder calculates
{I(i)N } according to its definition. Only for BECs, I(i)N cal-
culation follows (19) with equality. In general B-DMCs,
the error performance of bit channels should be tracked

with appropriate measures such as Z(i)
N by using the den-

sity evolution method [9]. Then, define an information
index set A =

{
i|I(i)N ≥ I(j)N , i ∈ A, j /∈ A

}
for all i, j ∈[ 1,N]

such that |A| = 
Is�. We apply the interleaver Q to map
the indices of the codeword to the ordered set of trans-
mit channels: Q : XN 	→ WN , where xN1 ∈ XN , and
W[1:N] ∈ WN . This is deployed to help the polariza-
tion processes. The problem with finding the properQ for
given channels is discussed at the end of this section. GN

is aN×N generator matrix, and its kernel isG2 =
[
1 0
1 1

]

.

The encoder outputs a codeword xN1 = uN1 · GN · Q.
2.2.2 Decoder
First, the receiver de-maps an output sequence by a de-
interleaverQ−1, which produces yN1 . Next, yN1 is processed
by a successive cancellation (SC) decoder in order to
obtain an estimated message sequence ûN1 . One can eas-
ily check that the same recursive relations exist under the
non-identical condition as those under the i.i.d channel
condition, by considering the evolutions of bit channels.
The only change is the last recursion of a likelihood ratio
(LR) equation: L(yi) changes to Li(yi) = W(i)(yi|0)

W(i)(yi|1) .

L(i)
N

(
yN1 ,u

i−1
1

)
=

W (i)
N

(
yN1 ,u

i−1
1 |0

)

W (i)
N

(
yN1 ,u

i−1
1 |1

) . (21)

Thus, the decoding complexity is still maintained as
O(N logN), and it has vanishing probability of error rate
Pe as N → ∞. The encoding and decoding process is
summarized in Algorithm 1.

Algorithm 1 Encoding and decoding process
Encoding Process
1: Given {W(i)|1 ≤ i ≤ N}, calculate {I(i)N |1 ≤ i ≤ N}
2: Define A of size k = Is s.t. A = {i|I(i)N ≥ I(j)N ,∀i ∈

A,∀j /∈ A}
3: Fix uF and insert data into {uA|i ∈ A}
4: Encode xN1 = uN1 · GN
5: Interleaver Q : xN1 	→ sN1
6: Transmit sN1

Decoding Process:
1: De-interleaver : Q−1 : tN1 	→ yN1
2: Given (A,uF), for ∀i ∈[ 1,N], calculate L(yN1 ,u

i−1
1 ) for

ui in the SC decoder based on modified LR in ( 21 ).

2.3 Evolution of Bhattacharyya parameters
We can now show the similar relationships of those in
Proposition 1 on the Bhattacharyya functional Z(·).



Kim and Lee EURASIP Journal onWireless Communications and Networking  (2016) 2016:287 Page 7 of 17

Fig. 4 Plot of I
(
W(i)

N

)
for a non-identical BEC(εN1 ), N = 210

Proposition 2 Suppose
(
W(1),W(2)

) 	→
(
W (1)

2 ,W (2)
2

)

for some binary input non-identically distributed discrete
channels. Then, the following relations hold

Z
(
W (1)

2

)
≤ Z

(
W(1)

) + Z
(
W(2)

) − Z
(
W(1)

)
Z

(
W(2)

)

(22)

Z
(
W (2)

2

)
= Z

(
W(1)

)
Z

(
W(2)

)
(23)

Z
(
W (2)

2

)
≤ Z

(
W (1)

2

)
. (24)

The proofs of (22)-(24) is presented in the Appendix.

Corollary 1 ZN can be described in a recursive form as
follows:

Z(2i−1)
2N ≤ f

(
Z(i)
N

(
W[1:N]

)
,Z(i)

N
(
W[N+1:2N]

))

Z(2i)
2N = g

(
Z(i)
N

(
W[1:N]

)
,Z(i)

N
(
W[N+1:2N]

))
, (25)

where f (α,β) = α + β − αβ , g(α,β) = αβ , and W[1:N] =
{
W(j)

}N
j=1. The equality holds for BEC.

Table 1 Difference between capacities and achievable rates of
polar codes under non-identical parallel channels

Number 8 10 12 14 16

Diff. [ %] 0.6 0.044 0.038 0.003 0.002

By applying the recursive channel structure of Lemma 1
to the definition of the Bhattacharyya parameter, the
above corollary can be derived. With the aid of Lemma 1
and (22)–(24), we can derive Properties 1, 2, and 3 as
follows:

1.

Z(2i−1)
2N + Z(2i)

2N ≤ Z(i)
N

(
W[1:N]

) + Z(i)
N

(
W[N+1:2N]

)
.

(26)

2. (for some B-DMCW)

Z(2i−1)
2N ≥ max

{
Z(i)
N

(
W[1:N]

)
,Zi

N
(
W[N+1:2N]

)}
.

