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Abstract

An asynchronous time difference of arrival (ATDOA) positioning system requires no time synchronization among all
the anchor and target nodes, which makes it highly practical and can be easily deployed. This paper first presents an
ATDOA localization model, and then primarily focuses on two new localization algorithms for the system. The first
algorithm is a two-step positioning algorithm that combines semidefinite programming (SDP) with a Taylor series
method to achieve global convergence as well as superior estimation accuracy, and the second algorithm is a
constrained least-squares method that has the advantage of low complexity and fast convergence while maintaining
good performance. In addition, a novel receiver re-selection method is presented to significantly improve estimation
accuracy. In this paper, we also derive the Cramer-Rao lower bound (CRLB) of the ATDOA positioning system using a
distance-dependent noise variance model, which describes a realistic indoor propagation channel.

Keywords: Localization, Asynchronous positioning systems, Time difference of arrival (TDOA), Semidefinite
programming (SDP), Taylor series, Constrained least-squares, Cramer-Rao lower bound (CRLB)

1 Introduction
Position information brings enormous benefits to many
real-life applications ranging from cargo tracking, tourist
guiding, emergency evacuation, to countless usage sce-
narios. As mobile devices become ubiquitous, contextual
awareness applications have become popular, and the
indoor positioning system has gained significant atten-
tion. The time-based localization method, including one-
way time of arrival (TOA) and time difference of arrival
(TDOA), exploits the fine delay resolution property of
wideband signals and has great potential for providing
high accuracy location estimation. However, both meth-
ods face a major challenge, that is, synchronization is
required among the clocks of the involved nodes with a
timing accuracy proportional to the desired localization
precision.
Efforts have been made in the literature to relax the syn-

chronization requirements, and two common methods
are two-way ranging [1, 2] and elliptical localization [3–5].
In two-way ranging, an anchor node transmits a packet to
a target node, which replies by an acknowledgment packet
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to the anchor node after a response delay. The two-way
ranging eliminates the error due to imperfect synchro-
nization between nodes, yet this approach is sensitive to
clock non-idealities [3, 6]. The elliptical localization sys-
tem starts with an anchor transmitter (Tx) emitting a
pulse, and upon arrival, the pulse is re-transmitted by
the target node. An anchor receiver (Rx) captures two
pulses in a row, one from the anchor Tx and the other
from the target. The time difference between the two
received signals can be measured, and together with the
knowledge of the anchor Tx and Rx positions, the sum
of the distances between the target and the two anchor
nodes can be calculated. Hence, the target node lies on
the trajectory of an ellipse with anchor Tx and anchor
Rx as the two foci. Several elliptical localization systems
have been studied in the literature [3–5]. These systems
work in a similar manner, and they differ in one or two
respects. The system deployment in [3] has a designated
anchor Tx emitting an ultra-wideband pulse, and three
anchor Rx nodes to perform the time difference arrival
measurements. Wang et al. [4] proposed an asymmet-
ric trip ranging protocol, and the system deployment is
similar to [3], but it involves a timing logic at the target
node, which suffers from clock non-idealities. In [5], a dis-
tributed localization scheme is proposed, and it uses the
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target node to measure the TDOA. Due to the cost and
power constraints on the target node, low-performance
clocks are normally employed which limits the accuracy.
In this paper, we first present a new elliptical localiza-
tion system, namely, an asynchronous time difference of
arrival (ATDOA) positioning system. The ATDOA sys-
tem’s deployment is different from [3] in that there is no
need for a designated anchor Tx. Rather, the proposed
simplest deployment contains one anchor Rx and three
anchor Tx. A more comprehensive setup contains four
transceiver anchors, each of which can be dynamically
configured into a Tx or Rx in order to minimize estima-
tion error by performing novel receiver re-selection. More
importantly, two new location estimation algorithms tai-
lored for the ATDOA system are proposed and studied.
More details can be found at [7].
Due to the imperfect implementation of location sens-

ing systems, lack of bandwidth, added thermal noise,
multipath of the radio propagation channel, and the drift
of the clocks, there are always errors associated with
measurements of location related metrics. To obtain an
estimate of target location in the presence of measure-
ment errors, a variety of direct and iterative position-
ing algorithms have been developed. When measurement
error distribution is available, a maximum likelihood esti-
mator (MLE) is commonly used. An approximate max-
imum likelihood (ML) algorithm was developed in [8]
to achieve near-optimal performance without the com-
plexity of “full” maximum likelihood estimation. In [9], a
ML-based algorithmwas proposed, and simulation results
reveal that the solution closely approaches the funda-
mental bounds. In spite of attaining optimum estimation
performance, the ML approach requires sufficiently pre-
cise initial estimates for global convergence. In [10], it
has been shown that the positioning accuracy of the ML
methodology attains Cramer-Rao lower bound (CRLB) at
sufficiently small noise conditions. However, it is difficult
to implement in practice because the ML cost function
contains multiple local minima and maxima, hence, its
maximization is sensitive to initial conditions, and there
is no guarantee of global optimality [11]. In [12], results
show that even when the ML estimator is initialized by
a weighted least squares estimate, which is close to the
global solution, it still converges occasionally to a local
minimum. Unlike the ML approach, the least squares
(LS) approach does not assume any characterization of
the noise statistic affecting the observations; hence, it
is deemed a suboptimal method [13]. However, it has
low computational complexity and therefore is easy to
implement in a practical system. Basically, there are two
approaches for solving the non-linear LS equations. The
first approach is to solve them directly in a non-linear least
squares (NLS) or weighted least squares (WLS) frame-
work [14–16]. The common procedure is linearization

followed by gradient searches. Although optimum estima-
tion performance can be attained, it requires sufficiently
precise initial estimates for global convergence because
the corresponding cost functions are multimodal. The
second approach is linear least squares (LLS) method. It
reorganizes the non-linear equations into a set of linear
equations so that real-time implementation is allowed,
and global convergence is ensured [11, 17–21].
Although the MLE has the highest accuracy, it is highly

non-linear and does not assure global convergence. It
is possible to relax the ML formulation to a semidefi-
nite programming (SDP) problem in order to provide a
high-fidelity approximate solution that can be obtained in
a globally optimum fashion with reduced computational
efforts. Hence, we first develop a two-step algorithm that
takes advantage of the SDP’s global convergence prop-
erty to provide a solution, that is then used as an initial
estimate for a Taylor series method to achieve superior
accuracy. The two-step method provides accurate solu-
tions at a cost of considerable computational complexity,
and it may not be an ideal approach for applications where
computational resources are limited. Therefore, we also
present a constrained least-squares (CLS) estimator that
provides good solution accuracy with reduced complexity
for ATDOA positioning systems.
In addition to a new system deployment, our paper is

different from the previous elliptical localization papers
[3–5] in several other ways:

• A practical CRLB has been derived for the A-TDOA
system. We model the received signal’s
signal-to-noise ratio (SNR) as a distance-dependent
parameter to derive a more accurate and a more
practical lower bound.

