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Abstract

This paper addresses the self-interference (SI) cancellation at baseband for full-duplex MIMO communication systems
in consideration of practical transmitter imperfections. In particular, we develop a subspace-based algorithm to jointly
estimate the SI and intended channels and the nonlinear distortions. By exploiting the covariance and
pseudo-covariance of the received signal, we can increase the dimension of the received signal subspace while
keeping the dimension of the signal subspace constant, and hence, the proposed algorithm can be applied to most
of full-duplex MIMO configurations with arbitrary numbers of transmit and receive antennas. The channel coefficients
are estimated, up to an ambiguity term, without any knowledge of the intended signal. A joint detection and
ambiguity identification scheme is proposed. Simulation results show that the proposed algorithm can properly
estimate the channel with only one pilot symbol and offers superior SI cancellation performance.

Keywords: Full-duplex communication, SI suppression, MIMO, parameter estimation, Subspace method,
Second-order statistics

1 Introduction
Half-duplex transmission is commonly used in the current
communication systems by transmitting and receiving
over orthogonal channels. Full-duplex communication
represents an attractive alternative to save channel
resources or to increase the transmission efficiency. The
main deterrent to employ full-duplex is the large self-
interference (SI) from the simultaneous transmission and
reception over the same frequency band. The SI is usually
several orders of magnitude higher than the intended sig-
nal received from the other transmitter, because the later
travels a longer distance than the former signal. Recent
works have shown that, using different cancellation stages,
the SI can be sufficiently suppressed to properly detect the
intended signal [1, 2].
The SI is first cancelled at the radio-frequency (RF)

level, prior to the low-noise amplifier (LNA) and the
analog-to-digital converter (ADC), to avoid overload-
ing/saturation of these devices [1–3]. In other words, the
SI should be sufficiently suppressed at RF to maintain the
receiver’s limited dynamic range. Then, further SI sup-
pression can be done after the ADC at the baseband [4, 5].
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In the following, we assume that a cancellation stage at RF
is available and we concentrate on the SI cancellation in
the baseband.
To further reduce the SI, channel state information of

the interference link should be available. Therefore, esti-
mating the SI channel is a critical issue in full-duplex
systems. In [6], the SI channel estimation is performed in
the frequency domain using a least square (LS) technique.
LS and minimum mean square error (MMSE) channel
estimations are proposed in [7] to estimate the SI chan-
nel in the relay station. However, these approaches ignore
the intended signal coming from the other transceiver and
treat it as additive noise. An adaptive least mean square
algorithm to estimate the SI channel is proposed in [8]
where the large SI compared to the intended signal and
additive noise is exploited to obtain an estimate of the SI
channel. A more elaborate LS-based estimator was pre-
sented in [9] where a first estimate of the SI channel is
obtained by considering the intended signal as additive
noise. Then an iterative detection of the intended signal
and channel estimation is performed to obtain a better
estimate of the channel. On the other hand, spatial domain
cancellation attempts to reduce the SI by precoding at the
transmit chain and decoding at the receive chain. Spa-
tial domain cancellation is formulated in the frequency
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domain [10–12]. An alternative time domain formulation
was presented in [13] by precoding the transmitted SI to
coincide with the null space of the SI channel. These tech-
niques are based on the knowledge of both the SI and
intended channels at the two transceivers, which further
motivates the development of channel estimators for full-
duplex systems. A novel cancellation method is proposed
in [14] by adding a cancelling signal to the original signal.
In addition to the SI channel information for SI cancella-

tion, intended channel knowledge is an important prereq-
uisite for signal detection. Motivated by this fact, channel
estimation has been the subject of intense research. In
the case of data-aided transmissions, training-based tech-
niques can be applied [15, 16]. However, the amount of
training increases dramatically with the number of anten-
nas and channel order. Blind approaches have been pro-
posed as more bandwidth efficient techniques [17, 18]
where subspacemethods, initially presented in [19], have a
great potential. By decomposing the covariance matrix of
the received signal, subspace methods exploit the orthog-
onality between the noise and the signal subspaces in the
observation space to express the channel coefficients as
a linear combination of a basis of the signal subspace.
Although previous researches have shown the potential
of this procedure to give an accurate estimate of the
channel, it remains of limited practical interest. Actually,
considering that the noise subspace needs to be nonde-
generated, it is legitimate to wonder how we can satisfy
this condition. Previous works rely on oversampling of the
received signal or using more receive antennas than trans-
mit antennas [20, 21]. However, such solutions increase
the receiver cost and need additional hardware. More-
over, they may result in correlated noise which makes the
subspace technique inappropriate. Amaximum likelihood
estimator was presented in [22] by exploiting the pilots in
the intended signal.
In the full-duplex context, the transmitter impair-

ments, including power amplifier (PA) nonlinearity and
IQ mixer imbalance, become limiting factors and need
to be reduced to properly detect the intended signal. In
practice, the inband image resulting from the IQ mixer in
mobile user is about 28 dB lower than the direct signal
[23]. In the presence of strong SI of about 50 dB higher
than the intended signal, this IQ image represents addi-
tional interference for the intended signal. The effects
of transceiver impairments are illustrated in detail in
[3, 24]. Due to the importance of the nonlinearities, a dig-
ital cancellation procedure has been proposed to reduce
the effects of the PA in [25] by estimating the nonlin-
ear coefficients of the PA and another algorithm has
been proposed to deal with the IQ mixer imbalance [26].
However, there is no discussion about the intended sig-
nal in the existing literature, which limits the estimation
performance if it is considered as additive noise.

In this work, we incorporate the intended signal in
the estimation process. We also take into account the
transmitter impairments when modelling the SI signal.
For realistic multipath propagation channels, we need to
estimate the SI channel, the intended channel and the dis-
torted SI. And noting that the intended signal is unknown,
we propose to use a novel subspace method to efficiently
estimate the different parameters. Since the received sig-
nal consists of the SI and intended signals, the dimension
of the signal subspace in full-duplex operation is at least
twice that in traditional half-duplex operation [5, 27].
Thus an essential shortcoming of the existing subspace-
based technique is that it can be applied only when the
number of receive antennas is larger than the number of
transmit antennas. In the following, we circumvent this
condition and develop a subspace-based algorithm suit-
able for MIMO full-duplex systems with larger or equal
numbers of transmit and receive antennas. We exploit
both the covariance and pseudo-covariance matrices of
the received signal to effectively increase the dimension
of the observation space while keeping the dimension of
the signal subspace unchanged. The joint processing of
the received signal and its complex conjugates has been
used inmanyworks to improve the detection performance
on various systems [28, 29]. Also, in an entirely differ-
ent context, the improper property of the received signal
was first exploited for channel identification in [30] to
obtain a virtual SIMO model from a SISO one. Prelimi-
nary results can be found in [31] for real-valued symbols
to enable the application of widely linear processing tech-
niques, but entail a loss in spectral efficiency compared
to complex-valued symbols. We propose in this paper a
method to use the widely linear processing to complex
symbols by forcing the transmit signal to be improper.
We justify the advocated time domain approach and com-
pare its performances to a frequency domain approach
and we generalize the PA model to any nonlinearity order.
In practice, we cannot blindly recover the channel coeffi-
cients since an ambiguity term always appears in the final
estimate [5]. This ambiguity is resolved using a sequence
of pilot symbols, considerably shorter than needed in
training-based techniques. In the following, we propose a
joint data detection and estimation of the ambiguity term
to considerably reduce the length of the pilot sequence.
We show through simulation that just one pilot symbol is
sufficient to perfectly estimate the channel.
The paper is organized as follows. In Section 2, the

full-duplex system model is presented. The subspace-
based channel estimation is described in Section 3. In
Section 4, we describe the joint decoding and ambigu-
ity removal procedure. Illustrative simulation results are
given in Section 5 and Section 6 presents the conclusion.
Notations commonly used in this paper are presented.