(27)

To prove the above propositions, let us start from the first
property. Property 1 can be derived from the definition of
the Z-parameter and we can use the same proof process of
(24) that exploits the inequality relation between the arith-
metic mean and the geometric mean. By using the f (α,β)

and g(α,β) notations as in Corollary 1, Property 2 holds if
and only if the joint event of {αβ ≤ α} ∩ {αβ ≤ β} holds,
which is true because of the non-negativity of α,β ∈ [0, 1].
Property 3 is true for BEC, BSC, and BI-AWGNwhich can
be transformed to an equivalent BSC model.

2.3.1 BEC case
As previously mentioned, BEC has received attention for
its special property of maximizing the Z-parameter value
of the f (·) operation. For the BECW(i) with erasure prob-
ability εi, Z(W(i)) = εi. For N = 2 with ε1 and ε2, Z(1)

2 =
ε1 + ε2 − ε1ε2, and it is larger than ε1 and ε2. Therefore,
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without loss of generality, the following relation holds by
repeating recursions:

Z(2i−1)
2N = Z(i)

N
(
W[1:N]

) + Z(i)
N

(
W[N+1:2N])

)

−Z(i)
N

(
W[1:N]

) · Z(i)
N

(
W[N+1:2N]

)
.

Hence, Z(2i−1)
2N ≥ Z(i)

N (W[1:N]) and Z(2i−1)
2N ≥

Zi
N (W[N+1:2N]); thus, Property 3 holds.

2.3.2 BSC case
For N = 2 BSC with crossover probability ε1 and ε2,
Z

(
W(i)

) = 2
√

εi(1 − εi). Then, Z(1)
2 = 2

√
(1 − εs) · εs,

where εs = ε1 + ε2 − 2ε1ε2. Without loss of generality,
assume that ε1 ≥ ε2, if not, we swap these two channels.
The numerical results in Fig. 5 show that differences of
Z(1)
2 − Z

(
W(1)

)
for all CPs are always non-negative.

Hence, we can conclude that Property 3 holds for the
BSC case.

2.3.3 BI-AWGN case
Note that a binary-input AWGN channel can be trans-
formed to the equivalent BSC by applying a line coding
that maps the set of binary alphabets {0, 1} 	→ {−1,+1}.
Therefore, Property 3 holds.

2.4 Supermartingale Zn
Let us define the random sequence {Zn} such that
Z(i)
N 	→ Zn(bn1), where Zn(bn1) ∈ {Zn} is repre-

sented as Zbn1 . Then, for some B-DMCs that satisfy
four properties, we can draw a graphical evolving recur-
sive structure of Z(i)

N ( or Zn) similar to Fig. 3. The
graphical structure of Zn has a common feature to
that of the identically distributed channel case; however,

elements in the rightmost column are under a non-
identically distributed scenario, where CPs may not be the
same.

{Zn} can be considered as a supermartingale if this ran-
dom tree process satisfies the relation Zn ≥ E

[
Zn+1|bn1

]
.

Under the i.i.d. channel assumption, it is easily verified,
since the one step transition from Zn(bn1) to {Zn+1} is a
single variable to single variable mapping: K : Z → Z
such that Z = {Z|Z ∈ �,Z ∈[ 0, 1] }. In contrast, with
the non-identically distributed assumption, the transition
becomes a two to one mapping:K′ : Z2 → Z . Each Zbn1 is
not a scalar but a 2×1 vector. In this case, the format of the
condition is not appropriate due to dimension mismatch.
Using a similar process as that for In in proving the mar-

tingale property, we apply the average sequence {En} to
replace Zbn1 such that En

(
bn1

) = E

[
Zbn1

]
. Then, from (25),

we can verify that E
[
Zn+1|En(bn1)

] ≤ En which means Zn
is a supermartingale under En.

2.5 Convergence of {Zn}
Since {Zn} is bounded within [0, 1] and the supermartin-
gale, from the martingale convergence theorem, there
exists a random variableZ∞ where the sequence {Zn} con-
verges with probability 1 as n → ∞. It is equivalent to the
statement that in L1, limn→∞ E[ |Zn+1 − En|]= 0 which
implies E [|Z∞ − E∞|] = 0. Given that En(bn1) = α+β

2 and

Zn+1(bn1) =
{
f (α,β) w.p. 12
g (α,β) w.p. 12

, (28)

where α � Z(i)
N (W1:N ) and β � Z(i)

N (WN+1:2N ), it becomes
an indeterminate equation with the condition of α,β ∈

Fig. 5 General differences in Z-parameters for BSC (N = 2) for all ε1 ∈ [0, 1] and ε2 ∈ [0, 1 − ε1]. Domains come from the constraints ε1 ≥ ε2
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[0, 1]. Solution pairs (α∞,β∞) = {(0, 0), (1, 1)} can be
obtained. Therefore, since Z∞, which corresponds to α∞,
converges to either 0 or 1 almost everywhere, we can con-
clude that all Z(i)

N are polarized in either a near perfect or
totally random manner as n → ∞.

2.6 Channel mapping via the interleaver Q
In this subsection, we discuss the role of an interleaver Q
in polar coding systems under non-identically distributed
B-DMCs and propose an algorithm that explains how to
construct such an operation. The transceiver structure
including an interleaver Q and a de-interleaver Q−1 is
depicted in Fig. 1. To understand the importance of Q, let
us consider the following example.