• A two-step (SDP + Taylor) algorithm and a CLS
algorithm are proposed to estimate the target position
in the ATDOA system. The two-step estimator can
be applied in applications where accuracy is the most
critical, and the CLS estimator is very useful in
real-time systems and mobile devices where battery
life and computational capability is limited.

• The localization algorithm’s performance is
thoroughly studied based on practical achievable
ranging accuracy. This unique analysis method allows
us to fully understand the advantages and
disadvantages of different algorithms.

We follow the standard terminology in the literature to
call the nodes with known positions anchors and the node
to be localized the target node. Bold upper case symbols
denote matrices and bold lower case symbols denote vec-
tors. The 0m×n is the m × n zero matrix and Im is the
m × m identity matrix. The transpose and 2-norm of a
vector x are denoted by (·)T and ‖x‖, respectively. For two
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symmetric matrices A and B, A � B means that A − B is
positive semidefinite.

2 Systemmodel
An ATDOA localization system consists of a number of
nodes. The anchor node that initiates the pulse transmis-
sion is called anchor Tx, and the one that receives the
pulse is called anchor Rx. In an ATDOA system, there are
multiple anchor Tx nodes and one anchor Rx node.
Let x = [

x, y
]T and xi = [

xi, yi
]T , i = 1, 2, . . . ,M be the

coordinates of the target node and anchor nodes, respec-
tively, whereM is the number of anchor nodes withM ≥ 3
for two-dimensional positioning. Without loss of general-
ity, let anchor Rx be at x1, and anchor Tx be positioned at
xi, i = 2, 3, . . . ,M.
Figure 1 demonstrates the signal flow and the system

timing. At time tAT , anchor Tx transmits a pulse that is
received at the target node at time tTR and at anchor Rx
at time tARD. As soon as the target node receives the pulse
from anchor Tx, it re-transmits it immediately. The re-
transmitted signal then reaches anchor Rx at time tARR.
Ultimately, anchor Rx will receive two pulses in a row: one
is from anchor Tx, and the other is from the target node.

Fig. 1 A-TDOA localization system signal flow and timing diagram

The time difference measured at anchor Rx can be
written as

(tARR − tARD) · c = ‖x − xi‖ + ‖x − x1‖ − ‖xi − x1‖ + ni,
i = 2, 3, . . . ,M,

(1)

where ni is a zero mean measurement error. Equation (1)
exhibits the beauty of the ATDOA system that the
time difference (tARR − tARD) is measured at and only
at anchor Rx. Therefore, no clock synchronization is
required among anchor Rx, anchor Tx and the target
node. The use of the backbone cables which are manda-
tory in conventional TDOA positioning systems can now
be avoided.
An example system layout is shown in Fig. 2. Three

anchor Tx nodes and one anchor Rx node constitute the
infrastructure. The solid lines indicate the direct radio
paths between the anchor Tx nodes and the anchor Rx
node, and the dashed lines indicate the re-transmitted
radio paths. The ATDOA localization system can be made
self-contained when all anchor nodes are equipped with
data communication capability. A communication proto-
col is also necessary to coordinate the localization mea-
surements sequence. A complete location measurement
cycle involves several TDOA ranging measurements, and
each measurement takes place by having one anchor Tx
emits a pulse, and the anchor Rx measures the TDOA.
The anchor Rx coordinates the sequence by signaling each
anchor Tx in order. Once a specific anchor Tx receives the
signaling from the anchor Rx, it responses its anchor iden-
tification and location, followed by a ranging pulse. The

Fig. 2 An example of an ATDOA system layout
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data communication and protocol can be implemented
in numerous ways, which are beyond the scope of this
work. In general, withM anchor nodes, there areM(M −
1)/2 distinct ATDOAmeasurements from all anchor node
pairs.We shall call any set of (M−1)measurements a non-
redundant set. In the noiseless case, a non-redundant set
is sufficient to determine the exact target node position.
Nevertheless, noise and estimation errors are unavoidable
in real-world problems. As will be seen in Section 3, a
proper selection of a non-redundant set can significantly
improve the estimation accuracy in an ATDOA system by
applying receiver re-selection technique.

3 Cramer-Rao lower bound
Cramer-Rao lower bound is commonly used for provid-
ing a lower bound on an estimator’s mean square error
(MSE). It establishes a fundamental limit on the achievable
localization accuracy, and it serves as a benchmark for any
unbiased location estimator. Previous works derive CRLB
based on modeling range estimates as being corrupted by
zero mean Gaussian noise [22, 23]. These works made an
assumption that the variance of the range estimate is not
dependent on the actual node pair distance. As a matter
of fact, signal power decays as the propagation distance
increases in practical situation. In an indoor environment,
the path loss exponent can vary from 2 to 6 [24], and the
signal power decays 20 to 60 dB as the propagation dis-
tance increases by a decade. This results in a significantly
received signal power variation. Given a constant ther-
mal noise level, received signal power variation results in
a change in SNR, which in turn determines the achievable
localization accuracy [23]. To reflect the SNR change, we
follow a similar approached used in [25] to model noise
variance as a distance dependent parameter. Such model-
ing is applied throughout this paper. Below, we derive a
distance-dependent CRLB for the ATDOA system.
Firstly, we denote the measured distance difference

between a direct path and a re-transmitted path as

ri = di + ni, i = 2, 3, . . . ,M, (2)

where di is the true distance difference of arrival

di = ‖x − xi‖ + ‖x − x1‖ − ‖xi − x1‖ (3)

and ni ∼ N (0, σ 2
i ) is a zero mean Gaussian error, whose

variance is modeled as

σ 2
i = KE (‖x − xi‖ + ‖x − x1‖)β + KE (‖xi − x1‖)β .

