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heterogeneous sensor networks based
on shearlet and wavelet transform
Ying Tong1,2* and Jin Chen1,2*

Abstract

Heterogeneous image fusion is a technique of fusing images captured by different sensors into one image,
then the fused image will present more information than the original images. This paper studies the compressive
sensing image fusion algorithm and applies shearlet and wavelet transforms to represent the image sparsely. By
compressing the sampled coefficients of the original images, the computational complexity in the image fusion
process is reduced and the fusion efficiency is improved. We focus on the image fusion rules of compressive domain.
Image coefficients of different frequencies are compressed by various sampling rates and fused according to different
fusion rules. So an ideal fusion results can be obtained under a low sampling rate.
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1 Introduction
Heterogeneous sensor networks consist of multimodal
sensors [1, 2] such as radar, optical, infrared, and acoustic.
Infrared and visible image fusion in heterogeneous sensor
networks is a hot research topic in the field of image pro-
cessing [3–6]. The advantages of infrared and visible band
imaging complement each other. The fused image con-
tains two bands of information, which is widely used in
visual monitoring, industrial testing, and many other fields
[7, 8]. With the rapid improvement of image sensor pro-
duction, high resolution cameras can show images quite
clearly, but it is really a challenge to transmit and store so
huge amount of image data. So in this paper, the image
fusion algorithm based on compressive sensing domain is
proposed [9, 10], which can reduce the amount of data
storage and transmission and meanwhile lower the
complexity of computation. So the overall system data
processing efficiency can be improved.

2 Image sparse representation
The commonly used image sparse representation
transforms are wavelet, curvelet, contourlet, and so

on [11–13]. Shearlet transform is a new transform de-
veloped in recent years, which has more advantages
than wavelet transform in high-dimensional data
sparse representation, since it can express the singu-
larity of space geometry much better [14, 15]. So we
use shearlet transform and wavelet transform succes-
sively for image sparse representation. The advantage
of this method is that it can combine the advantages
of two kinds of multi-resolution analysis tools in
image processing [16, 17] and increase the sparsity of
the signals further, so we can use less data to
complete the image fusion efficiently.
The original images can be decomposed into high-

frequency coefficients and low-frequency coefficients
after shearlet transform. Then, the coefficients will be
processed by wavelet transform separately and four dif-
ferent frequency components of the coefficients can be
obtained (shown in Fig. 1). The sparsity of different
components also shows a big difference. Based on the
sparsity of various frequency components, the coeffi-
cients are sampled at different sampling rates. Image
sparse representation model is shown in Fig. 1.
The sparsity of the low-frequency coefficients is rela-

tively low, so it is of little significance to compress the
wavelet low-frequency coefficients of shearlet low-
frequency components ( LL). Therefore, the LL
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components are not compressively sampled, but fused
directly. The wavelet low-frequency coefficients of shear-
let high-frequency components (LH) and the wavelet
high-frequency coefficients of shearlet low-frequency
components (HL) are sparser than LL components, so
they can be compressively sampled and fused in the
compressive sensing domain. The highest frequency
components are wavelet high-frequency coefficients of
shearlet high-frequency components (HH), which have
the largest sparsity, so they can be compressively sam-
pled with a lower sampling rate than the HL and LH
components.

3 Image fusion rules
The image fusion rule determines the retention degree
of each original image in the fused image. In this paper,
the fusion rules are designed for the components of dif-
ferent frequency coefficients after compression.
The low-frequency coefficients (LL components) rep-

resent the approximation of the original image. The
brightness and contrast of the fused image are mainly
determined by the fusion rules of the LL components.
The imaging effects of infrared and visible cameras are
quiet different, because of their different imaging
principle. In some environments which are favorable for
visible light imaging, the visible image has large amount
of information and the texture is rich while in the dark,
foggy environments, the infrared imaging has its advan-
tages of clear, stable and can indicate thermal informa-
tion. For this part of the low-frequency coefficients, the
local spatial frequency-based weighted fusion rule will
be suitable, that is, the image with rich local spatial in-
formation will be set to a larger weight in the fusion

process. Formula (1) shows the definition of local spatial
frequency.

RF x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m∈W ;n∈W

f xþm; yþ nð Þ−f xþm; y−1þ nð Þð Þ2
s

= w� wð Þ

ð1Þ

CF x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m∈W ;n∈W

f xþm; yþ nð Þ−f x−1þm; yþ nð Þð Þ2
s

= w� wð Þ

SF x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RF x; yð Þ2 þ CF x; yð Þ2

q

In the above formula, RF (x, y) represents the local
(in the window with the dimension of W ×W)) spatial
frequency of the pixel (x, y) in row direction, and CF
(x, y) represents the local spatial frequency in column
direction; SF (x, y) is the local spatial frequency of
the point (x, y).
The LH and HL image components correspond to the

boundary of the smooth part of the image. In order to
highlight the feature of the target region and ensure that
the local region with large energy can be clearly reflected
in the fused image, the fusion rule will be based on the
regional energy feature. The regional energy feature is
defined as follows:

E x; yð Þ ¼
X

m∈M;n∈N

f xþm; yþ nð Þð Þ2 ð2Þ

The fusion rule of the LH and HL components pays
much attention to retain the coefficients with large
regional energy, so it is defined as follows:

Fig. 1 The original image sparse representation model
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F x; yð Þ ¼ I x; yð Þ if EI x; yð Þ > EV x; yð Þ
V x; yð Þ if EV x; yð Þ > EI x; yð Þ

�
ð3Þ

The HH components are the highest frequency com-
ponents after decomposition, corresponding to the
image detail textures. So the fusion rule of these parts
will adopt the absolute maximum fusion rule so that the
fused image can keep rich texture information.