Example 1 For N = 4, let the set of erasure probabili-
ties of parallel BECs be {εN1 } = {0.1, 0.4, 0.6, 0.9}, of which
the average is εm = 0.5. Then, the evolved bit channel
capacities are

{
I
(
W (i)

N

)}
= {0.02, 0.56, 0.44, 0.98} and the

encoder selects the information set A = {2, 4}. The result-
ing sum of the capacities of the selected bit channels is 1.54
[bits] for four channel uses.
We now apply the interleaver Q over the same set, which

results in
{
εN1

} = {0.6, 0.4, 0.9, 0.1}. The evolved set of sym-
metric capacities is

{
I
(
W (i)

N

)}
= {0.02, 0.31, 0.69, 0.97}.

The encoder chooses two indices with the highest
I
(
W (i)

N

)
values: A = {3, 4}, and the achievable sum is

1.66 [bits], which is a 7.8% enhancement compared to the
previous index.

Note that as
∑

i∈A I
(
W (i)

N

)
increases, the system

becomes more reliable. The result of this example indi-
cates that for a given set of channels {W(i)|i ∈ [1,N] },
the optimal mapping Q : xN1 	→ sN1 exists in the sense
that the reliability (or the rate) is maximized by boost-
ing polarizations among the symmetric capacities of bit
channels. Finding the appropriate Q can be viewed as an
optimization problem:

FindQ : xN1 	→ sN1
Maximize

∑

i∈A
I
(
W(i)

)
.

Equivalently, the mapping can be interpreted as a chan-
nel permutation such that Q : {W(i)} 	→ {W ′

(i)}. We
discuss two methods that search for such a mapping Q.

2.6.1 Exhaustive searchmethodwith grouping
The simplest and most naive approach involves testing
every possible combination over N channels and select-
ing the best combination. Obviously, N ! number of cases
need to be checked. However, we can categorize every
combination into equivalent groups since in each group,

all combinations output the same qualities of bit chan-
nels. The size of each group is 2N−1. Hence, owing to the
recursive channel evolving structure, the required num-
ber of tests is N !

2N−1 . The detailed proof is shown in the
Appendix. This grouping technique considerably reduces
the computational burdens: for N = 8, we need to test
315 representative combinations instead of N != 40, 320.
However, the enhanced test set size would go beyond the
computational capability for practical N lengths.

2.6.2 Heuristic method
The purpose of the channel combining and the splitting
operation is to build virtual channels that are as close
to the extremal channels as possible as the recursions
are repeated. We already know that for any non-identical
parallel B-DMCs, there exist polar codes that achieve
the symmetric capacity as N goes to infinity. However,
in a practical system that exploits finite code lengths,
as we observed via Example 1, differences exist in the
convergence speed for different mappings through the
interleaver Q. A well-designed Q will polarize bit channel
qualities fast. Therefore, the Q should sort the given set
of transmit channels in order to create as many enhanced
and degraded transmit channels as possible that are close
to the extremals simultaneously. In this section, we pro-
pose an algorithm of Q that achieves such an object.

1. Sort transmit channelsW(i), i ∈ [1,N] in an
ascending order of the capacity I

(
W(i)

)
.

2. Make N
2 pairs: the ith pair includes the ith smallest

transmit channel and the ith largest transmit channel.
3. Using the indices of N

2 pairs,
[
1 : N

2
]
, repeat the

second procedure until the size of the index set
becomes 4.

As can be seen, this algorithm has a recursive structure,
and we can represent it in a matrix form. Let Pn represent
the interleaver operationQ for lengthN = 2n and Sn indi-
cate the second operation of the above algorithm. Then,

Pn = Sn · P⊗I2
n−1 , (29)

where I2 is the 2 × 2 identity matrix and ⊗ means the
Kronecker product.
In Fig. 6, we depict achievable rates 1

N
∑

i∈A I
(
W (i)

N

)

of polar codes by exploiting different interleaving meth-
ods under parallel BECs of which the erasure probabilities
are uniformly chosen within the range of (0, 1) (hence, the
average of 0.5). The black curve refers to the capacity, the
red curve refers to the result of the proposed algorithm,
and the blue curve refers the performance when using ran-
dom shuffling. We can obtain the green curve when we
apply the proposed algorithm only once without recur-
sion: that is, Pn = Sn. Finally, the dark red curve refers to
the performance when the transmit channels are sorted in
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Fig. 6 Observation on the different usage of the interleaver Q. Shuffling the coded alphabets xN1 as randomly as possible exhibits higher achievable
rates compared to the ordered interleaver

capacities; whether the order is ascending or descending,
the result is not affected.
From the figure, the proposed interleaving algorithm

shows better performance in the rate than the other algo-
rithms. It is also observed that when W(i)s forms an
ordered set, it converges to the capacity slower than the
other algorithms. Hence, if the symmetric capacities of the
exposed channels are ordered in either way, they should
be rearranged through Q.