(4)

In (4), KE is a proportionality constant to capture the
combined physical layer effect on the range estimate, and
β is the path loss exponent. Compared to TOA noise vari-
ance, the ATDOA system’s noise variance is significantly
higher, due to that the extra signal transmission scheme

is involved. We start by writing the probability density
function for ri as

f (ri|di) = 1
√
2πσ 2

i

exp
(

− (ri − di)2

2σ 2
i

)

. (5)

The log-likelihood function can then be expressed as

ln f (r|x) = −1
2
ln (2πKE)

− 1
2
ln

[
(‖x−xi‖+‖x − x1‖)β + (‖xi−x1‖)β

]

− 1
2KE

(‖x−xi‖+‖x−x1‖ − ‖xi − x1‖ − r)2

(‖x − xi‖ + ‖x − x1‖)β + (‖xi−x1‖)β
(6)

For the sake of simpler expression, we denote

A = −1
2
ln

[
(‖x − xi‖ + ‖x − x1‖)β + (‖xi − x1‖)β

]
,

(7)

B = − 1
2KE

(‖x − xi‖ + ‖x − x1‖ − ‖xi − x1‖ − r)2

(‖x − xi‖ + ‖x − x1‖)β + (‖xi − x1‖)β
.

(8)

According to [26], the CRLB is found as the [ith, ith]
element of the inverse of the Fisher information matrix
(FIM). To derive the FIM, we calculate the second deriva-
tive of the likelihood function and then apply the expecta-
tion operation as:

E

[
∂2A
∂x2

]
+ E

[
∂2B
∂x2

]

= −β2 · pi2β−2 · fxxi
2g2i

− β · piβ−1 · sxxi
2gi

− fxxi
KEgi

(9a)

E

[
∂2A
∂y2

]
+ E

[
∂2B
∂y2

]

= −β2 · pi2β−2 · fyyi
2g2i

− β · piβ−1 · syyi
2gi

− fyyi
KEgi

(9b)

E

[
∂2A
∂x∂y

]
+ E

[
∂2B
∂x∂y

]

= −β2 · pi2β−2 · fxyi
2g2i

− β · piβ−1 · sxyi
2gi

− fxyi
KEgi

(9c)
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where

gi = (‖x − xi‖ + ‖x − x1‖)β + ‖xi − x1‖β (10a)

fxxi =
(

x − x1
‖x − x1‖ + x − xi

‖x − xi‖
)2

(10b)

fyyi =
(

y − y1
‖x − x1‖ + y − yi

‖x − xi‖
)2

(10c)

fxyi =
(

x − x1
‖x − x1‖ + x − xi

‖x − xi‖
)

×
(

y − y1
‖x − x1‖ + y − yi

‖x − xi‖
)

(10d)

pi = ‖x − xi‖ + ‖x − x1‖ (10e)

sxxi = (x − x1)2

‖x − x1‖3
+ (x − xi)2

‖x − xi‖3
− 1

‖x − x1‖ − 1
‖x − xi‖

(10f)

syyi = (y − y1)2

‖x − x1‖3
+ (y − yi)2

‖x − xi‖3
− 1

‖x − x1‖ − 1
‖x − xi‖

(10g)

sxyi = (x − x1) (y − y1)
‖x − x1‖3

+ (x − xi) (y − yi)
‖x − xi‖3

− 1
‖x − x1‖ − 1

‖x − xi‖ . (10h)

Ultimately, the elements in the FIM can be written as:

[F (x)]11 =
N∑

i=1

[
β2 · pi2β−2 · fxxi

2g2i
+ β · piβ−1 · sxxi

2gi

+ fxxi
KEgi

]

(11a)

[F (x)]22 =
N∑

i=1

[
β2 · pi2β−2 · fyyi

2g2i
+ β · piβ−1 · syyi

2gi

+ fyyi
KEgi

]

(11b)

[F (x)]12 = [F (x)]21 =
N∑

i=1

[
β2 · pi2β−2 · fxyi

2g2i

+β · piβ−1 · sxyi
2gi

+ fxyi
KEgi

]

.

(11c)

Typically, the constant KE is extremely small and there-
fore the third terms in (11), i.e., fxxi

KEgi ,
fyyi
KEgi and fxyi

KEgi
dominates.
The CRLB of an ATDOA system is shown in Fig. 3a. The

X- and Y- axis indicate the target node’s coordinate, and
the Z- axis is the mean square position error expressed
in dB (for instance, -20 dB corresponds to

√
10−20/10 =

0.1 m). The target node’s estimation error is evaluated at
each coordinate in a 100 × 100 m area. The anchor Rx is
placed at (0, 0), and three anchor Tx nodes are located at
(0, 100), (100, 0), and (100, 100). The path loss exponent
β is set to 4 to capture a realistic radio propagation chan-
nel. The constant KE is set to σ 2

0
(50

√
2)β , so that when the

target node is at the center, i.e., coordinate (50, 50), the
noise variance from the target node to any anchor node is
KE · ‖x − xi‖β = σ 2

0
(50

√
2)β · (50

√
2)β = σ 2

0 . We used σ0 =
0.1 m in the simulation. It is obvious in Fig. 3a that the
position estimation error close to the anchor Rx is much
smaller than other positions, largely due to that the noise
variance is smaller when the target node is close to the
anchor Rx. Therefore, when multiple transceiver anchor
nodes are available in the system, the anchor Rx node can
be chosen as the one closest to the target node tominimize
the estimation error. We refer to this method as “receiver
re-selection”. This method requires the system to have a
priori knowledge of an approximate target node position.
This a priori knowledge can easily be obtained by using a
localization algorithm that achieves global convergence to
estimate approximate coordinates of the target node. This
position estimate can then be used to re-select the receiver
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Fig. 3 a The CRLB of an ATDOA localization system without receiver re-selection. b The CRLB of an ATDOA localization system with receiver
re-selection
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node. Given the updated receiver node and the approx-
imate target node coordinates as an initial guess, a high
accuracy algorithm can then be applied to give superb per-
formance. Figure 3b demonstrates the improved CRLB by
selecting a proper anchor Rx such that the CRLB becomes
minimal.
We also derive the distance-dependent CRLB for TOA

and TDOA systems, and a comparison of them is shown
in Fig. 4. It is observed that the TOA system achieves the
lowest MSE, which is less than –14 dB (approximately
0.2 m). The TDOA system’s MSE is about 1 dB higher
than TOA system. It is obvious that the ATDOA CRLB is
about 8 dB higher than the TOA CRLB. This is largely due
to the extra signal transmission scheme involved in the
localization process, that is, it requires both direct path
and re-transmitted path signal for localization, and the
compound noise power is significantly higher than TOA
and TDOA systems. Nevertheless, although the ATDOA
system signaling is slightly complicated and the perfor-
mance is poorer, it worths the effort to relax the more
difficult clock synchronization requirement and therefore
provides great potential for practical use.

