
RESEARCH Open Access

A multiband RF signal sampling frequency
selection method based on cylindrical
surface spectrum analysis
Haijiang Wang1,2*, Yangyang Deng1,2, Bao Dong1,2, Ling Yang1,2, Zhendong Yao1,2 and Debin Su1,2

Abstract

Sampling frequency selection is a key issue in direct digitalization of the radio frequency (RF) signals. In this paper,
we propose a cylindrical surface spectrum and arc distance-based sampling frequency selection method for multiband
RF signals. In this method, a 3D visual expression of cylindrical surface spectrum of digital signal is introduced. This
expression reflects better the circulatory nature of the spectrum of digital signals. It is found more intuitive, heuristic,
and effective in dealing with undersampling issues of multiband RF signals than conventional spectrum expressions
are. A function of arc distance between two frequency bands are also introduced which turns out to be useful in the
determination of sampling frequency and design of digital filters.
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1 Introduction
In the application of modern electronic technology, sam-
pling from continuous (analog) signal to obtain digital
signal has become one of the most common technolo-
gies. The relationship between an analog signal and the
digital signal sampled from it can be mathematically de-
scribed by the sampling theorem. As for the baseband
signal, the Nyquist criterion requires that the sampling
frequency must be more than twice the upper limit of
analog signal frequency band, which has long been well
known in engineering design. However, with the rapid
development of technology, the direct sampling of high
frequency signal has become a reality and the Nyquist
criterion under literal meaning has long been broken
through. What is called “undersampling” technology
(which means sampling at a rate below the Nyquist fre-
quency) has been developed. But meanwhile, with the
application of software radio idea and the emergence of
new types of radar and new communication system, the
RF signals and their spectrums are more and more com-
plex. For example, in dual-frequency or multi-frequency

radar, the RF echos contain multibands. And in 4G and
the upcoming 5G communications, multicarrier or
multiband RF signals are very common. These complex
multiband signals pose new challenges to their sam-
pling. In the past two decades, sampling and efficiently
reconstructing multiband RF signals has been investi-
gated in many literatures in recent years. The earliest
study can be traced to the end of the last century. For
example, Raman Venkataramani and Yoram Bresler inves-
tigated periodic nonuniform sampling and multichannel
processing based sub-Nyquist sampling of multiband sig-
nals [1, 2]; Dennis M. Akos et al. studied direct bandpass
sampling of multiple distinct RF signals and proposed a
novel technique to determine the absolute minimum sam-
pling frequency for direct digitization of multiple, nonad-
jacent, frequency bands [3]. Moshe Mishali et al. discussed
blind sampling and reconstruction of multiband signals
and realized compressive sensing for multiband analog
signals with relative small sampling rate under the condi-
tion that only the number of bands and their widths are
assumed without any other limitations on the frequency
support [4], but the theoretical lower bound on the aver-
age sampling rate is still twice the minimal rate of known-
spectrum recovery. In [5], Satyabrata et.al presented an al-
gorithm to determine the minimum bandpass sampling
frequency for direct downconversion of multiple distinct
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RF signals, but in this literature, the iteration-based algo-
rithm was a little complicated and besides, only the case
of two frequency bands was considered. In [6], Jie-Cherng
Liu reported an efficient method to find the ranges of
valid bandpass sampling frequency for direct downcon-
verting multiple bandpass analytic signals (single-sideband
RF signals). The algorithm results in the ranges of valid
bandpass sampling frequency for the complex signals in
terms of bandwidths and band positions of the single-
sideband RF signals. But in fact, just as the author said,
compared to real bandpass sampling, the valid sampling
frequency ranges of the analytic signals are easier to find
than those of the real sampling. In recent years, the under-
sampling of multiband RF signals was still an issue which
was frequently researched on, and many meaningful re-
sults were achieved [7–10]. For example, in [10], the
authors proposed a method to select aliasing-free band-
pass sampling frequency in optical phase-modulated
and coherent detection (PM-CD) radio-over-fiber (RoF)
links, but only two bands were considered. In the existing
literatures for multiband signal sampling, all the analysis
methods are based on frequency axes under the Cartesian
coordinate system. Although the theoretical principle of
these methods is still the sampling theorem, because of
the disconnectivity between positive and negative fre-
quency bands of the spectrum, getting digital signal
spectrum from the analog signal spectrum according to
the sampling theorem needs to shift the positive and
negative frequency bands many times, which constitutes a
complex picture. The key points of the problem are usu-
ally concealed by this seeming complexity, making us un-
able to obtain the essentials easily. Because the sampling
problem of this kind of multiband signal has been increas-
ingly common and important, to seek a more simple and
clear geometric interpretation will be helpful in sampling
and filtering the processing for this kind of signal in
concept and even engineering design. So the cylindrical
surface spectrum is proposed in this paper.
This tool has the advantage of intuition in concept,