3 Non-identical binary erasure channels with
random erasure probabilities with single
distribution

In previous studies, [8] and [3], it is assumed that the char-
acteristics of underlying discrete memoryless channels are
fully exposed to the transceiver; thus, the encoder and the
decoder exploit this information. Under this condition,
it is proved that polar codes can achieve the symmetric
capacity.
In this section, we assume that channel parameters are

not deterministic, but are realizations of a random vari-
able. For BEC, the channel transition probability of a
transmit channel W(i) : Xi 	→ Yi is fully described by the
erasure probability εi. Hence, the channel features of the
non-identically distributed parallel channels model are
perfectly represented via the set of erasure probabilities{
εN1

}
.

The existence of random erasure probabilities means
that each εi is the realization of the random variable θ

such that εi ∼ fθ (εi),∀i ∈ [1,N], where fθ is a stationary
probability distribution function.
We now assume that the realized set of erasure prob-

ability
{
εN1

}
is exposed to neither the encoder nor the

decoder. In this case, the only available information that
can be extracted to the encoder and the decoder is the
set of moments from the given distribution fθ . We prove
that under this scenario, polar codes can achieve the
symmetric capacity.

Theorem 2 For a set of BECs {W(i)} with the unknown
set of erasure probabilities {εi}, i ∈ [1,N], but the distribu-
tion fθ is given to the transceiver, there exist polar codes, for
arbitrary small δ ≤ 0, that achieve the symmetric capac-
ity Is, in the sense that as N → ∞, the fraction of indices i
satisfies

lim
N→∞

|{i|I
(
W (i)

N

)
∈ (1 − δ, 1] }|
N

= Is

lim
N→∞

|{i|I(W (i)
N ) ∈ [0, δ)}|
N

= 1 − Is,

where the symmetric capacity Is is defined as an average
of the individual transmit channel’s capacities: Is(WN ) =
1
N

∑N
i=1 I

(
W(i)

)
, where WN : XN

1 	→ YN
1 .

3.1 Proof of Theorem 2
By the law of large numbers, the empirical channel behav-
ior for a codeword can be described by the first moment
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εm of the distribution fθ . Also, as previously mentioned,
since the transceiver is oblivious to the exact set of erasure
probabilities of the underlying parallel channels, it has no
choice but to exploit εm for consideration of constructing
codewords.
Now, let us consider the meaning of Is

Is(WN ) = 1
N

N∑

i=1
I(W(i)) (30)

= 1
N

N∑

ı=1
(1 − εi) (31)

= 1 − 1
N

N∑

ı=1
εi (32)

= (1 − ε′), (33)

where ε′ = 1
N

∑N
ı=1 εi. Hence, we can conclude that

the non-identically distributed N parallel BECs model is
equivalent to the N identically distributed BECs model
of which the erasure probability is ε′ for a large N and
we can achieve the symmetric capacity. Next, we need to
verify whether (33) is reliably achievable based on infor-
mation given by the transceiver. To that end, we need to
demonstrate that the following two issues are true:

• The existence of polar codes over BEC with erasure
probability εm

• ε′ ≥ εm for all distributions fθ

The first statement is proved to be true in Theorem 2
of [1] in that for any B-DMC W, there exists a sequence
of information bit sets AN such that |AN | ≥ NR with
arbitrary small error probability. In this scenario, |AN | =

N(1 − ε′)�. The second statement is proved through
the linearity of Is to the erasure probability. In Fig. 7, Is

Fig. 7 The symmetric capacity Is of BEC

is depicted. Note that the Is is an affine function of the
erasure probability ε. Therefore, ε′ = εm for any distri-
bution fθ since limN→∞ 1

N
∑N

ı=1 εi = εm. Note that under
erasure channels, the equality in the Jensen’s inequality
holds

I
(
E

[
W(i)

]) ≤ E
[
I
(
W(i)

)]
. (34)

This completes the proof of Theorem 2.

3.2 Achievable polar coding scheme
According to Theorem 2, the construction of the capac-
ity achieving polar coding scheme is straightforward.
First, given the distribution fθ , the encoder calculates the
first moment E[ε]= εm. It then constructs the mes-
sage vector uN1 by determining the information index set
AN with the pre-defined frozen bits uF . This message
sequence is encoded through the generator matrix GN
and is transmitted through the non-identically distributed
parallel BECs of

{
εN1

}
. The procedure is summarized in

Algorithm 2.

Algorithm 2 Polar coding scheme
Encoding process
1: Given fθ , calculate εm
2: Figure out the information sets AN according to BEC(

εm )
3: Encoding: xN1 = uN1 · GN

Decoding process
1: Given ( A,uF , εm ) Perform SC decoding: yN1 → ûA.

It should be noted that to achieve the symmetric
capacity under non-identically distributed parallel BECs,
with unknown channel parameters, the only constraint
required is the code length N → ∞.