4 A high accuracy two-step localization algorithm
In this section, we propose a two-step localization algo-
rithm that combines a SDP technique and a Taylor series
method to achieve high estimation accuracy. Typically,
SDP is used to relax the non-convex problem to a con-
vex problem so as to obtain a global estimation of the true
position regardless of the initial point used [27]. The solu-
tion is then used as an initial guess for the Taylor series
method to achieve superior performance. In addition, as
the SDP method can achieve global minimal, if necessary,

the estimated target position can be used to re-select the
anchor Rx node to minimize the estimation error. Below,
we derive the two-step localization algorithm.
The ML estimator for the A-TDOA system can be

obtained as

argmin
x

M∑

i=2

(ri − ‖x − xi‖ − ‖x − x1‖ + ‖xi − x1‖)2
σ 2
i

.

(12)

Equation (12) is highly non-linear and non-convex,
hence, an improper selection of the initial guess may
lead to a local convergence which is deviated from a
global minimal. Next, we will be using SDP to relax
the non-convex optimization problem to a convex opti-
mization problem to provide approximate position esti-
mation in a globally optimum fashion [27]. We start by
expanding (12) as

argmin
x

M∑

i=2

‖x − xi‖2 + 2 · ‖x − xi‖ · ‖x − x1‖ + ‖x − x1‖2
σ 2
i

− 2 · ‖x − xi‖ (‖xi − x1‖ + ri) + 2 · ‖x − x1‖ (‖xi − x1‖ + ri)
σ 2
i

+ r2i + ‖xi − x1‖2 + 2ri ‖xi − x1‖
σ 2
i

.

(13)

To convert the non-convex quadratic distance con-
straints into convex constraints, we introduce a relaxation
to remove the quadratic terms in the formulation to con-
vert problem (13) into a standard SDP problem as Eq. (14)
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(see Appendix).

arg min
x,h,R,z

M∑

i=2

hii + 2 · hi1 + h11
σ 2
i

− 2 · hi (‖xi − x1‖ + ri) + 2 · h1 (‖xi − x1‖ + ri)
σ 2
i

(14a)
subject to:
[
H h
hT 1

]
� 0(m+1)×(m+1) (14b)

[
z xT
x I2

]
� 03×3 (14c)

hii = z + xTi xi − 2xTi x, i = 1, 2, . . . ,M, (14d)

In minimizing the objective function in (14a), hi1 tends
to decrease while hi and h1 tend to increase, hence, the
relaxation made above is not tight. Nevertheless, (14) is a
convex problemwhose global solution can readily be com-
puted. In addition, simulation studies have indicated that
the approximate solution to problem (14) is typically close
to the true location. Based on these, we propose a two-
step algorithm in that the SDP solution serves as an initial
estimation to allow a Taylor-series-based method step a
quick convergence to an accurate location estimation.
To describe the Taylor-series-based approach, we

denote fi(x) = ‖x − xi‖ + ‖x − x1‖ and express the error
function as

ei(x) = ri + ‖xi − x1‖ − fi(x), i = 2, 3, . . . ,M. (15)

Let x0 = [x0, y0]T be the initial guess of the target location
and �x = [δx, δy]T be the small increment on x.
By applying Taylor expansion to the equations in (15), it

can be linearized to

ei(x) ≈ ri+‖xi−x1‖−fi(x0)− ∂fi(x)
∂x

∣
∣
∣
∣
x0

·δx− ∂fi(x)
∂y

∣
∣
∣
∣
x0

·δy,
(16)

which can be expressed in vector form as

e = b − A · �x, (17)

where

A �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂ f2(x)
∂x

∂ f2(x)
∂y

∂ f3(x)
∂x

∂ f3(x)
∂y

...
...

∂ fM(x)
∂x

∂ fM(x)
∂y

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, (18)

b �

⎡

⎢
⎢
⎢
⎣

r2 + ‖x2 − x1‖ − f2(x0)
r3 + ‖x3 − x1‖ − f3(x0)

...
rM + ‖xM − x1‖ − fM(x0)

⎤

⎥
⎥
⎥
⎦
. (19)

The least-squares estimate for (17) is given by

�x = (ATW−1A)−1ATWb, (20)

whereW is the weight matrixW = diag
{
σ 2
2 , σ 2

3 , · · · , σ 2
M

}
.

The target location is then updated to

x = x0 + �x. (21)

The updated target location is utilized in the next iter-
ation until the magnitude of �x becomes less than a
prescribed tolerance. It is reasonable to treat the measure-
ment error variance σ 2

i as a known value in both SDP
and Taylor steps, because modern receiver is capable of
measuring signal-to-noise ratio which is inversely related
to the σ 2

i . Simulation results and analysis of the two-step
estimator are provided in Section 6.

5 A low complexity constrained least-squares
localization algorithm

The two-step algorithm presented in Section 4 provides
an accurate solution at the cost of a relatively high com-
putational complexity. As an alternative solution, in this
section, we present a constrained least-squares estima-
tor providing good accuracy with reduced complexity. We
start by rewriting the error functions in (15) as

ê(x) = Bt − q, (22a)

where

B =

⎡

⎢
⎢
⎢
⎣

1 1 0 . . . 0
1 0 1 . . . 0
...
...
...
. . .

...
1 0 0 . . . 1

⎤

⎥
⎥
⎥
⎦

(M−1)×M

, t =

⎡

⎢
⎢
⎢
⎣

t1
t2
...
tM

⎤

⎥
⎥
⎥
⎦
,q =

⎡

⎢
⎢
⎢
⎣

q2
q3
...

qM

⎤

⎥
⎥
⎥
⎦
,

(22b)

with ti = ‖x− xi‖, qi = ri + ‖xi − x1‖ and ri representing
the measured range differences.
The localization problem at hand can be formulated as

a constrained least-squares problem

min
x,r

‖Bt − q‖2 (23a)

subject to:
ti = ‖x − xi‖, i = 1, 2, · · · ,M. (23b)

Let the singular value decomposition [28] of matrixB be
given by

B = U�VT , (24)

where U ∈ R(M−1)×(M−1) and V ∈ RM×M are orthogo-
nal and � = [S 0] with S = diag{λ1, λ2, · · · , λM−1} > 0.
Using (24), we can write