Subscripts (·)∗, (·)T , and (·)H refer to conjugate, transpose
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and conjugate transpose for matrices or vectors, respec-
tively. For a given vector x, diag(x) returns a diagonal
matrix whose diagonal elements are the entries of x.
rank(M) returns the rank of a given matrix M, det(M)

returns the determinant of M and vect(M) stacks the
columns ofM into one vector. The operator⊗ refers to the
Kronecker product of two matrices. �(·) and �(·) return
the real and imaginary parts of complex numbers. E(·)
denotes the mathematical expectation. || · ||2 returns the
Euclidean norm of a vector. Ip refers to the p × p identity
matrix and 1p the p × 1 vector with 1 at all elements. A
term accented by a hat, x̂, means an estimate of x.

2 Full-duplex MIMO systemmodel
Consider two transceivers communicating in a full-duplex
fashion. The simultaneous transmission and reception
creates self-interference (SI) to be cancelled before the
demodulation process. The SI signal is first suppressed at
RF, prior to the low-noise amplifier (LNA) and analog-to-
digital converter (ADC) to avoid overloading/saturation of
these components [2, 3, 32]. In [5], we proposed an effi-
cient compressed-sensing (CS)-based algorithm for the
RF SI cancellation stage. In this work, we concentrate on
the development of subspace-based algorithm to jointly
estimate the SI and intended channels and the nonlin-
ear distortions for the baseband SI cancellation stage of a
full-duplex MIMO transceiver with arbitrary numbers of
transmit and receive antennas. The output signal of the
RF SI cancellation stage consists of the residual SI, the
intended signal received from the other transceiver and
the additive thermal noise. Figure 1 shows a simplified
block diagram of a MIMO transceiver. The residual SI can
be further suppressed at the baseband after ADC using
digital signal processing (DSP). The advantage of working
in the digital domain, as compared to RF, is that sophisti-
cated DSP methods can be handled. Both transceivers are
equipped with Nt transmitting antennas and Nr receiving
antennas. At transmitting antenna q, a group of N data
symbols Xq =[Xq(0), . . . , Xq(N − 1)]T is first modulated
by the IFFTmatrix to form an OFDM block, then the time
domain vector xq =[xq(0), . . . , xq(N − 1)]T is extended
by the cyclic prefix of length1 Ncp and the resulting vector
is sent sequentially. In the transmit stream q, the complex
signal xq(t) after the digital-to-analog conversion (DAC),
is passed through an imbalance IQ mixer whose output is
as follows:

xIQq (t) = k1,qxq(t) + k2,qx∗
q(t), (1)

where k1,q and k2,q are the responses of the IQ mixer at
antenna q to the direct signal and the image, respectively.
Then, the signal is amplified with a nonlinear PA. In the

Fig. 1 Simplified block diagram of the full-duplex transceiver with RF
and baseband SI cancellation stages

following, we model the PA response with a Hammerstein
model whose response is:

xPAq (t) =
⎛

⎝

P
∑

p=0
α2p+1,qxIQq (t)|xIQq (t)|2p

⎞

⎠ � f (t), (2)

where α2p+1,q, for p = 0, . . . , P, are the nonlinearity
coefficients of the PA at transmit antenna q, P is the non-
linearity order and f (t) is the memory of the PA. In (2),
� denotes the convolution operator. The transmitted sig-
nal is coupled to produce SI in the receiver. Considering
multipath channels, the received signal at antenna r is as
follows:

yantr (t)=
Nt
∑

q=1
hcr,q(t)�x

PA
q (t)+

Nt
∑

q=1
hsr,q(t)� sq(t)+wth,r(t),

(3)

where sq(t) is the transmitted signal from the qth antenna
of the other intended transceiver. hcr,q(t) is the response of
the SI channel from transmitting antenna q to receiving
antenna r of the same transceiver. hsr,q(t) is the response of
the intended channel from transmitting antenna q of the
other intended transceiver to receiving antenna r of the
same transceiver. wth,r(t) is the additive thermal noise in
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Rx stream r. To reduce the SI before the LNA and ADC,
the RF cancellation stage is performed as follows:

yRFr (t) = yantr (t) −
Nt
∑

q=1

̂hcr,q(t) � xPAq (t), (4)

where ̂hcr,q(t) is a first estimate of the SI channel [1, 6].
̂hcr,q(t) is used to adjust the phase, amplitude and delay of
the SI to the main propagation path. To include the trans-
mitter distortion in the RF cancellation process, the ref-
erence signal is taken from the output of the PA. This RF
SI cancellation can attenuate the SI by 30 dB, as reported
in practical experiments [6, 33]. Then, the received signal
passes through the LNA:

yLNA
r (t) = kLNAyRFr (t) + wLNA(t), (5)

where wLNA(t) is the additive noise caused by the LNA
and kLNA is the gain of the LNA. Finally, the received sig-
nal is adjusted by the variable gain amplifier (VGA) to
match the dynamic range of the ADC. For simplicity, we
suppose that the linear gains k1,q and α1,q of the IQ mixer
and PA are equal to 1. Combining (2), (3) and (5), the
received samples are given by

yr(n) =
Nt
∑

q=1

L
∑

l=0
h(i)
r,q(l)xIQq (n − l) +

P
∑

p=1
α2p+1,qh(i)

r,q(l)xq,ip,p(n − l)

+ h(s)
r,q(l)sq(n − l) + wr(n),

(6)

where xq,ip,p(n) = xIQq (n)|xIQq (n)|2p resulting from the
cascade of IQ mismatch and PA (2p + 1)rd order non-
linearity and wr(n) collects the thermal noise, the LNA
noise and the quantization noise. In (6), the global channel
responses are given by

h(i)
r,q(l) = kLNA(hcr,q(l) � f (l) −̂hcr,q(l)),

h(s)
r,q(l) = kLNAhsr,q(l). (7)

To have a homogeneous notation, all channels are sup-
posed to have the same order L and the channels of order
lower than L are zero-padded so that the different chan-
nels have the same order and L still satisfies L < Ncp. The
received vector y(n) = [y1(n), . . . , yNr (n)]T over the Nr
antennas is given by

y(n) =
Nt
∑

q=1

L
∑

l=0
h(i)
q (l)xIQq (n − l) +

P
∑

p=1
α2p+1,qh(i)

q (l)xq,ip,p(n − l)

+ h(s)
q (l)sq(n − l) + w(n),

(8)

where

h(i)
q (l) = [h(i)

1,q(l), h
(i)
2,q(l), . . . , h

(i)
Nr ,q(l)]

T ,

h(s)
q (l) = [h(s)

1,q(l), h
(s)
2,q(l), . . . , h

(s)
Nr ,q(l)]

T , (9)

for l = 0, 1, . . . , L and w(n) = [w1(n), w2(n), . . . ,
wNr (n)]T . For a more compact representation, we gather
the transmitted signals from the Nt antennas to obtain

y(n) =
L

∑

l=0
H(i)(l)x(n−l)+H(s)(l)s(n−l)+w(n), (10)

where theNr×Nt matricesH(i)(l) andH(s)(l) are given by

H(i)(l) =[h(i)
1 (l), h(i)