4 Random erasure probabilities with
non-identical distributions

In this subsection, we consider the case of N non-
identically distributed BECsW(i): for ∀i ∈ [1,N] that each
distribution fθi of the erasure probability εi for each trans-
mit channel W(i) could differ for different bit channel
indices. Thus, this scenario includes previous scenarios as
a special case.
For example, consider the multi-hop communications

between the two nodes in Fig. 8. In this figure, each
data element in S is delivered to D through different
paths in a multi-hop fashion. If the number of hops is
increased, it becomes more difficult for S and D to track
the exact parameters that model each path. Furthermore,
these paths could have statistical variation due to unstable
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Fig. 8 Example: the multi-hop transmission

media or interference from different noise sources such
as the node V in the figure. In these cases, the proposed
scenario is logical.
A simple coding scheme that is able to achieve the sym-

metric capacity is the conveyance of multiple codewords
as a group for each decoding stage. In each stage, we
exploit the set of parallel non-identical channels L = 2l
times. The reason for this power of 2 format is to match
with the length of polar codewords.
LetW(i)(j) mean the jth access to the channelW(i), εi(j)

as the instantaneous erasure probability of the channel
W(i)(j) that follows the distribution fθi , and Is,i(W(i)) is the
symmetric capacity ofW(i) by accessing it L times.
The instantaneous capacity for L blocks are depicted

in Table 2. The distributions of erasure probabilities can
differ, and each transmit channel (row) shows ergodic
behavior as shown in the last column of the table. Here,
Ī(W(N)) = 1

L
∑L

j=1 I(W(i)(j)).
The symmetric capacity in this case becomes

Is
(
WL

[N]

)
= 1

L

L∑

j=1

1
N

N∑

i=1
I(W(i)(j)) (35)

= 1
L

L∑

j=1

1
N

N∑

i=1
(1 − εi(j)) (36)

= 1
N

N∑

i=1

⎛

⎝1 − 1
L

L∑

j=1
εi(j)

⎞

⎠ (37)

→ 1
N

N∑

i=1
(1 − εmi), (38)

Table 2 Ergodic behaviors of instantaneous capacities

1 2 · · · L Average

1 I(W(1)(1)) I(W(1)(2)) · · · I(W(1)(L)) Ī(W(1))

2 I(W(2)(1)) I(W(2)(2)) · · · I(W(2)(L)) Ī(W(2))

i I(W(i)(1)) I(W(i)(2)) · · · I(W(i)(L)) Ī(W(i))

N I(W(N)(1)) I(W(N)(2)) · · · I(W(N)(L)) Ī(W(N))

where εmi is the first moment of εi ∼ fθi . Note that
limL→∞ Is

(
WL

[N]

)
1
N = ∑N

i=1(1−εmi). The equality is due
to the affinity of the symmetric capacity over the domain
of erasure probability. We now consider two cases. In the
first case, we assume that the encoder is able to be adapt-
edto various code lengths. This means that the encoder
can construct generator matrices GN for any exponent n
(N = 2n). In the second case, the coding structure is
fixed, thus parameter N (and the following GN ) cannot be
changed. In the first case, let the encoder exploit any expo-
nent l, and construct L × L generator matrix GL where
L = 2l. The following proposition is then satisfied:

Proposition 3 For a set of non-identically distributed
BECs {W(i)}, with a set of random erasure parameter
{εi}, i ∈[ 1,N] that each εi follows non-identical fθi , the
symmetric capacity Is

(
WL

[N]

)
is achievable by exploiting

multiple streams of polar codewords.

The proof of Proposition 3 is the same as that of the
existence of polar codes that achieve the set of indi-
vidual capacities {Ī(W(i))}, since the symmetric capacity
Is

(
WL

[N]

)
is their sum. Also, in Theorem 2, we proved

that there exist polar codes that achieve each capacity{
Ī
(
W(i)

)}
, in the sense that as L → ∞ through the power

of 2, the fraction of indices j ∈ [1, L] of the ith message
block is satisfied:

lim
L→∞

|{j|I
(
W (j)

L

)
∈ (1 − δ, 1] }|
L

= Ī(W(i))

lim
L→∞

|{j|I
(
W (j)

L

)
∈ [0, δ)}|

L
= 1 − Ī(W(i))

for an arbitrary small δ ≥ 0, and for all channel index
i ∈ [1,N]. Therefore, Proposition 3 is true for any set of
distributions

{
fθi

}
.

4.0.1 Achievable coding scheme
In Fig. 9, the encoding and the decoding procedures
are depicted for all transmit channel indexes. Given

Fig. 9Multiple streams of Polar coding structure
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all distributions {fθi |∀i ∈ [1,N] }, the encoder calculates
the set of first moments {εmi} and evolved bit chan-
nel capacities

{
I
(
W (i)

N

)}
with {εmi} according to these

recursive equations, (19) and (20). With these moments
and symmetric capacities, the encoder then constructs
N streams polar codewords {xL1(i)} of length L = 2l.
To achieve this, the encoder first defines an information
set AL(i) =

{
j|I

(
W (j)

N

)
≥ I

(
W (k)

N

)
,∀j ∈ AL, k ∈ Ac

L

}
, the

size of which is |AL(i)| = 
L(1 − εmi)�.
With fixed frozen bits uF , where F =[1, L] \AL(i), message
vectors {uL1(i)} are stacked in theN ×Lmessage matrixU,
which is then encoded with the L×L generator matrixGL
and output codewords matrix X. Each column of X propa-
gates sequentially through the non-identically distributed
parallel BECs.
The receiver saves L output vectors in matrix Y and pro-

duces estimates by applying the SC decoder row by row.
This procedure is summarized in Algorithm 3. Note that
there are no constraints on N. Actually, since the pro-
posed coding scheme is not affected by N, it is robust
to the deletion of some transmit channels. Assume that
a set of channels WJ where J is a subset of [ 1,N] is lost
since the corresponding set of symmetric capacities are
all zeros. The encoder and the decoder will then simply
decrease N to N − |J|; the data is transmitted through
W[1,N]\J . Note that the symmetric capacity Is

(
WL

[N]\J
)

=
∑

∀i∈[1,N]\J I(W(i)) is still achievable.