‖Bt − q‖ = ‖�z − q̃‖ (25)
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where z = VT t and q̃ = UTq. If we denote

z =
(
Oz
φ

)
, (26)

where φ is a free-scaler parameter, then (25) becomes
‖Bt − q‖ = ‖Sẑ − q̃‖, hence ‖Bt − q‖ reaches its mini-
mum if ẑ = S−1q̃, and the optimal z is given by

z∗ =
(
S−1q̃

φ

)
, (27)

Therefore, the optimal t for (23a) is given by

t∗ = Vz∗ =
⎡

⎣ V1︸︷︷︸
M−1

vM︸︷︷︸
1

⎤

⎦
[
S−1q̃

φ

]
= V1S−1UTq

+ vMφ � ts + vMφ,
(28)

where parameter φ will be optimally tuned in the next step
in dealing with (23b). With the optimal t determined in
(28), the constraints in (23b) become as

h(x) − vMφ − ts = 0, (29)

where

h(x) =

⎡

⎢
⎢
⎢
⎣

‖x − x1‖
‖x − x2‖

...
‖x − xM‖

⎤

⎥
⎥
⎥
⎦
. (30)

Hence, an L2-optimal approximate solution of (29) can
be obtained by solving

min
x,φ

b(x,φ) = 1
2
‖h(x) − vMφ − ts‖2. (31)

The Gauss-Newton iteration [29] for minimizing b(x,φ)

is given by
[
xk+1

φk+1

]
=

[
xk
φk

]
− αk · H−1(xi) · ∇b(xk ,φk) (32)

where αk is determined by an inexact line search, and

∇b(xk ,φk) = JT (xk) · (h(xk) − vMφk − ts) (33)

H(xk) = JT (xk)J(xk) + ε · I with ε

a small positive constant, and
(34)

J(x) =

⎡

⎢
⎢
⎣

x−x1‖x−x1‖
... −vM

x−xM‖x−xM‖

⎤

⎥
⎥
⎦ . (35)

We remark that matrix B in (22b) is independent
of measurements, hence ,V1, S,U and vM can be pre-
calculated; and for two-dimensional location problems
H(xk) is of size 3 × 3, hence, the complexity of com-
puting H−1(xk) as required in (32) is insignificant. The

algorithm is found insensitive to its initial point [ xT0 φ0]T

as long as it is a reasonable one, e.g., x0 = 1
M

∑M
i=1 xi and

φ0 = 0. Typically, the algorithm converges in less than five
iterations. Simulation results of the CLS algorithm and a
detailed comparison with other estimators are presented
in Section 6.

6 Simulation results
Computer simulations have been conducted to corrob-
orate the theoretical development and to evaluate the
performance of the two-step and the CLS estimators. Four
algorithms, namely, the two-step algorithm, the CLS algo-
rithm, the linear least squares algorithm [11], as well as the
SDP algorithm are compared. In addition, a comparison
to the CRLB is provided to showcase the great accuracy
achieved.
We adopted a consistent system geometry as shown in

Section 2, with four anchor nodes placed at the vertex of
a square, i.e., at (0, 0) m, (0, 100) m, (100, 100) m, and
(100, 0) m. To fully evaluate the performance of the esti-
mators, the target node is set to sweep a 100 × 100 m
grid with a step size of 1 m moving towards either X or Y
direction. The starting location is (0, 0) m, and the stop-
ping location is (100, 100) m. To solve the SDP problem
involved, the convex solver CVX [30] is applied. The initial
guess point of the CLS algorithm is set to the mean value
of the anchor nodes coordinate 1

4
∑4

k=1 xk . Receiver re-
selection technique is applied in all simulations to achieve
the best possible performance. MSE is employed as the
performance measure.
Measurement error was assumed to be Gaussian dis-

tributed with zero mean. By conducting extensive simula-
tion, we observed that the performance of each estimator
varies significantly depending on the measurement error
variance. Therefore, we selected three typical error stan-
dard deviations, i.e., σ0 = 0.1 m, σ0 = 1 m and σ0 =
10 m to study each estimator’s performance under differ-
ent conditions, where σ0 is the error standard deviation
when the target node is at the center of the square, i.e.,
at (50, 50) m. Note that the measurement error model
is still distance-dependent based on (4), and is treated
as a known value. In real applications, a relative ranging
error is usually more significant than an absolute error.
For instance, 0.1 m ranging error in a 1 m distance mea-
surement is considered inaccurate, while the same ranging
error in a 100 m distance measurement is considered
highly accurate. Therefore, we define a relative error per-
centage Pe = σ

d0 ×100%, where d0 is the distance between
an anchor to the center of the measurement area, which
in our layout is d0 = 50

√
2. These three error magnitudes

represent three typical real-life scenarios:

• Low ranging error (σ0 ≤ 0.1m): the ranging error is
within ±0.2 m in 95% of the time. The relative error
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percentage is Pe = 0.1
50

√
2 · 100% = 0.14%. Such high

ranging accuracy is rarely reported in literature. It
was only achieved in very carefully controlled
experiment environments where high cost and high
precision lab instruments were employed [31–33].

• Medium ranging error (0.1 m < σ0 < 10m): the
relative error percentage is within 0.14 to 14%. Most
published works using TOA, TDOA, and two-way
ranging techniques fall within this range [34–39].
The ATDOA system belongs to this category as well.

• High ranging error (σ0 ≥ 10 m): the relative error
percentage is greater than 14%. Many system
employing RSS ranging method fits in this category
[40–42].

To the best of the author’s knowledge, there were
no other works that thoroughly study the localization
algorithm performance according to practical achievable
ranging accuracy. This analysis method allows us to fully
understand the advantages and disadvantages of each esti-
mators, and hence, is of great importance to guide the
selection of the algorithms in a reallife system. From
Section 6.1 to Section 6.3, simulated performance of each
algorithms under the aforementioned three scenarios are
presented. Section 6.4 provides a comparison of algo-
rithms with varying error magnitudes.

6.1 Low ranging error simulation results
This section presents simulation results with an error
standard deviation of 0.1 m in a 100 × 100 m area.