similar to the cylindrical phase surface in the oscillation
theory and Riemann surface in the theory of complex vari-
able functions [11]. It is more of a tool that is assisting
with the thinking and imagination than with the comput-
ing. With the assistance of this tool, the main points of
the problem sometimes will be revealed more intensively
and clearly, so it will even provide some enlightenment
to solutions of some problems involving RF signal
processing.
With the cylindrical surface spectrum tool, the concept

of arc distance between digital signal frequency bands
is introduced. This concept has some practical value
in quantitative calculation of the sampling frequency
selection and filter design for multiband RF signal
digitalization.

2 Derivation of the cylindrical surface spectrum
Suppose that the continuous-time signal u(t) has the
follow relationship with its frequency spectrum U(f )

U fð Þ ¼
Z∞

−∞

u tð Þe−j2π f tdt

u tð Þ ¼
Z∞

−∞

U fð Þð Þej2π f tdf

ð1Þ

Provided that the sampling period is Ts, sampling from
u(t)can produce the following sequence.

x nð Þ ¼ u nT sð Þ ð2Þ

The sequence has the following spectrum according to
the sampling theorem [12, 13].

X ωð Þ ¼
X∞
n¼−∞

x nð Þe−jωn ¼ 1
T s

X∞
m¼−∞

U
ω

2πT s
−
m
T s

� �

¼ f s
X∞
m¼−∞

U
f sω
2π

−mf s

� �

ð3Þ

In the equation, fs = 1/Ts, representing the sampling
frequency.
The familiar result leads us to obtain the spectro-

gram naturally by making left and right shift of the
analog spectrum diagram on the frequency axis infin-
ite time. That is to say, to show digital signal spectrum
derived from sampling, more curves should be drawn.
It is convenient to handle the sampling problem of the
baseband signal in this way because the positive and
negative frequency bands of this kind of signal spectrum
are mutually connected. Moreover, it is enough to meas-
ure the serious degree of aliasing effect by making the
right shift of an analog spectrum, and the contribution of
further shift terms can be ignored. If we discuss the under-
sampling problem of the modulating signal, shift terms of
the analog spectrum involved will be many. Further-
more, the positive and negative frequency bands of the
spectrum for analog signal are mutually separate; con-
sequently, the shifts of the two parts must be taken into
account thus making the method of analog spectrum
shift no longer an ideal tool for analyzing.
Writing Eq. (3) in an expanded form, we obtain
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X ωð Þ ¼ ⋯þ f sU
f s
2π

ωþ 2πð Þ
� �

þ f sU
f sω
2π

� �
þ f sU

f s
2π

ω−2πð Þ
� �

þ⋯

ð4Þ
In Eq. (4) we focus on one term equivalent to Eq3. (3)

in which m = 0. For simplicity, the symbol V(ω) is intro-
duced to express it.