Algorithm 3 Encoding and decoding process
Encoding process: Repeat ∀i ∈ [1,N]
1: Calculate Ī(W(i))
2: Find εmi s.t. I(εmi) = Ī(W(i))
3: Define index set Ai based on (L, εmi)

4: xL1(i) = uL1(i) · GL
5: Store xL1(i) in the ith row of X
6: Transmit each column of X

Decoding Process:
1: Stack N blocks into matrix Y row by row.
2: Given (Ai, L,uF), perform SC decoder: Y (i) 	→ ûAi

∀i ∈[ 1,N]

4.0.2 Proof of achievability
From the set of BECs {W(i)} for ∀i ∈ [1,N], the size of
each information set|AL(i)| = 
L(1 − εmi)�, the unit
of which is in bits per L channel uses. It is known that
the SC decoder recovers each message uAi with van-
ishing probability of error as L → ∞ for ∀i. Now,
define an individual rate Ri as |Ai|

L ; it then converges
to Ī(W(i)) under the same condition. That is, for any

δi ∈[ 0, 1)
Ri = 1

L

L(1 − εmi)�

= (1 − εmi) − δi
L

L→∞−−−→ Ī
(
W(i)

)
.

For the symmetric capacity, Is
(
WL

[N]

)
is the same

as the arithmetical mean of its parts {Ī(W(i))|∀i ∈
[ 1,N] }: Is

(
WL

[N]

)
= 1

N
∑N

i=1 Ī(W	i). We can conclude
that it is achievable from the proposed scheme. The
complexity of this polar coding scheme is O(NL logL),
since it is a concatenation of N SC decoders of
length L.
In addition, consider a transmitter in which the encod-

ing structure cannot be changed. Then, the only choice
is to utilize the fixed size of the N × N generator
matrix GN , where N = 2n and the produced codewords
are of the same length, N. We can treat this problem
by setting L to be identical to N. The encoder defines
the collection of information index sets {Ai} from {εmi},
where |Ai| = 
N · I(εmi)�. Using a common genera-
tor matrix GN , the encoder sequentially produces N of
polar codewords xN1 (i) = uN1 (i) · GN for i ∈ [1,N].
These codewords

{
xN1 (k)

}
are stacked in rows of the

matrix X. The complexity of this polar coding scheme
is O(N2 logN), since it is a concatenation of N SC
decoders.

5 Polarizations on non-independent channels
In the previous sections, it was assumed that all transmit
channels are independent from each other from

WN
(
yN1 |xN1

) =
N∏

i=1
W(i)(yi|xi), (39)

where W(i) : Xi → Yi. Now, consider the case where
these channels are correlated; thus, the equality in (39)
does not hold. Then, the previous polar coding scheme for
independent B-DMCs might not achieve the capacity. For
example, we can check the polarization phenomenon in a
measure of the symmetric capacity for N = 2, where the
transition probability of the channelW2 : X1×X2 → Y1×
Y2, where X1 and X2 are GF(2), and Y1 = Y2 = {0, 1, e} is
defined as follows:

W2
(
y21|x21

) =
{
1 − ε, y21 = x21
ε y21 = e

. (40)

The element e denotes the erasure symbol. Without los-
ing information,W2 can bemodeled as a single quaternary
erasure channel (QEC)W ′ with CP ε, of which the capac-
ity is I(W ′) = 2(1 − ε). We now apply the same generator
matrix G2 to the encoder and calculate the symmetric
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capacities of split bit channels I
(
W (1)

2

)
and I

(
W (2)

2

)

via (1). We can then obtain I
(
W (1)

2

)
= I

(
W (2)

2

)
=

1 − ε, which means that no polarization occurs with
the coding strategy for independent channels. By relabel-
ing, the set of binary input vectors X2

1 = {00, 01, 10, 11}
is mapped to a quaternary symbol set S = {0, 1, 2, 3},
as depicted in Fig. 10, where r = 2 with the chan-
nel notation change from the correlated vector channel
W2 to the single independent q-ary DMC W ′. The prob-
lem of non-polarization is proved to occur in some q-ary
DMCs when the cardinality of the set S is a compos-
ite number [10]. However, in [11], the authors proved
the existence of polar codes for the composite cardinality
of q = 2r .
Under the parallel channel model, when N = 2n, the

transmit channels are pairwise correlated from

WN
(
yN1 |xN1

) =
N/2∏

i=1
W2(i)

(
y2i2i−1|x2i2i−1

)
. (41)

The transmit channels can be represented as N ′ length
of independent quaternary input DMCs

WN ′
(
tN

′
1 |sN ′

1

)
=

N ′
∏

i=1
W ′

(i)(ti|si), (42)

where N ′ = N
2 .