4 Experiment and data analysis
In order to verify the fusion effects of our algorithm,
two sets of infrared and visible images are selected to
perform experiments at different compressive sampling
rates. One group is the cup images taken close-up in-
door, and the other is the outdoor scene images taken in
the yard. Each set of images consists of strictly registered
infrared and visible images, and all the images are of the
size of 512 × 512 (shown in Fig. 2).
Figures 3 and 4 are composed of six graphs, in which

Fig. 3a and Fig. 4a are the fusion of the two original images
after shearlet and wavelet transforms without compressive
sampling, and the coefficients of each scale are fused ac-
cording to the rule of absolute maximum. Figure 3b and
Fig. 4b are the fused effects according to the fusion rule

proposed in the paper without compressive sampling. The
other figures in Figs. 3 and 4 use the principle of compres-
sive sensing to compress all the coefficients except LL com-
ponents. Among them, the coefficients of each layer in Fig.
3c and Fig. 4c are compressed to 300 pixels in each row
and each column, that is, the coefficients sampling rate is
58.6%; the coefficients of each layer in Fig. 3d and Fig. 4d
are compressed to 200 pixels in each row and each column,
the coefficients sampling rate is 39.0% while the coefficients
of each layer in Fig. 3e and Fig. 4e are compressed to 100
pixels in each row and each column, coefficient sampling
rate is 19.5%; Fig. 3f and Fig. 4f use different sampling rates
to compress HL, LH, and HH components. The sampling
rate of HL and LH components is 39.0%, while the sam-
pling rate of HH components is 19.5%, just the same as Fig.
3e and Fig. 4e.
From the subjective perception of the human eyes, the

fusion rule proposed in this paper can take into account
the advantages of two-band imaging, not only retains
the rich texture information of visible light images but
also the thermal information of infrared images, and the
image brightness is uniform.
While the sampling rates decrease gradually, the quality of

the fusion image shows a decreasing trend, which is mainly

Fig. 2 The original images for fusion, a Infrared image of Cup, b Visible image of Cup, c Infrared image of Yard d Visible image of Yard
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manifested in the blurring of the texture detail. In particular,
the clarity of Fig. 3e and Fig. 4e drops a lot compared with
Fig. 3c, d and Fig. 4c, d. But there is little difference between
Fig. 3f, Fig. 4f and Fig. 3d, Fig. 4d because the sampling rate
of Fig. f is different for different frequency components.
Piella method is an authoritative fusion image evalu-

ation method. Q, QW, and QE are used to evaluate the
image fusion performance [18]. Q is the fusion quality

index, QW is the weighted fusion quality index, and QE

is the edge-dependent fusion quality index. The range of
the index is in [−1, 1], the closer to 1, the better the fu-
sion effect. We use the Piella parameters to evaluate the
performance of our algorithm. The results are shown in
Table 1.
It can be concluded from the Piella parameters that

the fusion method proposed in this paper has good

Fig. 3 The fusion effects of cup a The absolute maximum fusion rule, sampling rate =100%, b The proposed fusion rule, sampling rate =100%,
c The proposed fusion rule, sampling rate =58.6%, d The proposed fusion rule, sampling rate =39.0%, e The proposed fusion rule, sampling
rate =19.5%, f The proposed fusion rule, different sampling rate for different components

Fig. 4 The fusion effects of yard a The absolute maximum fusion rule, sampling rate =100%, b The proposed fusion rule, sampling rate =100%,
c The proposed fusion rule, sampling rate =58.6%, d The proposed fusion rule, sampling rate =39.0%, e The proposed fusion rule, sampling
rate =19.5%, f The proposed fusion rule, different sampling rate for different components
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image fusion effects, especially in the edge processing of
the fused images. With the decrease of the image com-
pressive rates, the image fusion effects decrease signifi-
cantly, which is consistent with the subjective feelings of
human eyes. The evaluation parameters of Fig. e vary a
lot with that of Fig. d, since the sampling rate of Fig. e is
quite low. Figure f uses different sampling rates for
different frequency components, and its evaluation result
is very close to Fig. d. So it can be explained that using
different sampling rates and fusion rules for different
frequency components is a good balance between fusion
effects and image compressive ratio.

5 Conclusions
An image fusion algorithm in heterogeneous sensor net-
works of compressive sensing domain is proposed.
Shearlet transform and wavelet transform are used suc-
cessively to sparse represent the infrared and visible im-
ages, which can increase the signal sparsity obviously.
Experiments show that the proposed algorithm can
achieve a good balance between the fusion effects and
the amount of data processing, because different sam-
pling rates and fusion rules are applied to different
frequency components of coefficients.
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Table 1 Image fusion objective evaluation parameters of the
two sets of images

a b c d e f

Cup

Q 0.4893 0.5007 0.3323 0.2785 0.2010 0.2590

Qw 0.7054 0.7566 0.7195 0.6974 0.6495 0.6756

QE 0.1485 0.1939 0.1353 0.1148 0.0808 0.1071

Yard

Q 0.7637 0.7714 0.5933 0.4851 0.2984 0.4388

Qw 0.9163 0.9164 0.8720 0.8044 0.5839 0.7631

QE 0.4136 0.4225 0.3052 0.2248 0.0850 0.1838
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