2 (l), . . . , h(i)
Nt

(l)] ,

H(s)(l) =[h(s)
1 (l), h(s)

2 (l), . . . , h(s)
Nt

(l)] , (11)

for l = 0, . . . , L and

xi(n) = [ x1(n), x2(n), . . . , xNt (n)]T ,

xdist(n) =
⎡

⎣k2,1x∗
1(n) +

P
∑

p=1
α2p+1,1x1,ip,p(n), . . . , k2,Nt x∗

Nt (n)

+
P

∑

p=1
α2p+1,Nt xNt ,ip,p(n)

⎤

⎦

T

,

x(n) = xi(n) + xdist(n),

s(n) =[s1(n), s2(n), . . . , sNt (n)]T .
(12)

We then group the channel matrices H(i)(l) and H(s)(l)
in oneNr×2Nt matrixH(l) = [H(i)(l), H(s)(l)] and gather
all the channel coefficients in the following NrM × 2NtN
block Toeplitz matrix:

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

H(0) 0 . . . 0 H(L) . . . H(1)

H(1) H(0)
. . .

...
... H(1)

. . . H(L)

H(L)
...

. . . 0
H(L) H(0)

0
. . . H(1)

...
. . .

...

0 . . . 0 H(L)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (13)

The received OFDM block on the Nr antennas is:

y = [yT (0), yT (1), . . . , yT (M − 1)]T = Hu + w, (14)

whereM = N + L, the 2NtN × 1 data vector u is given by

u = [xT (0), sT (0), . . . , xT (N − 1), sT (N − 1)]T , (15)

and

w = [wT (0), wT (1), . . . , wT (M − 1)]T . (16)

For multi-block transmission, the received vector in (14)
is indexed by the block number t, i.e., yt . For convenience,
we omit this indexation and we will consider later a given
number of transmitted blocks to compute the covariance
matrix of the received vector.
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3 Subspace-based channel estimator
Wepropose to apply a subspace-based algorithm to jointly
estimate the SI and intended channel coefficients along
with the nonlinear coefficients. Subspace methods rely on
the orthogonality property between the signal and noise
subspaces. These two subspaces are obtained from eigen-
decomposition of the covariance matrix of the received
signal y. Denoting by Ru, the covariance of u, the covari-
ance matrix Ry of the received vector y is given by

Ry = HRuHH + σ 2IMNr , (17)

as long as the signal samples are uncorrelated from the
noise samples2.
The signal subspace is spanned by the columns of the

matrix H. Noting that the columns of H are, by con-
struction, linearly independent as soon as there exists an
l ∈ [0, L] such that H(l) is full rank3, the matrix H is a
full-rank matrix. Therefore, the dimension of the signal
subspace is 2NNt . It follows that, to obtain a nondegen-
erate noise subspace, its dimension NrM − 2NtN should
be larger than zero, and thus, the number of receiving
antennas should be larger than the number of transmitting
antennas to make the subspace method work, and in [5],
we developed the linear subspace algorithm for this set-
ting. In the following, we will develop the subspace-based
algorithm for general numbers of transmit and receive
antennas.WhenNt = Nr , thematrixRy cannot be directly
used to find the noise subspace. As an alternative different
approach, we consider the augmented received vector as

ỹ =
(

y
y∗

)

=
(

H 0
0 H∗

)(

u
u∗

)

+
(

w
w∗

)

. (18)

The use of the augmented received vector is usually
referred as widely linear processing. In this case, the
augmented covariance matrix R̃y of ỹ has the following
structure:

R̃y = ˜HRũ˜H
H + σ 2I2MNr , (19)

where Rũ denotes the covariance matrix of the augmented

transmit signal ũ =
(

u
u∗

)

and

˜H =
(

H 0
0 H∗

)

. (20)

It is worth mentioning that the proper noise has a van-
ishing pseudo-covariance [34]. The main purpose of using
the extended received signal is to increase the dimension
of the received signal and thus avoid the degenerate noise
subspace. Hence, the subspace identification procedure
can be derived only if the signal part covariance matrix,
given by ˜HRũ˜H

H , of the covariance matrix R̃y is singular.
It results that ds = rank(˜HRũ˜H

H
) < 2MNr . In this case,

the signal is confined in a ds-dimensional subspace and the
remaining noise subspace is with dimension 2MNr − ds.

Singularity of Rũ is a necessary condition to obtain a non-
degenerate noise subspace. Actually, noting that ˜H is full
rank, nonsingular Rũ results in rank(˜HRũ˜H

H
) = 2MNr ,

and thus, the matrix ˜HRũ˜H
H spans all the observation

space. On the other hand, since the matrix ˜H is a tall
matrix, singularity of Rũ is not a sufficient condition to
guarantee the singularity of ˜HRũ˜H

H .
The matrix Rũ can be expressed in a block form in

terms of the covariance matrix of u, Ru = E(uuH),
the pseudo-covariance matrix Cu = E(uuT ) and their
complex conjugates as

Rũ =
(

Ru Cu
C∗
u R∗

u

)

. (21)

In the following, we distinguish two cases of real and
complex modulated symbols.
For real modulated symbols, it can be shown that Rũ =

α2M ⊗ I2Nt with the 2N × 2N matrix M having the
following form:

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 . . . 0 1 0 . . . 0

0
. . . 0 1

...
. . .

... . .
.

0 . . . 0 1 0 1 . . . 0
1 0 . . . 0 1 0 . . . 0

0 1 0
. . .

... . .
. ...

. . .

0 1 . . . 0 0 . . . 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (22)

From (22), we note that each column of M appears
exactly two times (the first column ofM is the same as the
(N + 1)th column, and the ith column ofM is the same as
the (2N−i+2)th column, for i = 2, . . . , N). Therefore, the
matrix M has exactly N-independent columns and thus
its rank is N. It follows that the rank of Rũ is 2NNt . In
Appendix 1, we show that Rũ has zero eigenvalue with
multiplicity 2NNt and 2α2 also with multiplicity 2NNt .
Then, the matrix Rũ is decomposed as UDUH where D is
the 4NNt × 4NNt diagonal matrix with zeroes in the first
2NNt diagonal elements and 2α2 in the last 2NNt diagonal
elements and U is an orthogonal matrix whose columns
are the corresponding eigenvectors of Rũ.
For complex symbols, the pseudo-covariance matrix Cu

is generally equal to the zero matrix, which makes the
matrix Rũ of full rank. To avoid this problem, we apply a
simple precoding at the input of the IFFT. It transforms
the data symbol Xq to

˜Xq = PXq + QX∗
q. (23)

where P and Q are two matrices. By combining the
data symbol Xq and its complex conjugate, we force
the pseudo-covariance matrix to be different from zero.
Appendix 2 gives a detailed discussion about the choice of
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the matrices P andQ so that the covariance matrix Rũ has
rank 2NNt and can be decomposed as UDUH with D as
the 4NNt × 4NNt diagonal matrix with zeroes in the first
2NNt diagonal elements.
The noise subspace is the span of the p = 2MNr −2NNt

eigenvectors of R̃y corresponding to the smallest eigen-
value σ 2, and the columns of ˜HRũ˜H

H belong to the signal
subspace. Due to the orthogonality between the signal and
the noise subspaces, each column of ˜HRũ˜H

H is orthogo-
nal to any vector in the noise subspace. Let {νi}pi=1 denote
the p co-orthogonal eigenvectors corresponding to the
smallest eigenvalue of R̃y. Then we have the following set
of equations:

