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Abstract

Puncturing is one of the methods of increasing the code rate, and the original code before puncturing is called the
mother code. Any (N, K) convolutional code is obtainable by puncturing some (n, 1) mother codes. The objective of a
blind recognition of a channel code is to obtain its generator from the intercepted noisy bit stream. The process of
the blind recognition of punctured convolutional codes consists of two parts: the reconstruction of the PGM of the
(N, K) punctured convolutional code and the searching process of the mother code and its puncturing pattern. The
process of finding the mother code is important for designing the optimum channel decoder. In this paper, a new
searching algorithm with the computational complexity of O(K4) polynomial operations is proposed, compared to
the existing searching algorithm by M. Cluzeau which requires O(K6) polynomial operations.

Keywords: Punctured convolutional code, Mother code, Blocked convolutional code, Polynomial generator matrix

1 Introduction
In most of the digital communication systems through
a noisy channel, the use of an error correction code is
necessary for protecting the message from noise. In an
attack context, the adversary wants to retrieve the mes-
sage from the intercepted noisy bit stream without any
prior knowledge of the channel codes used. For this pur-
pose, finding out the code parameters such as code length,
code dimension, and code generator is essential. This pro-
cess is called the blind recognition of channel codes or the
reconstruction of channel codes.
Rice [1] was the first to propose a method for the recon-

struction of the convolutional codes of rate 1/n, and Filiol
[2] generalized it for all rates. Barbier [3] improved Filiol’s
technique using algebraic approach. Most of the recon-
struction algorithms begin with the finding of n, the code
length. Once the code length is recognized, the searching
process for the generator matrix or the polynomial gen-
erator matrix starts. In the case of the reconstruction of
punctured convolutional codes, an additional searching
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algorithm for finding mother code follows after the recog-
nition of the polynomial generator matrix. In this case,
revealing the mother code with its puncturing pattern is
as much important as the recognition of the code itself in
the sense of designing the optimum Viterbi decoder.
Recently, Cluzeau and Finiasz [4] proposed a searching

algorithm for finding mother code in blind recognition of
(N ,K) punctured convolutional codes. In [4], the struc-
ture of the blocked PGM (polynomial generator matrix) of
the mother code is used in finding the PGM of the punc-
tured convolutional code. But, their algorithm has very
high computational complexity especially for large K and
cannot foretell whether the mother code with the specific
puncturing pattern exists or not. The sufficient conditions
for the existence of an (n, 1) mother code and its punctur-
ing pattern to generate a given convolutional code can be
found in [5].
In this paper, we propose an alternative solution for

this searching problem. The proposed algorithm employs
the notion of dual codes and reduces the computational
complexity.
The paper is organized as follows. The original idea

in [4] of getting the PGM of the punctured convolu-
tional codes from the blocked PGM of the mother code is
reviewed in Section 2. In Section 3, we briefly introduce
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the existing algorithm in [4], propose a new reconstruc-
tion algorithm with the validity proof, and then compare
the performance of each algorithm. Our conclusion is
drawn in Section 4.

2 Punctured convolutional codes
A convolutional code is one of the most widely used chan-
nel codes. An (N ,K) convolutional code is described by
two parameters K and N, the number of input and out-
put symbols, respectively. The rate K to N is called the
code rate R = K/N . An (N ,K) convolutional code is char-
acterized by a (K × N) PGM G(D) = [

gi,j(D)
]
, where

gi,j(D) ∈ F2[D] and D represents the delay operator. The
encoding process can be described by

c(D) = m(D)G(D) (1)

where m(D) is the message sequence vector and c(D)

is the coded sequence vector. Since the set of coded
sequence vectors forms aK-dimensional vector space, two
distinct PGM G1(D) and G2(D) may yield the same set
of coded sequence vectors. In this case, the two PGM are
said to be equivalent. The formal definition of equivalence
is given below.