The relative error percentage is extremely low, and such
scenario is not very common in practical systems. Never-
theless, it well represents a system with a very high signal
to noise ratio.
Figure 5 demonstrates the simulated MSE for the LLS,

SDP, CLS, and the two-step estimators. The X- and Y-
axis define the position of the target node. Color-coded
squares indicate the MSE of the estimators, and the cooler
the color, the better the accuracy. All four sub-figures use
the same color scale for easy comparison. In addition,
Table 1 provides a summary of the MSE statistics for each
estimators.
It is very obvious in Fig. 5 that the two-step (SDP + Tay-

lor) estimator outperforms all the other estimators. The
average MSE over the entire 100×100m grid is several dB
lower. In addition, the two-step estimator’s performance
is rather consistent across the entire area. The CLS esti-
mator has the second lowest MSE in all four estimators.
Its average MSE is 5 dB higher than the two-step estima-
tor, but 2 dB lower than the LLS estimator. Hence, the CLS
estimator is a good compromise between the need for high
accuracy and the demands of low complexity. The LLS
estimator’s performance is reasonably satisfactory given it
has the lowest complexity and an analytical solution. The
SDP estimator performs the worst when the ranging error
is low, yet we will find in Section 6.3 that it outperforms
all the other algorithms when the ranging error is high.
Another observation is that the MSE on the square edge
is significantly higher than other positions for LLS, CLS,
and the two-step estimators, and this is consistent with
the CRLB shown in Section 3.

Fig. 5 Simulated MSE with a ranging error of 0.1 m
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Table 1 Summary of the simulated MSE with a ranging error of
0.1 m

Low ranging error simulation results summary

Estimators Mean (dB) STD (dB) Maximum (dB) Minimum (dB)

LLS −3.1 0.6 7.6 −8.1

SDP −2.2 0.5 4.5 −9.9

CLS −5.1 0.5 3.7 −9.1

Two-step −10.1 0.3 −5.6 −12.3

6.2 Medium ranging error simulation results
This section presents simulation results with an error
standard deviation of 1 m in a 100 × 100 m area. It well
represents a practical system using time based localization
techniques such as TOA, TDOA, and ATDOA.
Figure 6 demonstrates the simulated MSE for the LLS,

SDP, CLS, and the two-step estimators and Table 2 pro-
vides a summary.
Evidently, the two-step estimator still outperforms all

the others and is still robust regardless of the target
location. The SDP estimator performs the worst in low
ranging error condition, however, its superiority is con-
vincingly demonstrated as the error standard deviation
increases to 1 m. There is only less than 2 dB difference
between the SDP and the two-step estimator. The average
MSE of the LLS, and the CLS estimators are compara-
ble. The CLS provides a more accurate estimation in the
center, while the LLS is generally better on the edge.

6.3 High ranging error simulation results
This section presents simulation results with an error
standard deviation of 10 m in a 100 × 100 m area, to

study each estimators’ performance in a high relative
error percentage condition, i.e., Pe > 14%. Although
the ATDOA system generally has less than 14% relative
percentage error, it is still worthwhile to study its per-
formance under high ranging error condition. That is
because the wireless channel varies with high dynamic
range by shadowing and fading effects, which can cause
the ranging accuracy to change significantly.
Figure 7 demonstrates the simulated MSE for the LLS,

SDP, CLS, and the two-step estimators and Table 3 pro-
vides a summary.
As ranging error increases to 10 m, the SDP estimator’s

average error is 0.6 dB less than the two-step estima-
tor, and becomes the most accurate among all estimators.
Although the two-step estimator is not the best performed
under high ranging error condition, it still performs sat-
isfactorily well. The CLS estimator performs consistently
well regardless of the ranging error level. It has a low vari-
ation across the 100 × 100 m area, showcasing its strong
robustness. The LLS estimator does not work well in high
error condition. Its lowest estimation error is comparable
to the maximum estimation error of the other estimators.
Besides, its estimation error is particularly dependent on
the target location.

6.4 Estimation accuracy versus ranging error
Extensive simulations have been conducted to evaluate
the performance of the two-step and the CLS algo-
rithm under varying ranging errors and to compare
their performance against the LLS, SDP, and the CRLB.
Unlike Section 6.1 to Section 6.3, we fix the target
node location and vary the ranging error magnitude,

Fig. 6 Simulated MSE with a ranging error of 1 m
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Table 2 Summary of the simulated MSE with a ranging error of
1 m

Medium ranging error simulation results summary

Estimators Mean (dB) STD (dB) Maximum (dB) Minimum (dB)

LLS 16.8 0.6 28.3 12.0

SDP 11.8 0.2 15.9 7.4

CLS 17.2 1.0 24.3 10.2

Two-step 10.0 0.2 14.3 6.9

so we can compare their performance from a different
angle.
Figures 8 and 9 depict the MSE versus ranging error

with the target node located at (30, 40) m and (80, 20) m,
respectively. It is observed that when the ranging error is
relatively small, the two-step estimator closely follows the
CRLB and outperforms the other estimators. When the
ranging error becomes large, the two-step estimator’s per-
formance is still highly satisfactory. The CLS algorithm
achieves high accuracy but with slightly degraded per-
formance relative to the two-step estimator. The greatest
advantage of the CLS estimator is its simplicity and rela-
tively good performance. In addition, its fast convergence
adds high potential for real-time tracking. The SPD esti-
mator performs poorly when the ranging error is below
−7 dB, but at high ranging error condition, it achieves
better accuracy than the two-step estimator and the oth-
ers. The LLS estimator’s MSE curve is almost a straight
line, implying its accuracy being tightly dependent on the
ranging error. In general, the LLS estimator’s performance
is poor.

6.5 Algorithm complexity
The complexity of many interior-point algorithms for
solving SDP problems was studied in [43–45] and the ref-
erences therein. One of the well-known results in the lit-
erature is that it takesO(n) iterations, where n denotes the
size of thematrix variable involved, for the so-called large-
step algorithm described in [45] to converge, where each
iteration employs a Nesterov-Todd (N-T) search direction
[43]. Since the complexity of computing an N-T direction
in terms of number of multiplications is known to be in
the order ofO(mn3 +m2n2) wherem denotes the number
of equality constraints involved [43], the complexity of the
SDP algorithm in [45] is in the order ofO(mn4+m2n3). In
the context of the SDP problem in Eq. (14) where both the
matrix size and the number of equality constraints are in
the order of M, the complexity of solving problem (14) is
in the order ofO(M5). Furthermore, the complexity of the
second step in the algorithm in Section 4 is dominated by
the computations required to compute the increment vec-
tor �x in Eq. (20), which is essentially equivalent to that
of solving the positive definite linear system of equations

(ATW−1A)�x = ATWb. (36)