νHi ˜HRũ˜H
H = 0, i = 1, 2, . . . , p. (24)

From (24), we conclude that νi spans the left null space
of ˜HRũ˜H

H . For convenience, U is written as a block of 4
2NNt × 2NNt matrices:

U =
(

U1 U2
U3 U4

)

, (25)

where the columns of [UT
1 , U

T
3 ]T are the eigenvectors of

Rũ corresponding to the eigenvalue zero and the columns
of [UT

2 , UT
4 ]T are the other eigenvectors. Then, taking

into account the eigenvalue decomposition of Rũ, the set
of equations in (24) are equivalent to

νHi

(

HU2
H∗U4

)

= 0, i = 1, 2, . . . , p. (26)

By dividing νi into two MNr × 1 vectors, i.e., νi =
[ νTi,1, νTi,2]T , (26) is rewritten as

νHi,1HU2 + νHi,2H
∗U4 = 0, (27)

for i = 1, 2, . . . , p. The matrix H is completely defined by
the set of matricesH(l), for l = 0, 1, . . . , L. Therefore, the
specific structure ofH should be taken into consideration
when solving the equations in (27) to obtain a more accu-
rate estimate of the channels. To that end, we divide the
two vectors νi,1 and νi,2 as follows:

νi,j =
[

νTi,j(M), νTi,j(M − 1), . . . , νTi,j(1)
]T

,

j = 1, 2, i = 1, 2, . . . , p,
(28)

where each νi,j(n), for n = 1, 2, . . . , M, is a Nr × 1 vector.
From (13) and (28), each term νHi,1H in (27) is rewritten as

L
∑

l=0
νHi,1(n + L − l)H(l) +

L
∑

l=n
νHi,1(M − l + n)H(l),

for n = 1, . . . , L,
L

∑

l=0
νHi,1(n + L − l)H(l), for n = L + 1, . . . , M,

(29)

and νHi,2H
∗ can also be partitioned in the same manner.

By introducing ȟ(l) = vect(H(l)) and V i,j(n) = I2Nt ⊗
νHi,j(n), for i = 1, . . . , p and j = 1, 2, it is easy to verify

that νHi,j(n)H(l) = ȟ
T
(l)VT

i,j(n). Let us denote the 2NNt ×
2NtNr(L + 1) matrices V i,j, for j = 1, 2, as

V i,j =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

V i,j(L + 1) V i,j(L) . . . V i,j(1)
V i,j(L + 2) V i,j(L + 1) . . . V i,j(2)
V i,j(L + 3) V i,j(L + 2) . . . V i,j(3)
...

...
...

...

V i,j(N + L) V i,j(N + L − 1) . . . V i,j(N)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 V i,j(N + L) . . . V i,j(N + 1)
. . .

...
... V i,j(N + L)
... 0

...

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(30)

and ȟ =[ ȟ
T
(0), ȟ

T
(1), . . . , ȟ

T
(L)]T . Then, using the

previous notations, (27) is rearranged to obtain

ȟ
T
VT

i,1U2 + ȟ
H
VT

i,2U4 = 0, (31)

or, by taking the transpose of the previous equation:

UT
2 V i,1ȟ + UT

4 V i,2ȟ
∗ = 0, (32)

for i = 1, 2, . . . , p. Note that the difference between (27)
and (32) is that (32) takes into account the Toeplitz blocks
structure ofH. Now, collecting all the previous equations,
we obtain

�1ȟ + �2ȟ
∗ = 0, (33)

where

�1 =
[

(

UT
2 V 1,1

)T
,

(

UT
2 V 2,1

)T
, . . . ,

(

UT
2 Vp,1

)T
]T

,

�2 =
[

(

UT
4 V 1,2

)T
,

(

UT
4 V 2,2

)T
, . . . ,

(

UT
4 Vp,2

)T
]T

.

(34)

Separating the real and imaginary parts of (33), we have
( �(�1 + �2) �(−�1 + �2)

�(�1 + �2) �(�1 − �2)

)

︸ ︷︷ ︸

�

(

�(ȟ)

�(ȟ)

)

︸ ︷︷ ︸

h

= 0. (35)

From (35), the vector h belongs to the right null space
of �. In practice, h is a linear combination of the 4NtNr
right singular vectors of the matrix �, denoted by β i,
which are equal to the eigenvector of the Gramian ��

H
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corresponding to the zero eigenvalue. Therefore, an esti-
mate of h is given by

̂h = �c, (36)

where � =[β1, β2, . . . , β4NtNr ], and the 4NtNr × 1 vec-
tor c represents the ambiguity term to be estimated. The
complex channel vector can also be obtained as

̂ȟ = �c, (37)

where � is obtained by combining the lines of � in the
following way:

� =
(

�real
�imag

)

→ � = �real + j�imag , (38)

and j is the complex number satisfying j2 = −1.
Wemention that the matricesU2 andU4 do not depend

on the received signal and can be computed offline prior
to the transmission. It is also seen that the overestimated
channel order L does not affect the estimation process.
This is a common property with other subspace-based
estimators [17].

4 Resolving the ambiguity term
As mentioned above, the subspace that contains the
channels is obtained and the ambiguity term needs to
be estimated to extract the exact coefficients. Different
approaches can be applied to solve the ambiguity term
c. To do so, we highlight the contribution of c on the
received vector y. First, we separate the matrix � in two
NtNr(L + 1) × 4NtNr matrices �i and �s which con-
tribute in the SI and intended channels, respectively

(

i.e.,
ȟ

(i) = �ic and ȟ
(s) = �sc

)

. By rearranging the elements
of �i as

�i=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�i,1(0)
�i,2(0)
...

�i,Nt (0)
...

�i,1(L)

�i,2(L)
...

�i,Nt (L)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

→ �̌i=

⎛

⎜

⎜

⎜

⎝

�i,1(0) . . . �i,Nt (0)
�i,1(1) . . . �i,Nt (1)
...

...

�i,1(L) . . . �i,Nt (L)

⎞

⎟

⎟

⎟

⎠

,

(39)

where each �i,q(l) is a Nr × 4NtNr matrix, Ȟ
(i) =

[H(i)T (0), H(i)T (1), . . . , H(i)T (L)]T can be written as

Ȟ
(i) = �̌i(INt ⊗ c), (40)

and Ȟ
(s) =[H(s)T (0), H(s)T (1), . . . , H(s)T (L)]T can be

also written as Ȟ
(s) = �̌s(INt ⊗ c), where �̌s is defined

in the same way as �̌i. Ȟ
(i)

and �̌i are used to build the
matrices H(i) and � i, respectively, having the same block
structure as H in (13).
Next, we define the diagonal matrices K and Ap whose

diagonal elements are k =[ k2,1, . . . , k2,Nt ]T and αp =
[α2p+1,1, . . . , α2p+1,Nt ]T , respectively, and we denote
by xip,p(n) =[ x1,ip,p(n), . . . , xNt ,ip,p(n)]T , and xip,p =
[ xTip,p(0), . . . , xTip,p(N −1)]T . Using the previous notations
and by developing x = xi + (IN ⊗ K)x∗

i + ∑P
p=1(IN ⊗

Ap)xip,p in terms of the transmitter impairments, one can
express the received signal in (14) as

y = � i(INNt ⊗ c)
︸ ︷︷ ︸

H(i)

x + �s(INNt ⊗ c)
︸ ︷︷ ︸

H(s)

s + w,

= � i(INNt ⊗ c)