For generalization, assume that r transmit channels are
correlated in similarly to (41). If we assume r = 2α (1 ≤
α � n − 1) for simplicity, then the new code length
becomes N ′ = 2n−α , and we have

WN
(
yN1 |xN1

) =
N ′
∏

i=1
W ′

r(i)

(
yrir(i−1)+1|xrir(i−1)+1

)
. (43)

In a q-ary representation, (42) still holds, where the
input alphabet cardinality is q = 2r . If these relabeled
independent q-ary DMCs are identically distributed, such
that W ′

(i) = W ′
(j) for ∀i, j ∈ [1,N ′], it is proved in [11] that

polar codes for q-ary input DMCs achieves the symmet-
ric channel capacity when q = 2r by exploiting the same
kernel as in [1]. Therefore, the following proposition holds
for a general q-ary DMCW ′.

Proposition 4 There exist polar codes for non-
independent DMCs W ′, which achieve the symmetric
I(W ′), by relabeling r-bits binary sequence to a q-ary
(q = 2r) symbol as N ′ → ∞ through the power of 2.

Proof The proof follows the proof of the existence of
polar codes in [11]. The authors proved the existence of
polar codes that achieve the symmetric capacity for any q-
ary input alphabet discrete memoryless channel when q is
the power of 2. In our model, by grouping and relabeling
alphabets in the same length, the model can be mapped to
an equivalent q-ary alphabet model, without any informa-
tion loss because these operations are deterministic. We
can then exploit the same proof as that in [11]; hence, the
achievability still holds in this partially non-independent
channels model.

6 Conclusions
In Section 2, we proved that for deterministic CPs in
non-identical channel models, polar codes can achieve the
sample mean of bit channel capacities. In addition, we
provided an example that demonstrates the importance of
the use of the proper channel interleaver Q for achievable
rate enhancement and proposed the heuristic mapping
algorithm.
In Sections 3 and 4, the key contribution is a new system

model where the transmitter and the receiver know only
the channel parameter distribution and not the channel
parameter itself. If the underlying channel type is BEC, the
coding scheme can become simpler. Note that for a BEC
with erasure probability ε, its symmetric capacity I is the
affine function of ε. Then, we have the relation E[I(ε)]=
I(ε), where ε is the expectation of the random variable ε ∼
fε(ε).
By applying multiple streams of polar codewords, we

prove that the average capacity of BECs under our sce-
narios is achievable. However, this is obtained by sacrific-
ing the latency and complexity, since they stack multiple
blocks during the encoding and decoding process. Hence,
these schemes might not be suitable in systems where low
latency or low complexity is required. Rather, it is more
practical in storage systems such as flash memory devices
where throughput is more important than latency. Espe-
cially, for flash memories, statistical responses such as a
voltage threshold would change with time and with the
number of accesses to a cell block. Hence, as the storage

Fig. 10 Relabeling of a length r = 2 binary vector channel to a single quaternary channel
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capacity increases, it is inefficient for a storage controller
to determine the exact states of every block or cell. If
statistics on their changes are given instead, we can man-
age cells more efficiently using the proposed polar coding
scheme.
In addition, in the case of parallel channels, where sta-

tistically different random disturbances exist across chan-
nels, it is difficult to track all the channel parameters.
However, if their statistics are known to the transmitter
and the receiver, we can deliver data up to the aver-
age capacity through polar codes by sacrificing latency.
In such cases, polar codes are a promising option that
maximizes the throughput.
Under the non-independent channel scenario, we

assume that the N transmit channels are grouped into
channels with size r which is a power of 2, so that
we can treat the scenario as a non-binary system. If
N is not divisible by r (N mod r �= 0), punctur-
ing may be used to fit the system into a q-ary system
[12]. The proposed polar codes appear to be promis-
ing for applications where only the knowledge of the
channel parameter distribution is available and can be
practical for storage applications such as flash memory
devices.

Appendix
Proof of (22)
Proof

Z
(
W (1)

2

)

=
∑

y21

√

W (1)
2 (y21|u1 = 0)W (1)

2 (y21|u1 = 1)

=
∑

y21

√
∑

u2

1
2
W(1)(y1|u2)W(2)(y2|u2)

·
√
√
√
√

∑

u′
2

1
2
W(1)(y1|1 + u′

2)W(2)(y2|u′
2)

=
∑

y21

1
2
√
W(1)(y1|0)W(2)(y2|0) + W(1)(y1|1)W(2)(y2|1)

· √
W(1)(y1|1)W(2)(y2|0) + W(1)(y1|0)W(2)(y2|1)

≤
∑

y21

1
2

[√
W(1)(y1|0)W(2)(y2|0) +√

W(1)(y1|1)W(2)(y2|1)
]

·
[√

W(1)(y1|1)W(2)(y2|0) + √
W(1)(y1|0)W(2)(y2|1)

]

−
∑

y21

√
W(1)(y1|0)W(2)(y2|0)W(1)(y1|1)W(2)(y2|1);

after calculations, it becomes

= 1
2

∑

y21

(
W(1)(y1|0)

√
W(2)(y2|0)W(2)(y2|1)

+ W(1)(y1|0)
√
W(2)(y2|0)W(2)(y2|1)

+ W(1)(y1|0)
√
W(2)(y2|0)W(2)(y2|1)

+W(1)(y1|0)
√
W(2)(y2|0)W(2)(y2|1)

)

−
∑

y21

√
W(1)(y1|0)W(2)(y2|0)W(1)(y1|1)W(2)(y2|1)

= Z(W(1)) + Z(W(2)) − Z(W(1))Z(W(2)).