It is well known that the complexity of solving the above
system of equations is about M3/3. Since the algorithm
needs to solve the SDP problem (14) only once plus K
iterations in step two, the complexity of the algorithm in
Section 4 is in the order of O(M5) + KM3/3.
For comparison, the complexity of K̂ CLS iterations is

in the order of (K̂M3)/3 because the dominating compu-
tation required in each CLS iteration is to evaluate vector

Fig. 7 Simulated MSE with a ranging error of 10 m
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Table 3 Summary of the simulated MSE with a ranging error of
10 m

Medium ranging error simulation results summary

Estimator Mean (dB) STD (dB) Maximum (dB) Minimum (dB)

LLS 34.8 1.2 65.2 30.4

SDP 29.4 0.7 34.0 21.5

CLS 33.1 0.4 35.9 28.7

Two-step 30.0 0.3 38.6 26.9

H−1(xi) · ∇b(xk ,φk) which can be done by solving the
positive definite linear system of equations

H(xi)dk = ∇b(xk ,φk) (37)

for dk . We remark that above complexity analysis for the
CLS method does not take the SVD of matrix B into
account because B is a constant matrix (see Eq. (22b))
whose SVD can be performed off-line before the system
starts to operate.

7 Conclusions
An ATDOA positioning system and two associated loca-
tion estimation algorithms are presented in this paper.
The distinct advantage of the ATDOA system is that no
clock synchronization is needed. Therefore, the complex-
ity of the system can be reduced significantly. Besides,
by properly selecting the anchor Rx node, the ATDOA
system can achieve superior performance. In practice, as

noise variance is dependent on the ranging distance, we
have adopted a distance-dependent noise model to derive
CRLB and to conduct simulations.
More importantly, two new localization algorithms,

namely, the two-step and constrained LS algorithms have
been proposed to provide position estimation in the
ATDOA system. The two-step estimator combines the
SDP and Taylor series methods to achieve global conver-
gence and superior estimation accuracy. The constrained
LS algorithm obtains good performance while keeps the
computational complexity low, and the convergence speed
is fast. Simulation results indicate that both estimators
are able to achieve great performance regardless of the
measurement error level. For the time-based localization
systems, such as TOA, TDOA, ATDOA, and so on, the
ranging error is relatively low, and under this condition,
the two-step estimator achieves the best accuracy. In addi-
tion, its estimation accuracy is quite consistent regardless
of the target node location and ranging error. Therefore,
it can be applied in applications where accuracy is the
most critical. The CLS estimator’s performance is slightly
worse than the two-step estimator, nevertheless, it con-
sumes less CPU time and requires lower computational
complexity. Hence, it is very useful in real-time systems
and mobile devices where battery life and computational
capability is limited. In this regard, these two algorithms
may be considered as a complementary pair of solution
tools that provide the system designer with more than one
option for an appropriate trade-off between accuracy and
complexity.
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Fig. 8 Algorithms comparison measured at (30 and 40 m)
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Fig. 9 Algorithms comparison measured at (80 and 20 m)

Appendix. proof of result (14)
By denoting hi = ‖x − xi‖ and h =[ h1, h2, · · · , hM]T ,
and dropping the terms in (13) that have no effects on the
minimization, the ML cost function can be expressed as a
constrained optimization problem,

argmin
x,h

M∑

i=2

hi2 + 2 · hi · h1 + h12

σ 2
i

− 2 · hi (‖xi − x1‖ + ri) + 2 · h1 (‖xi − x1‖ + ri)
σ 2
i

(38a)
subject to:
hi = ‖x − xi‖. (38b)

The cost function in (38a) remains non-linear because
of the terms h2i , hi ·h1, and h21. By introducing a parameter
H = hhT and letting hih1 = hi1, the problem at hand
becomes

argmin
x,h,R

M∑

i=2

hii + 2 · hi1 + h11
σ 2
i

− 2 · hi (‖xi − x1‖ + ri) + 2 · h1 (‖xi − x1‖ + ri)
σ 2
i

(39a)
subject to:
H = hhT (39b)
hii = xTx + xTi xi − 2xTi x, i = 1, 2, . . . ,M. (39c)

Furthermore, by introducing a new variable z = xTx
to linearize constraint (39c), the above problem can be
relaxed to a standard SDP problem which yields the result
of (14).

Funding
This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada under Grant 261524.

Authors’ contributions
SH and XD developed the system model and the CR lower bound. SH and
W-SL formulated the optimization algorithms, SH performed simulation, and
all authors contributed to the interpretation of the results and writing of the
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 10 June 2016 Accepted: 21 March 2017

References
1. A De Angelis, M Dionigi, A Moschitta, R Giglietti, P Carbone,

Characterization and modelling of an experimental UWB pulse-based
distance measurement system. IEEE Trans. Instrum. Meas. 58(5),
1479–1486 (2009)

2. A Cazzorla, G De Angelis, A Moschitta, M Dionigi, F Alimenti, P Carbone, A
5.6-GHz UWB position measurement system. IEEE Trans. Instrum. Meas.
3(62), 675–683 (2013)

3. Y Zhou, CL Law, YL Guan, F Chin, Indoor elliptical localization based on
asynchronous UWB range measurement. Trans. Instrum. Measure., IEEE,
248–257 (2011)

4. Y Wang, X Ma, G Leus, Robust time-based localization for asynchronous
networks. Trans. Signal Process., IEEE, 4397–4410 (2011)

5. T Wang, Ranging energy optimization for a TDOA-based distributed
robust sensor positioning system. Intl. J. Distributed Sensor Netw, 1–12
(2010)

6. B Zhen, HB Li, R Kohno, in Proc. IEEE Mobile andWireless Communications
Summit. Clock management in ultra-wideband ranging, (2007), pp. 1–5

7. S He, Asynchronous time difference of arrival positioning system and
implementation. PhD thesis, University of Victoria, Department of
Electrical and Computer Engineering (2016)



He et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:64 Page 14 of 14

8. YT Chan, HYC Hang, P Ching, Exact and approximate maximum likelihood
localization algorithms. IEEE Trans. Vehicular Technol. 55(1), 10–16 (2006)

9. G Destino, G Abreu, On the maximum likelihood approach for source and
network localization. IEEE Trans. Signal Process. 59(10), 4954–4970 (2011)

10. A Coluccia, F Ricciato, in Proc. IEEE International Symposium onWireless
Pervasive Computing (ISWPC). On ML estimation for automatic RSS-based
indoor localization, (2010), pp. 495–502