⎛

⎝xi + (IN ⊗ K)x∗
i +

P
∑

p=1
(IN ⊗ Ap)xip,p

⎞

⎠

+ �s(INNt ⊗ c)s + w,
(41)

where �s and H(s) are defined in the same way as � i and
H(i), respectively, and s =[ sT (0), . . . , sT (N − 1)]T . After
some manipulations, one can easily verify that (INNt ⊗
c)xi = (xi⊗I4NtNr )c and (INNt ⊗c)s = (s⊗I4NtNr )c. Then,
the received vector in (41) is rewritten as

y = � i

⎛

⎝

⎛

⎝xi + (IN ⊗ K) x∗
i +

P
∑

p=1

(

IN ⊗ Ap
)

xip,p

⎞

⎠ ⊗ I4NtNr

⎞

⎠ c

+ �s
(

s ⊗ I4NtNr

)

c + w.
(42)

In (42), the received vector y is expressed as a linear
function of the unknown vector c. This formulationmakes
the estimation of c more tractable. While the transmit-
ted SI is known, the distorted parts (IN ⊗ Ap)xip,p and
(IN ⊗ K)x∗

i of the SI from the cascade of the IQ mixer
and PA need to be estimated. We begin by writing the fol-
lowing cost function f (c, s,K ,Ap) = ||y − � i((xi + (IN ⊗
K)x∗

i +
∑P

p=1(IN ⊗Ap)xip,p)⊗I4NtNr )c−�s(s⊗I4NtNr )c||2
depending on c, K , Ap (for p = 1, . . . , P) and s. Given
an initial estimate ĉ of c, the minimization of f (̂c, s,K ,Ap)
with respect to s, K and Ap can be recast as a least square
(LS) problem. Then, using the solutions ŝ, ̂K and ̂Ap, we
minimize f (c, ŝ,̂K ,̂Ap) with respect to c. We iterate this
procedure until the estimated parameters converge. An
initial estimate of c is obtained using the LS criteria as

ĉ0 = (� i(xi ⊗ I4NtNr ))
#y, (43)

where the operator (·)# returns the pseudo-inverse of
a given matrix. At the kth iteration, the estimate ĉk−1
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obtained at the previous iteration is used to find s, K and
Ap (or equivalently k and αp) as follows:
⎛

⎜

⎜

⎜

⎜

⎜

⎝

ŝk
̂kk
α̂1,k
...

α̂P,k

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= [

�ŝCk−1, � i
(

diag
(

x∗
i
)

B
)

⊗ ĉk−1, � i
(

diag
(

xip,1
)

B
) ⊗ ĉk−1, . . . ,

� i
(

diag
(

xip,P
)

B
) ⊗ ĉk−1

]# (

y − � îCk−1xi
)

,
(44)

where, for clarity, we introduce B = 1N ⊗ INt and̂Ck−1 =
INNt ⊗ ĉk−1 and we use the equality

(

(

(IN ⊗ K)x∗
i
) ⊗

I4NtNr

)

c =
(

(

diag(x∗
i )B

)⊗c
)

k. Then, ŝk is transformed in
the frequency domain and each element of the frequency
domain vector is projected to its closest discrete constel-
lation point. The obtained vector is converted back to the
time domain to obtain a better estimate s̃k of s.
Then, an update of c at iteration k is obtained as:

ĉk =
⎛

⎝� i

⎛

⎝

⎛

⎝xi + (IN ⊗ ̂K k) +
P

∑

p=1

(

IN ⊗ ̂Ap,k
)

xip,p

⎞

⎠ ⊗ I4NtNr

⎞

⎠

+�s
(

s̃k ⊗ I4NtNr

)

⎞

⎠

#

y.

(45)

If a set of Ppilot, pilot symbols are available at subcarriers
indexed by P = {p1, . . . , pPpilot}, the intended transmit
signal at antenna q can be represented as the sum of two
signals:

spq(n) =
Ppilot
∑

i=1
Sq(pi)ej2πpin/N ,

sdq(n) =
∑

k /∈P
Sq(k)ej2πkn/N ,

(46)

where the first sequence spq(n) contains the pilot symbols
and the second sequence sdq(n) contains the unknown data
symbols transmitted by other intended transmitter. Then,
the received vector in (42) is rearranged as follows:

y = � i

⎛

⎝

⎛

⎝xi + (IN ⊗ K) x∗
i +

P
∑

p=1

(

IN ⊗ Ap
)

xip,p

⎞

⎠ ⊗ I4NtNr

⎞

⎠

c + �s
((

sp + sd
)

⊗ I4NtNr

)

c + w.

(47)

where sp and sd are constructed in the same way as s
and contain the pilot symbols and unknown symbols,

respectively. The initial estimate of c is modified to incor-
porate the pilot symbols as

ĉ0 =
(

� i(xi ⊗ I4NtNr) + �s(sp ⊗ I4NtNr )
)#
y, (48)

and the estimates of sd, K and Ap at iteration k are
given by

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ŝdk
̂kk
α̂1,k
...

α̂P,k

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
[

�ŝCk−1, � i
(

diag(x∗
i )B

)

⊗ ĉk−1, � i
(

diag(xip,1)B
)

⊗ĉk−1, . . . ,

� i
(

diag(xip,P)B
)

⊗ ĉk−1
]#

×
(

y − � îCk−1xi − �ŝCk−1sp
)

.

(49)

As before, ŝdk is converted to the frequency domain,
demodulated then transformed to the time domain to
obtain s̃dk . The updated estimate of c at iteration k is
obtained as:

ĉk =
⎛

⎝� i

⎛

⎝

⎛

⎝xi +
(

IN ⊗ ̂K k
)

x∗
i +

P
∑

p=1

(

IN ⊗ ̂A3,p
)

xip,p

⎞

⎠ ⊗ I4NtNr

⎞

⎠

+�s
((

sp + s̃dk
)

⊗ I4NtNr

)

⎞

⎠

#

y.

(50)

In the following, we summarize the different steps of the
proposed algorithm:

1. Compute the augmented covariance matrix R̃y by
time averaging of T received samples as:

̂R̃y = 1
T

T
∑

t=1

(

yt
y∗
t

)(

yt
y∗
t

)H

2. Perform eigendecomposition of R̃y and take the p
eigenvectors νi corresponding to the smallest
eigenvalue of R̃y.

3. Construct the matrix � from νi and compute the
4NtNr singular vectors of � corresponding to the
zero singular value to form �.