Therefore, Z
(
W (1)

2

)
≤ Z

(
W(1)

) + Z(W(2)) −
Z(W(1))Z(W(2)) is satisfied for any binary input channel
parameters.

Proof of (23)
Proof

Z
(
W (2)

2

)

=
∑

y21,u1

√

W (2)
2 (y21,u1|u2 = 0)W (2)

2 (y21,u1|u2 = 1)

=
∑

y21,u1

1
2
√
W(1)(y1|u1)W(2)(y2|0)

· √
W(1)(y1|u1 + 1)W(2)(y2|1)

=
∑

y2

√
W(2)(y2|0)W(2)(y2|1)

·
∑

y1,u1

1
2
√
W(1)(y1|u1)W(1)(y1|u1 + 1)

= Z(W(2))Z(W(1)).

The fourth equation comes from the fact that the sum-
mation over u1 is a sum of two similar terms. In addition,
the following relation holds with the aid of (23):

Z
(
W (2)

2

)
≤ min

(
Z(W(1)

)
,Z

(
W(2))

)
.

The relation can be verified simply by subtracting either
the right had terms from the left hand term.

Proof of (24)
Proof We can prove (24) simply by applying the

arithmetic-geometric mean inequality to Z
(
W (1)

2

)
. Let us

review the development process.
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Z
(
W (1)

2

)

=
∑

y21

√

W (1)
2

(
y21|u1 = 0

)
W (1)

2
(
y21|u1 = 1

)

=
∑

y21

√
∑

u2

1
2
W(1)(y1|u2)W(2)(y2|u2)

·
√
√
√
√

∑

u′
2

1
2
W(1)(y1|1 + u′

2)W(2)(y2|u′
2)

=
∑

y21

1
2
√
W(1)(y1|0)W(2)(y2|0) + W(1)(y1|1)W(2)(y2|1)

· √
W(1)(y1|1)W(2)(y2|0) + W(1)(y1|0)W(2)(y2|1).

Defining shorthand notations of A = W(1)(y1|0),B =
W(1)(y1|1),C = W(2)(y2|0), and D = W(2)(y2|1), we can
rewrite the above equation as follows:

Z
(
W (1)

2

)
=

∑

y21

1
2

√
ABC2 + CDA2 + CDB2 + ABD2

≥
∑

y21

1
2
√
4 · ABCD

=
∑

y1

√
AB

∑

y2

√
CD

=
∑

y1

√
W(1)(y1|0)W(1)(y1|1)

·
∑

y2

√
W(2)(y2|0)W(2)(y2|1)

= Z(W(1))Z(W(2))

= Z
(
W (2)

2

)

which the inequality is from the arithmetic and geometric
mean relation.

Proof of the number of equivalent channel combinations
According to the basic theory of polar codes, chan-
nels are recursively evolved such that (W (i)

N ,W (i)
N ) 	→

(W (2i−1)
2N ,W (2i)

2N ) for some set of binary input discrete
memoryless channels. We denote each mapping as fol-
lows:

Fn+1 : W (i)
N ,W (i)

N 	→ W (2i−1)
2N (44)

Gn+1 : W (i)
N ,W (i)

N 	→ W (2i)
2N , (45)

and it was proved that polarizations occur in non-
identically distributed channels.
Recall that functional Fn and Gn share the same set of

functions as an input. Furthermore, these input functions

are also results of functionals Fn−1 or Gn−1 due to the
recursive structure of channel evolution. Let us define a
swapping operation S : (α,β) 	→ (β ,α). We can then eas-
ily check that Fn and Gn are invariant to S. We also define
a functional Hn which includes both Fn and Gn. Hn can
represent its members since Fn and Gn are equivalent in
the number of cases; hence, it is also invariant to S. In a
similar way, we define Wn+1 which includes W (2i−1)

2N and
W (2i−1)

2N . We now rewrite (44) and (45) using H and W ,
respectively.

Wn+1 = Hn+1(Wn,Wn).

Due to the recursive structure in channel evolutions, each
W (i)

N is calculated again throughHn. It is then generally in
the form of

Wn+1 = Hn+1(Hn(Wn−1,Wn−1),Hn(Wn−1,Wn−1)).

Defining the number of operations ofH that are required
to recursively reachHn as χn then

χn+1 = 2χn + 1.

By solving this recurrence formula, we can obtain χn =
N − 1. Recalling that H is invariant to S which indicates
there are two cases for each H, the number of combina-
tions of the B-DMCs that result in the same information
set of polar codes is 2N−1. Hence, the number of represen-
tative combinations that may have different information
sets for length N parallel polar coding systems is N !

2N−1 .
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