V ωð Þ ¼ f sU
f sω
2π

� �
ð5Þ

Although X(ω) is periodic with period of 2π, V(ω) is
not, and its shape is consistent with the analog spectrum
U(f ) . On the horizontal axis, however, there is a flexible
scale factor, that is

ω ¼ 2π
f s

f ð6Þ

Meanwhile, there is an amplitude factor fs. In this paper, we
call V(ω) the scaled analog spectrum in the later parts. When
using the symbols in Eq. (5), Eq. (4) can be expressed as

X ωð Þ ¼ ⋯þ V ωþ 2πð Þ þ V ωð Þ þ V ω−2πð Þ þ⋯

¼
X∞
k¼−∞

V ωþ 2kπð Þ

ð7Þ
Firstly, only two terms in Eq. (7) are taken into consid-

eration that is V(ω) and V(ω + 2π). In Fig. 1a, as for a

length of amplitude magnitude of one signal’s scaled analog
spectrum in the interval (−π, π], |V(ω)| is drawn by a solid
line. At the same time, |V(ω + 2π)| is drawn by a dotted
line. Suppose that ω1 is any point in the interval (−π, π],
and its corresponding amplitude magnitude |V(ω1)| is
expressed by P, while |V(ω1) + 2π| is expressed by P1. Their
corresponding complex number V(ω) and V(ω + 2π) should
be added together according to Eq. (7). Otherwise, the
value |V| whose abscissa is ω1 + 2π in the interval (π,
3π] also equals to |V(ω1 + 2π)|, and it can be expressed
by Q1. Suppose that we cut down this strip of paper on
which the scaled analog spectrum in the interval (−π, π]
is drawn and stick it on a cylinder whose cross section is a
unit circle in the following way. Fix the origin of coordi-
nates (0,0) on a point of R on the cylinder, and make the
vertical coordinate direction parallel to the axis of the cy-
linder. Furthermore, place the horizontal coordinate ω
along the unit circle of the cylindrical cross section, which
is perpendicular to the ordinate axis. The value of the
horizontal coordinate ω is equal to the arc length from the
origin point to this abscissa point. Consequently, it is
equal to the angle between the vector OR and the vector
from the center of a unit circle O to this abscissa point.
For the purpose of clarity, the abscissa that is fixed on the
cylindrical surface is called circumferential coordinate,
and the ordinate is called axial coordinate. Obviously, this
paper just fully covers the cylinder surface because the
width of the paper along the horizontal axis is exactly 2π.
Next, choose the strip of paper on which the scaled analog
spectrum in the interval (−π, 3π] is drawn, and fix it on
the former paper in the same way to make them coincide
with each other. Suppose that the pieces of paper are
transplant, then the situation shown in Fig. 1b can appear,
and P1 overlaps together with Q1 by now.

Fig. 1 The derivation of the cylindrical surface spectrum: (a) digital signal spectrum obtained by shifting the analog spectrum and (b) the
cylindrical surface expression of the digital signal spectrum
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Thinking about the other terms in Eq. (7), we repeat
the above steps. The transparent piece of paper in the
interval ((2k − 1)π, (2k + 1)π] displays the amplitude mag-
nitude of V(ω + 2kπ), which is any term in Eq. (7). As the
value of k increases, the whole scaled analog spectrum
|V(ω)| can be continuously expressed on the cylindrical
surface. Therefore, the way of using a single curve and
twining the cylindrical surface many layers replaces the
way of using each shift term to represent the digital signal
spectrum. By now, the aliasing effect is shown by twining
the cylindrical surface with the same curve: more than
one axis coordinate which are not equal to zero appear on
the same circle coordinate of the curve. As a result of the
addition of their corresponding complex number value,
the shape of the digital spectrum is no longer similar with
the spectrum of the analog signal used for sampling.
As a three-dimensional space curve, the expression on

the cylindrical surface for the amplitude magnitude of
the scaled analog spectrum is a three-dimensional vector
type, and ω is used as its parameter.