4. Build the matrices �̌i and �̌s as given in (39).
5. Estimate the ambiguity vector c by iterating between

(44) and (45) if no pilot symbols are available or
between (49) and (50) if a set of pilot symbols are
available from the intended transceiver.
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5 Simulation results
In this section, we provide some simulation results on
the performance of the proposed estimation algorithm for
a 2 × 2 MIMO full-duplex system. The transmitted bits
are mapped to 4-QAM symbols, then passed through an
OFDMmodulator of lengthN = 64. The wireless channel
is represented as a Rayleigh multipath fading channel with
five equal-variance resolvable paths. Since the exact num-
ber of paths is supposed to be unknown, the algorithm is
parametrized as if there are eight paths. In the following,
the SNR is defined as the average intended-signal-to-
thermal noise power ratio and the estimationmean square
error (MSE) of H is MSE = E

(

||H − ̂H||2
)

. To model the
RF impairments, a complete transmission chain is simu-
lated. The PA coefficients are derived from the intercept
points by taking the IIP3 = 20 dBm. For the IQ mixer,
the ratio between the direct signal and the image is set to
28 dB which is specified in 3GPP LTE specifications [23].
The ADC is modelled as a 14-bit quantizer to incorpo-
rate the quantization noise. Therefore, no simplifications
are made regarding the different impairments. Antenna
separation can attenuate the SI by 40 dB while the RF can-
cellation stage reduces the direct path by 30 dB [1] leaving
the weaker reflections and transceiver impairments to be
reduced by the proposed digital algorithm.
The proposed algorithm is compared to different chan-

nel estimators: the least square (LS) and the maximum
likelihood (ML) algorithms. For the LS estimator, the
channel coefficients are obtained using the known self sig-
nal and the pilot symbols in the intended signal. It simply
considers the unknown symbols as additive noise. The
ML estimate is obtained by maximizing the following cost
function:

L
(

H(i), H(s)
)

= log (det(R)) −
(

y − H(i)x − H(s)sp
)H

× R−1
(

y − H(i)x − H(s)sp
)

,

where R = α2H(s)HH(s) +σ 2INrM. An iterative procedure
to find the ML estimate was proposed in [35]. The covari-
ance matrix is obtained by averaging 60 OFDM blocks.
Figures 2 and 3 plot the MSE vs. SNR curves for the SI
and intended channel estimations, respectively. In both
figures, one pilot symbol, from the intended transceiver,
is used to solve the ambiguity matrix. For comparison
purpose, a perfect estimate of the ambiguity term c is
obtained as cperfect = argminc ||ȟ − �c||22 and the corre-
sponding curves are labelled by clairvoyant subspace. It is
seen that, when one pilot symbol is used in the ML and
LS estimators, the proposed subspace algorithm offers
notably lower MSE over a large SNR range. We also repre-
sent the performance of the ML and LS estimators when
20% of the transmit symbols are known (pilot symbols
equally spaced within one OFDM symbol) while keeping
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Fig. 2 SI channel estimation MSE vs. SNR with 60 received OFDM
symbols

one pilot symbol for the subspace method4. In this case,
the three algorithms give comparable performance at low
SNR region with the expanse of lower bandwidth effi-
ciency. As the SNR increases, the performance of the LS
and ML estimators saturate due to the reduced number
of pilot symbols and the presence of the unknown trans-
mit signal from the intended transceiver which acts as
an additive noise. While the subspace algorithm exploits
the information bearing in the unknown data to find the
signal subspace. The ambiguity term is first solved using
the known transmit symbols, then the iterative decoding
ambiguity estimation is applied to improve the estimation
performance. From Figs. 2 and 3, three to four iterations
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Fig. 3 Intended channel estimation MSE vs. SNR with 60 received
OFDM symbols
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are sufficient to converge and the performance is close to
the performance when the ambiguity term c is perfectly
obtained. Note that the ML solution is also obtained in an
iterative way and for a fair comparison; we simulate the
performance of the ML estimator after four iterations. As
it can be expected, the estimate of the SI channel is more
accurate than the estimate of the intended channel. This
can be explained by the fact that the self-signal is known
while one pilot symbol is known in the intended signal.
The number of pilot symbols is a critical issue in chan-

nel estimation since a large pilot sequence provides better
estimation performance but reduces the bandwidth effi-
ciency of the system. In Figs. 4 and 5, we compare the
impact of the number of pilot symbols on the perfor-
mance of the three estimators. We periodically place the
pilot symbols within an OFDM symbol. Optimal pilot
placement requires to verify all Ppilot combinations from
N subcarriers and hence, leads to an NP-hard problem
beyond the scope of this paper, and is left for future work.
It can be seen from these figures that the subspacemethod
is not greatly affected by the number of pilot symbols since
the subspaces are obtained using the second-order statis-
tics of the received signal and not the transmit signal itself.
Clearly, the proposed algorithm outperforms the ML and
LS estimators at a reduced number of pilots while this
tendency is inverted when the number of pilots increases.
However, a system with a large amount of pilot symbols is
not of practical interest.
In Figs. 6 and 7, we evaluate the impact of the number of

observed OFDM symbols on the estimation performance.
For the three algorithms, we consider the transmission
scheme where the number of pilot symbols is set to one
and the SNR is 10 dB. As the subspace algorithm is based
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Fig. 4 SI channel estimation MSE vs. percentage of pilot symbols for
SNR = 10 dB

0 5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

percentage of pilot symbols

M
SE

Subspace estimator
ML estimator
LS estimator

Fig. 5 Intended channel estimation MSE vs. percentage of pilot
symbols for SNR = 10 dB

on estimates of the second-order statistic of the received
signal, its performance varies with the number of OFDM
symbols. All three algorithms are able to estimate the SI
channel with an error floor for the LS. The ML and sub-
space algorithms offer the similar performance. On the
other hand, the LS estimator fails to recover the intended
channel, for any number of OFDM symbols. This can
be explained by the fact that the number of unknowns
(intended channel coefficients) is larger than the num-
ber of pilot symbols. Hence, it is not possible to use this
method when the number of pilot symbols is small. The
ML estimator presents also poor estimation performance
for the intended channel, while the subspace method is
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Fig. 6 SI channel estimation MSE vs. number of OFDM symbols for
SNR = 10 dB and one pilot symbol
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Fig. 7 Intended channel estimation MSE vs. number of OFDM
symbols for SNR = 10 dB and one pilot symbol

able to return a good channel estimate, with a better
bandwidth efficiency compared to the other estimators, as
soon as there are enough OFDM symbols to compute the
covariance matrix.
Our primary motivation of this work is to develop

an accurate channel estimator to cancel the SI signal.
The performance of the SI-canceller are represented by
its achieved output signal-to-residual-SI-and-noise power
ratio (SINR) after SI cancellation vs. the input SNR. Ide-
ally, if SI could be completely cancelled then the residual SI
after cancellation is 0, and consequently, the output SINR
equals the input SNR as shown by the dashed line “per-
fect cancellation” in Fig. 8. In other words, the “perfect
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Fig. 8 Output SINR vs. input SNR after SI cancellation

cancellation” is considered as the ideal upper-bound for
the SINR. As shown in Fig. 8, with three iterations, the
proposed subspace-based SI-canceller can offer an out-
put SINR very close to the upper-bound over a large SNR
range. At low SNR, the large estimation error results in
a larger residual SI after cancellation, which ultimately
affects the output SINR.
We also investigate in Fig. 8 a frequency domainmethod

to estimate the different parameter using the pilot sym-
bols on some subcarriers. We resort to the LS estimator
to find the channel responses at the pilot subcarriers.
Since the remaining subcarriers contain unknown sym-
bols from the intended transceiver, the complete channel
responses are obtained by linear interpolation of the esti-
mated coefficients. Thus, the frequency domain approach
uses only the portion of the signal containing pilots while
the proposed approach exploits the whole received signal
through the second-order statistics. Clearly, the perfor-
mance of the frequency domain approach highly depends
on the number of pilots (as shown in Fig. 8) since the
interpolation cannot model the variance of the channel
in the frequency domain. We also compare the proposed
method with the widely linear LS estimator in [26]. Note
that the algorithm in [26] ignores the PA nonlineari-
ties and does not incorporate the intended signal in the
estimation process. Some time frames are dedicated to
transmit orthogonal pilot symbols for estimation purpose,
where the transceiver receives only its own signal. There-
fore, the widely linear LS estimator incurs an overhead and
requires synchronization between the two transceivers.
Besides, it shows a noise floor at high SNR because the PA
nonlinearity is not considered during the estimation pro-
cess. On the other hand, by exploiting the whole received
signal through its second-order statistics, the proposed
method offers good performance even with one pilot and
still outperforms the frequency domain approach (even
with much larger number of pilots). Figure 9 plots the bit
error rate (BER) vs. SNR curves of the two approaches.
For comparison, we include the case of perfect chan-
nel estimate. To improve the BER, the SINR should be
kept as high as possible at the demodulator. To conclude,
while the frequency domain approach is more intuitive, it
needs a large number of pilots and is outperformed by the
proposed method.
We evaluate the performance of the system in the pres-