11. HC So, L Lin, Linear least squares approach for accurate received signal
strength based source localization. IEEE Trans. Signal Process. 59(8),
4035–4040 (2011)

12. L Lin, HC So, YT Chan, Accurate and simple source localization using
differential received signal strength. Digital Signal Process. 23(3), 736–743
(2013)

13. BS Yaakov, XR Li, K Thiagalingam, Estimation with applications to tracking
and navigation, vol. 245. (Johh Wiley and Sons, New York, 2001)

14. W Foy, Position-location solutions by Taylor-series estimation. IEEE Trans.
Aerospace Electron. Syst. 2(AES-12), 187–194 (1976)

15. I Güvenç, CC Chong, F Watanabe, H Inamura, NLOS identification and
weighted least-squares localization for UWB systems using multipath
channel statistics. EURASIP J. Adv. Signal Process. 2008(1), 1–14 (2007)

16. MA Spirito, On the accuracy of cellular mobile station location estimation.
IEEE Trans. Vehicular Technol. 50(3), 674–685 (2001)

17. YT Chan, KC Ho, A simple and efficient estimator for hyperbolic location.
IEEE Trans. Signal Process. 42(8), 1905–1915 (1994)

18. J Caffery, J James, in Proc. IEEE Vehicular Technology Conference. A new
approach to the geometry of TOA location, vol. 4, (2000), pp. 1943–1949

19. JO Smith, JS Abel, Closed-form least-squares source location estimation
from range-difference measurements. IEEE Trans. Acoust., Speech. Sig.
Proc. 35(12), 1661–1669 (1987)

20. Y Huang, J Benesty, GW Elko, RM Mersereati, Real-time passive source
localization: A practical linear-correction least-squares approach. IEEE
Trans. Speech Audio Proc. 9(8), 943–956 (2001)

21. KW Cheung, HC So, WK Ma, YT Chan, A constrained least squares
approach to mobile positioning: algorithms and optimality. EURASIP J.
Adv. Signal Process. 2006(1), 1–23 (2006)

22. N Patwari, AO Hero, M Perkins, NS Correal, RJ O’dea, Relative location
estimation in wireless sensor networks. IEEE Trans. Signal Process. 51(8),
2137–2148 (2003)

23. C Chang, A Sahai, in Proc. IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks. Estimation bounds for
localization, (2004), pp. 415–424

24. A Goldsmith,Wireless Communications. (Cambridge University Press,
Cambridge, 2005)

25. T Jia, RM Buehrer, in Proc. IEEE Military Communications Conference. A new
Cramer-Rao lower bound for TOA-based localization (IEEE, 2008), pp. 1–5

26. SM Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation
Theory. (Prentice Hall, New Jersey, 1993)

27. K Lui, F Chan, H So, Semidefinite programming approach for
range-difference based source localization. IEEE Trans. on Signal Process,
1630–1633 (2009)

28. GH Golub, CF Van Loan,Matrix computations. (Johns Hopkins University
Press, Baltimore, 1996)

29. A Antoniou, W-S Lu, Practical optimization: algorithms and engineering
applications. (Springer, New York, 2007)

30. M Grant, S Boyd, Y Ye, CVX: Matlab software for disciplined convex
programming (2008). Available at http://cvxr.com/cvx

31. C Zhang, MJ Kuhn, BC Merkl, AE Fathy, MR Mahfouz, Real-time
noncoherent UWB positioning radar with millimeter range accuracy:
theory and experiment. IEEE Trans. Microwave. Theory Tech. 58(1), 9–20
(2010)

32. HA Shaban, MA El-Nasr, RM Buehrer, Localization with sub-millimeter
accuracy for UWB-based wearable human movement radar systems. J.
Electromagn. Waves Appl. 25(11–12), 1633–1644 (2011)

33. C Meier, A Terzis, S Lindenmeier, in Proc. IEEE International Microwave
Symposium. A robust 3D high precision radio location system, (2007),
pp. 397–400

34. Ubisense, Ubisense. https://ubisense.net/en
35. Zebra, DART UWB. http://www.zebra.com
36. Time Domain, PulsON 410. http://www.timedomain.com/
37. decaWave, ScenSor. http://www.decawave.com/products

38. G Ossberger, T Buchegger, E Schimbäck, A Stelzer, R Weigel, in Proc. IEEE
International Workshop on UltraWideband Systems Joint with Conference on
Ultrawideband Systems and Technologies. Non-invasive respiratory
movement detection and monitoring of hidden humans using ultra
wideband pulse radar, (2004), pp. 395–399

39. G Selimis, J Romme, H Pflug, K Philips, G Dolmans, H de Groot, in Proc. IEEE
International Symposium on Personal Indoor andMobile Radio
Communications (PIMRC). Sub-meter UWB localization: Low complexity
design and evaluation in a real localization system, (2013), pp. 186–191

40. P Pivato, L Palopoli, D Petri, Accuracy of RSS-based centroid localization
algorithms in an indoor environment. IEEE Trans. Instrum. Meas. 60(10),
3451–3460 (2011)

41. K Whitehouse, C Karlof, D Culler, A practical evaluation of radio signal
strength for ranging-based localization. ACM SIGMOBILE Mobile Comput.
Commun. Rev. 11(1), 41–52 (2007)

42. M Sugano, T Kawazoe, Y Ohta, M Murata, in Proc. IASTED Int. Conf. WSN.
Indoor localization system using RSSI measurement of wireless sensor
network based on ZigBee standard, (2006), pp. 1–6

43. E Nesterov, J Todd, Primal-dual interior-point methods for self-scaled
cones. SIAM J. Optimization. 8(2), 324–364 (1998)

44. A Potra, J Wright, Interior-point methods. J. Comput. Appl. Math. 124(1),
281–302 (2000)

45. D Monteiro, First-and second-order methods for semidefinite
programming. Math. Program. 97(1–2), 209–244 (2003)

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://cvxr.com/cvx
https://ubisense.net/en
http://www.zebra.com
http://www.timedomain.com/
http://www.decawave.com/products

	Abstract
	Keywords

	Introduction
	System model
	Cramer-Rao lower bound
	A high accuracy two-step localization algorithm
	A low complexity constrained least-squares localization algorithm
	Simulation results
	Low ranging error simulation results
	Medium ranging error simulation results
	High ranging error simulation results
	Estimation accuracy versus ranging error
	Algorithm complexity

	Conclusions
	Appendix. proof of result (14)
	Funding
	Authors' contributions
	Competing interests
	Publisher's Note
	References