r ωð Þ ¼ cosω; sinω; V ωð Þj j½ � ð8Þ
As we see from Eqs. (5) and (6), the scale analog

spectrum V(w) is proportional to the analog spectrum
U(f ). The spectrum on the cylindrical surface of the
sampled digital signal can be derived from the spectrum
of the analog signal directly. If we are only interested in
the position and shape of the spectrum, then

r fð Þ ¼ cos
2πf
f s

; sin
2πf
f s

; U fð Þj j
� �

ð9Þ

The following example can demonstrate it. Suppose
that an analog signal has the spectrum U(f ), as depicted

in Fig. 2a. Obviously, it contains a baseband signal
whose bandwidth of double sideband is B0 = 10KHz and
two modulating signals. Among the two modulating
signals, the carrier frequency and modulation band-
width of one is f1 = 20KHz, B1 = 5KHz, and of the other
is f2 = 40KHz, B2 = 8KHz. If the sampling frequency is
30 KHz, its spectrum on the cylindrical surface can be
drawn according to Eq. (9), as illustrated in Fig. 2b.
It can be seen from the figure above, at such sampling

rate, although in digital frequency domain, the two modu-
lating signals are separate from the baseband signal, they
overlaps and cannot be separated by filtering. We will
return back to use this example in the fourth section,
and use the arc distance of frequency band to obtain the
appropriate sampling rate, so as to separate the signals.
The meaning of Nyquist criterion is expressed by the

cylindrical surface spectrum in Fig. 3. What Fig. 3a ex-
presses is a baseband signal whose highest frequency is
below half the sampling frequency. Its cylindrical surface
spectrum is depicted in Fig. 3b. Because digital signal
spectrum cannot cover the whole cylindrical surface, there
will not be aliasing at this time. The same analog signal is
illustrated in Fig. 3c; however, the half sampling frequency
is below the highest frequency of the spectrum. Then the
digital spectrum enters into another cylindrical layer from
its original “layer”, consequently, the aliasing occurs, as
illustrated in phase 3D.

3 The arc distance between the digital signal
spectrum
As we can see from introducing the cylindrical surface
spectrum, after multiplying the horizontal axis f by a scale
factor 2πTs(Ts =1/fs is the sampling period), the scaled co-
ordinate axis obtained is twined around the unit circle as

Fig. 2 a The analog spectrum of a signal before sampling and b the cylindrical surface spectrum of the signal after sampling
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the cylindrical cross section, and we can also see it from
Eq. (6). Suppose that the analog frequency f2 > f1, then
their corresponding points on the unit circle are z1
¼ ej2π Isf 1 and z2 ¼ ej2πT sf 2 , respectively. Moreover, the arc
distance between the two points is defined as the absolute
value of the argument of the quotient of the two complex
numbers.

Dc ¼ arg z2=z1ð Þj j
¼ π mod 2T s f 2−f 1ð Þ þ 1; 2ð Þ−1j j

ð10Þ

To simplify the calculation, the arc length of the semi-
circle is served as the calculation unit, then the factor π at
the right most of the above equation can be eliminated.
Moreover, among the filter calculating functions in
MATLAB, it is used as the unit of the digital frequency.

The arc distance between the two digital frequencies
changes when their corresponding analog frequency dif-
ference changes, and the changing law is illustrated in
Fig. 4.
Now, we discuss the arc distance between the two

digital frequency bands. The arc distance between the
two frequency points has been defined in Eq. (10),
and the frequency band can be regarded as a set of
points inside the distance space. According to the
principle of set theory, suppose that there is any
point u1 ∈U1 and any point u2 ∈U2, the distance
between the two sets of points U1 and U2 is the
greatest lower bounding of the distance d(u1, u2) :
d(U1,U2) = inf{d(u1, u2) : u1 ∈U1, u2 ∈U2}. Suppose that
there are two analog signals, and their center fre-
quency are f01 and f02, and their bandwidth are B1

and B2,respectively. The corresponding arc distance of
the two center frequency is