ence of phase noise by simulation. Figures 10 and 11
plot respectively the SINR and the BER vs. the phase
noise 3 dB bandwidth f3dB for SNR = 20 dB and com-
mon oscillator at the transmitter and the receiver. The
residual SI depends obviously on the quality of the oscil-
lator represented by its f3dB. Higher f3dB results in a fast
varying process. Clearly, the proposed method still offers
good cancellation performance, which is degraded as f3dB
increases.
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Fig. 9 BER vs. SNR comparison of the proposed and the frequency
domain LS techniques

The PA nonlinearity effects on the performance of the
proposed algorithm are also investigated through simula-
tions. Figure 12 plots the resulting SINR after cancellation
vs. the value of the PA third-order intercept point (IIP3)
for SNR= 20 dB. For perfect cancellation, the resulting
SINR after cancellation would be the SNR= 20 dB. A
lower IIP3 indicates higher PA distortions (or poorer PA)
and hence reduces the resulting SINR after cancellation.
Figure 12 shows that as the IIP3 value increases, the
cancellation performance is improved. However, for a
sufficiently high IIP3 (e.g., 18 dBm or higher), the PA dis-
tortions are no longer dominant and the resulting SINR
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Fig. 11 BER vs. phase noise f3dB

after cancellation is unchanged. This can be explained by
the fact that, when developing the algorithm, the third-
order component of the signal xq,ip3(n) = xIQq (n)|xIQq (n)|2
is approximated by xq(n)|xq(n)|2 to simplify the algo-
rithm. This approximation only affects the algorithm
performance when the nonlinear coefficients are
sufficiently high.

6 Conclusions
In this paper, a subspace-based estimation has been pro-
posed to jointly estimate the SI channel, the intended
channel and the transmitter impairments for MIMO
full-duplex systems. By exploiting the covariance and
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Fig. 12 SINR after SI cancellation vs. PA IIP3
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pseudo-covariance matrix of the received signal, an
effective way has been formulated to apply the sub-
space method for symmetric MIMO systems. The com-
plete characterization of the second-order statistic of the
received signal avoids the need of oversampling, required
in traditional subspace methods. The subspace that con-
tains the channels is blindly estimated and a short pilot
sequence is needed to extract the channel coefficients
from this subspace. The proposed method dramatically
reduces the number of pilot symbols needed to identify
the channel coefficients. Simulation results show that one
pilot symbol is enough to obtain an accurate estimate
while other methods are not able to recover the channel.

Endnotes
1 The length of the cyclic prefix Ncp should be larger

than the delay spread of the channel to eliminate the
inter-symbol interference and inter-carrier interference.
Therefore, if we know the length of the channel, we can set
the cyclic prefix to be sufficiently large to satisfy Ncp > L.
Since this information is in general not available, Ncp is
chosen to guarantee Ncp > L. For example, if the distance
between the two transceivers is 1 km, a cyclic prefix of 4
microsec is sufficient.

2 Physically, the additive noise arises from the thermal
agitation of the charge carriers in an electronic device and
is independent from the input. It can also contain interfer-
ence from other systems whose signals are independent
from the transmit signal of the considered system.

3The previous condition is verified for independent
channels between different antennas.

4 The pilot symbols are equally spaced within one
OFDM symbol.

Appendix 1: Eigenvalues of Rũ
Following the discussion in Section 3, we mention thatM
is of rank N, then it has N strictly positive eigenvalues,
τ1, τ2, . . . , τN , and eigenvalue 0 of multiplicity N. And
since the covariance matrix Rũ is given by α2M ⊗ I2Nt ,
it follows that Rũ has also N eigenvalues τ1, τ2, . . . , τN
each of multiplicity 2Nt and eigenvalue 0 of multiplic-
ity 2NNt . To find the non-zero eigenvalues, we solve the
characteristic polynomial ofM given by

det
(

M − τ I2N
)

= 0. (51)

First, if τ = 1 is an eigenvalue of M, then it exists a
vector a �= 0 such thatMa− a = 0. It follows that a(1) =
a(2) = · · · = a(2N) = 0, which is in contradiction with
a �= 0. Therefore, 1 is not an eigenvalue ofM.

By writingM as a block matrix:

M =
(

IN M1,2
M1,2 IN

)

, (52)

the characteristic polynomial ofM, for τ �= 1, is written as

det (M − τ I2N ) = det ((1 − τ)IN )

× det
(

(1 − τ)IN − M1,2(1 − τ)−1INM1,2
)

= (1 − τ)N
(

1 − τ − (1 − τ)−1
)N

,

(53)

where we used the fact that M1,2M1,2 = IN . Then, the
solutions to det

(

M − τ I2N
)

= 0 are 0 and 2. Therefore,
all non-zero eigenvalues of M are equal to 2 and thus all
the non-zero eigenvalues of Rũ are equal to 2α2.

Appendix 2: Precoding for complexmodulation
To make it simple, we consider the matrices P and Q
having the following block structure:

P =
(

aIN/2 0IN/2
0IN/2 bIN/2

)

,

Q =
(

0IN/2 cIN/2
dIN/2 0IN/2

)

, (54)

for given real numbers a, b, c and d. Similarly to the real
modulation, we have Rũ = M⊗I2Nt whereM for complex
modulation is given by

M =
(

PPT + QQT PQT + QPT

PQT + QPT PPT + QQT

)

=

⎛

⎜

⎜

⎝

(a2 + c2) 0 0 (ad + bc)
0 (b2 + d2) (ad + bc) 0
0 (ad + bc) (a2 + c2) 0

(ad + bc) 0 0 (b2 + d2)

⎞

⎟

⎟

⎠

⊗IN/2,

for a2 + c2 = b2 + d2. Thus, for a, b, c and d satisfying
a2 + c2 = ad + bc and b2 + d2 = ad + bc, each line
of M is repeated two times and Rũ has rank 2NNt . As an
example, we can take a = 0.757, b = 0.5032, c = 0.4935
and d = 0.7506.

Acknowledgements
This work was supported in part by an R&D Contract from Huawei
Technologies Canada and in part by a Grant from the Natural Sciences and
Engineering Research Council of Canada.

Competing interests
The authors declare that they have no competing interests.

Received: 14 July 2016 Accepted: 23 February 2017

References
1. JI Choi, M Jain, K Srinivasan, P Levis, S Katti, in Proc. ACMMobiCom.

Achieving single channel, full duplex wireless communication (ACM,
Chicago, 2010), pp. 1–12



Masmoudi and Le-Ngoc EURASIP Journal onWireless Communications and Networking  (2017) 2017:55 Page 14 of 14

2. M Duarte, A Sabharwal, V Aggarwal, R Jana, KK Ramakrishnan, CW Rice, NK
Shankaranarayanan, Design and characterization of a full-duplex
multiantenna system for WiFi networks. IEEE Trans. Veh. Technol. 63(3),
1160–1177 (2014)

3. A Masmoudi, T Le-Ngoc, in Proc. IEEE Global Telecommun. Conf.
Self-interference cancellation limits in full-duplex communication
systems (IEEE, Washington DC, 2016)

4. MA Khojastepour, S Rangarajan, in Proc. ASILOMAR Signals, Syst., Comput.
Wideband digital cancellation for full-duplex communications (IEEE,
Pacific Frove, 2012), pp. 1300–1304

5. A Masmoudi, T Le-Ngoc, Channel estimation and self-interference
cancellation in full-duplex communication systems. IEEE Trans. Veh.
Technol. 66(1), 321–334 (2017)

6. M Duarte, C Dick, A Sabharwal, Experiment-driven characterization of
full-duplex wireless systems. IEEE Trans. Wireless Comm. 11(12),
4296–4307 (2012)

7. J Ma, GY Li, J Zhang, T Kuze, H Iura, in Proc. IEEE Global Telecommun. Conf.
A new coupling channel estimator for cross-talk cancellation at wireless
relay stations, (Honolulu, 2009)

8. JR Krier, IF Akyildiz, in Proc. IEEE Pers. Indoor andMobile Radio Commun.
Active self-interference cancellation of passband signals using gradient
descent (IEEE, London, 2013)

9. S Li, RD Murch, in Proc. IEEE Global Telecommun. Conf. Full-duplex wireless
communication using transmitter output based echo cancellation,
(2011), pp. 1–5

10. D Bliss, P Parker, A Margetts, in Prog. IEEE Statistical Signal Processing.
Simultaneous transmission and reception for improved wireless network
performance, (2007), pp. 478–482

11. BP Day, AR Margetts, DW Bliss, P Schniter, Full-duplex bidirectional MIMO:
achievable rates under limited dynamic range. IEEE Trans. Signal Process.
60(7), 3702–3713 (2012)

12. AC Cirik, J Zhang, M Haardt, Y Hua, in IEEEWorkshop on Signal Processing
Advances inWireless Communications (SPAWC). Sum-rate maximization for
bi-directional full-duplex MIMO systems under multiple linear constraints,
(2014), pp. 389–393

13. Y Hua, P Liang, Y Ma, AC Cirik, Q Gao, A method for broadband full-duplex
MIMO radio. IEEE Signal Process. Lett. 19(12), 793–796 (2012)

14. A Masmoudi, T Le-Ngoc, in Proc. IEEE Veh. Technol. Conf. Self-interference
mitigation using active signal injection full-duplex MIMO-OFDM systems
(IEEE, Montreal, 2016)

15. J-J Van de Beek, O Edfors, M Sandell, SK Wilson, P Ola Borjesson, in Proc.
IEEE Veh. Technol. Conf. On channel estimation in OFDM systems, (1995),
pp. 815–819

16. H Minn, N Al-Dhahir, Optimal training signals for MIMO OFDM channel
estimation. IEEE Trans. Wireless Comm. 5(5), 1158–1168 (2006)

17. F Gao, Y Zeng, A Nallanathan, T-S Ng, Robust subspace blind channel
estimation for cyclic prefixed MIMO ODFM systems: algorithm,
identifiability and performance analysis. IEEE J. Select. Areas Comm. 26(2),
378–388 (2008)

18. C-C Tu, B Champagne, Subspace-based blind channel estimation for
MIMO-OFDM systems with reduced time averaging. IEEE Trans. Veh.
Technol. 59(3), 1539–1544 (2010)

19. E Moulines, P Duhamel, J-F Cardoso, S Mayrargue, Subspace methods for
the blind identification of multichannel FIR filters. IEEE Trans. Signal
Process. 43(2), 516–525 (1995)

20. Y Zeng, T-S Ng, A semi-blind channel estimation method for multiuser
multiantenna OFDM systems. IEEE Trans. Signal Process. 52(5), 1419–1429
(2004)

21. E de Carvalho, DT Slock, Blind and semi-blind FIR multichannel
estimation: (global) identifiability conditions. IEEE Trans. Signal Process.
52(4), 1053–1064 (2004)

22. A Masmoudi, T Le-Ngoc, A maximum-likelihood channel estimator for
self-interference cancellation in full-duplex systems. IEEE Trans. Veh.
Technol. 65(7), 5122–5132 (2016)

23. LTE; evolved universal terrestrial radio access (E-UTRA); user equipment
(UE) radio transmission and reception (3GPP TS 36.101 version 11.2.0
release 11). ETSI, Sophia Antipolis Cedex, France (2012)

24. DW Bliss, TM Hancock, P Schniter, in Proc. ASILOMAR Signals, Syst., Comput.
Hardware phenomenological effects on cochannel full-duplex MIMO
relay performance (IEEE, Pacific Frove, 2012)

25. E Ahmed, A Eltawil, A Sabharwal, in Proc. ASILOMAR Signals, Syst., Comput.
Self-interference cancellation with nonlinear distortion suppression for
full-duplex systems (IEEE, Pacific Frove, 2013)

26. D Korpi, L Anttila, V Syrjala, M Valkama, Widely linear digital
self-interference cancellation in direct-conversion full-duplex transceiver.
IEEE J. Selected Areas Commun. 32(9), 1674–1687 (2014)

27. A Masmoudi, T Le-Ngoc, in Proc. IEEEWireless Commun. and Netw. Conf.
Self-interference cancellation for full-duplex MIMO transceivers (IEEE,
New Orleans, 2015)

28. WH Gerstacker, R Schober, A Lampe, Receivers with widely linear
processing for frequency-selective channels. IEEE Trans. Commun. 51(9),
1512–1523 (2003)

29. R Schober, WH Gerstacker, L-J Lampe, Data-aided and blind stochastic
gradient algorithms for widely linear MMSE MAI suppression for
DS-CDMA. IEEE Trans. Signal Process. 52(3), 746–756 (2004)

30. M Kristensson, B Ottersten, D Slock, in Proc. ASILOMAR Signals, Syst.,
Comput. Blind subspace identification of a BPSK communication channel
(IEEE, Pacific Frove, 1996)

31. A Masmoudi, T Le-Ngoc, in Proc. IEEE Int. Conf. Commun. A digital
subspace-based self-interference cancellation in full-duplex MIMO
transceivers (IEEE, London, 2015), pp. 4954–4959

32. A Masmoudi, T Le-Ngoc, in Proc. IEEE Int. Conf. Commun. Residual
self-interference after cancellation in full-duplex systems (IEEE, Sydney,
2014)

33. JG McMichael, KE Kolodziej, in 50th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). Optimal tuning of
analog self-interference cancellers for full-duplex wireless
communication, (2012), pp. 246–251

34. FD Neeser, JL Massey, Proper complex random processes with
applications to information theory. IEEE Trans. Inf. Theory. 39(4),
1293–1302 (1993)

35. A Masmoudi, T Le-Ngoc, in Proc. IEEE Veh. Technol. Conf. A
maximum-likelihood channel estimator in MIMO full-duplex systems
(IEEE, Vancouver, 2014)

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Full-duplex MIMO system model
	Subspace-based channel estimator
	Resolving the ambiguity term
	Simulation results
	Conclusions
	Appendix 1: Eigenvalues of bold0mu mumu RR===============RRRRu"0365u
	Appendix 2: Precoding for complex modulation
	Acknowledgements
	Competing interests
	References