Fig. 3 The Nyquist criterion described in cylindrical surface spectrum: (a) the analog spectrum of a baseband signal whose highest frequency is
lower than half of the sampling frequency; (b) the corresponding cylindrical surface spectrum of (a) after sampling; (c) the analog spectrum of a baseband
signal whose highest frequency is higher than half of the sampling frequency; (d) the corresponding cylindrical surface spectrum of (c) after sampling

Fig. 4 The relationship between the arc distance of the digital frequencies and the corresponding analog frequency difference of two signals
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Dc0 ¼ mod 2T s f 02−f 01ð Þ þ 1; 2½ �−1j j
¼ mod α0 þ 1; 2ð Þ−1j j

ð11Þ
Dc0(α0) has been depicted by dotted dash lines in Fig. 5.

Now, we take into account the arc distance between the
corresponding digital frequency of any point f01 + Δf1
and f02 + Δf2. They are in the interior of frequency band
1 and frequency band 2.

Dc¼ mod 2T s f 02 þ Δf 2−f 01−Δf 1ð Þ þ 1; 2½ �−1j j
¼ mod 2T s f 02−f 01ð Þ þ 2T s Δf 2−Δf 1ð Þ þ 1; 2½ �−1j j
¼ Dc0 α0 þ ξð Þ

ð12Þ
In the equation, ξ = 2Ts(Δf2 − Δf1). Let δ = Ts(B1 + B2),

obviously, − δ ≤ ξ ≤ δ.
That is to say, by shifting the arc distance function

Dc0(α0) of the center frequency a amount of ξ, the arc
distance between any two points inside the frequency
band can be obtained. Under the condition of − δ ≤ ξ ≤ δ,
change the value to obtain a curve family which moves
horizontally, as illustrated in the shaded area in Fig. 5.
For the given abscissa α0 = α1, the distance between the

frequency band is the minimum value between its corre-
sponding vertical coordinates (the point P in Fig. 5)
among the curve family. Change the abscissa α1 and to ob-
tain the function as expressed by a heavy line in Fig. 5,
and the heavy line is just the lower boundary of the shaded
area. The process is as follows: move Dc0(α0) down an
amount of δ and replace the negative value by zero.

DcB α0; δð Þ¼ max 0; mod α0 þ 1; 2ð Þ−1j j−δð Þ
¼ maxð0; jmod½2T s f 02−f 01ð Þ
þ1; 2�−1j−T s B1 þ B2ð ÞÞ

ð13Þ

4 Simulation and discussion of undersampling of
the narrow-band signal
As one application example, we will discuss the under-
sampling problem of the narrow-band signal. Suppose
that the carrier frequency of the narrow-band signal is
fc, the bandwidth is B, and the sampling period is Ts.
Then, α0 = 2Ts[fc − (−fc)] = 4Tsfc, δ = 2TsB. The arc dis-
tance between its two frequency bands which are mirror
symmetric is

Fig. 5 The arc distance between two digital frequency bands

Fig. 6 Searching of the arc distance peaks with the variation of f1TS
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DcB 4T sf c; 2T sBð Þ ¼ maxð0; jmodð4T sf c
þ1; 2Þ−1j−2T sBÞ

ð14Þ

Because the maximum value of the function DcB(α0, δ)
is 1 − δ, it must be positive-valued. Otherwise, DcB(α0, δ)≡0,
meaning that the two mirror frequency bands are al-
ways overlapping with each other, and it is impos-
sible to separate them. This request can be expressed as
δ = 2TsB < 1⇒ fs > 2B.
Because DcB(α0, δ) is a periodic function of α0, its area

which is greater than zero appears periodically on the α0
axis. Such kth area is( illustrated in Fig. 5)

2k þ δ < α0 < 2 k þ 1ð Þ−δ ð15Þ
The already known results can be derived from it.

k
2
f s þ

B
2
< f c <

k þ 1
2

f s−
B
2

ð16Þ

Let us go back to the example mentioned in the sec-
ond section. As can be seen in Eq. (13), the arc distance
between the frequency band is a function of five vari-
ables DcB(f01,B1, f02,B2,Ts). If the positive frequency bands
of the modulated signal whose center is f1 needs to be
extracted, we can calculate the distance between this

Fig. 7 The cylindrical surface spectrum (b) of a multiband signal (a) when the minimum arc distance is 0.155

Fig. 8 The cylindrical surface spectrum (b) of a multiband signal (a) when the minimum arc distance is 0.625
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frequency band and other four frequency bands. The
parameter x = f1 Ts is introduced to reflect the change of
the sampling period.

Dc1 ¼ DcB f 1; B1; f 2; B2; x=f 1ð Þ; Dc2

¼ DcB f 1; B1; 0; B0; x=f 1ð Þ;

Dc3 ¼ DcB f 1; B1; −f 2; B2; x=f 1ð Þ; Dc4

¼ DcB f 1; B1; −f 1; B1; x=f 1ð Þ;
In order to separate the frequency band f1 and other

four frequency bands, the minimum arc distance value
should be calculated.

DcB4 xð Þ ¼ min Dc1;Dc2;Dc3;Dc4ð Þ ð17Þ
Then, to find out the maximum value of Dc(x), the

parameter x should be varied.
The above-mentioned function is illustrated by the

solid line in Fig. 6. Its first extreme point appears when
x = 0.25, and its corresponding sampling frequency is
80KHz. This is close to the Nyquist frequency under the
literal meaning. Obviously, it is not the ideal choice. The
second extreme point appears when x = 0.41, and its cor-
responding sampling frequency is 48.7805 KHz. The
shortest arc distance between the frequency band expected
to extract and the other frequency bands is 0.155. At this
moment, the cylindrical surface spectrum is illustrated in
Fig. 7. As can be seen from the figure, the frequency band
f1 that is expected to extract has been separated from the
other frequency bands. If this frequency band needs to
be extracted, the quadrature demodulation must be con-
ducted, and then, it should pass the low-pass filter. The
shortest arc distance value 0.155 is the main basis which
determines the transition bandwidth of the filter.
The assumption above is that the signal spectrum does

not have the symmetry about the center frequency, mean-
ing that it contains the information of phase. In order to
obtain this information, the complex-valued signal needs
to be obtained firstly. However, if the frequency band f1 is
a simply modulated audio signal, then the spectrum has
the symmetry about the center frequency, that is to say,
the two mirror frequency bands can overlap together.
Thus, after removing the the arc distance between the sig-
nal band and its mirror frequency bands, the arc distance
in Eq. (17) turns out to be

DcB3 xð Þ ¼ min Dc1;Dc2;Dc3ð Þ ð18Þ
Its value with the change of x is illustrated by the dot-

ted line in Fig. 6. Its extremum value is 0.625, and its
corresponding sampling frequency is 40 KHz. The cylin-
drical surface spectrum of the signal is illustrated in Fig. 8.
At this moment, the demodulation will be very simple. In
order to rotate the frequency spectrum an angle of 180°,
the sequence only needs to be multiplied by 1 and −1

alternately. Then the low-pass filter should be used to deal
with the signal. Because the shortest arc distance of the
frequency band needed to be filtered is as big as 0.625, the
design of the filter will be very easy.

5 Conclusions
As can be seen from the discussion above, the cylindrical
surface spectrum reflects the periodicity of the digital
spectrum more naturally and intuitively. Consequently, it
becomes an effective and powerful tool in analyzing and
designing the sampling and processing problems of the
high-frequency signals. Obviously, they can help us form a
clear and intuitive point of view about such problems.
The cylindrical surface spectrum can better reflect the

existing operation of the digital signal processing such as
demodulation and filtering more simply. Moreover, it can
reflect the inner connection of all kinds of filtering charac-
teristics more effectively.
With the help of MATLAB, the translucent cylindrical

plotting becomes easy and workable, so it has the poten-
tial for popularizing. In addition, the concept of the arc
distance between the signal bands is very useful in the
sampling rate determination and the filter design.
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