Definition 1 Two (N ,K) convolutional encoders G1(D)

and G2(D) are equivalent if and only if there exist a K ×
K polynomial matrix T(D) with rank K, called transition
matrix, over F2(D) such that

G1(D) = T(D)G2(D). (2)

The dual code of an (N ,K) convolutional code has an
(N − K) × N PGM H(D) satisfying that

G(D)H(D)T =[ 0] . (3)

A common way to generate a high-rate convolutional
code is by puncturing a low rate (n, 1) code, called the
mother code. A punctured convolutional code is obtained
through a periodic deletion of encoded symbols generated
from the mother code. The pattern of deleting symbols
is called the puncturing pattern. The PGM of the punc-
tured convolutional code can be derived from that of the
mother code [4]. Here, we briefly review the notion of K-
times blocked code introduced in [4]. The (n, 1) mother
code can be viewed as an (nK ,K) code called the K-
times blocked code withK parallel inputs and nK outputs.
The first step of representing the PGM of the K-times
blocked code is obtaining the polynomials gl(D)’s from
the polynomial g(D). For a polynomial g(D) = ∑

i aiDi,
let Dlgl

(
DK )

, 0 ≤ l ≤ K − 1, denote the part of g(D)

consisting only of the terms of degree l mod K, so that
g(D) = ∑K−1

l=0 Dlgl
(
DK )

. Using the polynomials gl(D)’s,

we can define −→vK (g(D)) given below as the mod−K repre-
sentation of the polynomial g(D).

−→vK (g(D)) = (
gK−1(D), gK−2(D), · · · , g0(D)

)T (4)

Now, assume that the PGM GM(D) of the (n, 1) mother
code is given as

GM(D) =
[
g(0)(D) g(1)(D) · · · g(n−1)(D)

]
. (5)

Then, the PGM GB(D) of the K-times blocked code can
be expressed as

GB(D) =
(
ZK−1 × M| · · · |Z × M|M

)
, (6)

where Z is the K × K matrix given as

Z =

⎡

⎢
⎢
⎢
⎣

0
... IK−1
0
D 0 · · · 0

⎤

⎥
⎥
⎥
⎦

(7)

and M is the K × n matrix whose l-th column is−→vK
(
g(l)(D)

)
.

Finally, the PGM GP(D) of the (N ,K) punctured con-
volutional code is obtained from GB(D) by deleting the
corresponding columns indicated in the puncturing pat-
tern. Usually, the puncturing pattern is an n × K binary
matrix. To a given puncturing pattern, we can associate
a mapping φ : ZN → ZnK which maps the index i of a
column of GP(D) into the φ(i)-th column of GB(D). From
(6), we can see that the i-th column GP(D)i of GP(D) is
represented as

GP(D)i = GB(D)φ(i) = ZK−1−q−→vK
(
g(r)(D)

)
, (8)

where φ(i) = qn + r, 0 ≤ q ≤ K − 1, 0 ≤ r ≤ n − 1. Now,
let us take an example.

Example 1 Assume that the (4, 3) punctured convolu-
tional code is obtained from a (2, 1) mother code by the

puncturing pattern P =
[
1 0 1
0 1 1

]
. Assume that the PGM

GM(D) of the mother code is given as

GM(D) =
[
g(0)(D) g(1)(D)

]

= [
1 + D2 + D3 + D7 1 + D + D5 + D7]

Note that K = 3. To obtain GB(D), we should have
the mod−3 representation of g(0)(D) and g(1)(D). Since
g(0)
0

(
D3) = 1+D3, Dg(0)

1
(
D3) = D

(
D6) andD2g(0)

2
(
D3) =

D2, we have
−→v3

(
g(0)(D)

)
= (

1 D2 1 + D
)T .

Similarly, we have
−→v3

(
g(1)(D)

)
= (

D 1 + D2 1
)T .
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Therefore, GB(D) of the three times blocked code is

GB(D) =
⎡

⎢
⎣

g(0)
0 g(1)

0 g(0)
1 g(1)

1 g(0)
2 g(1)

2
Dg(0)

2 Dg(1)
2 g(0)

0 g(1)
0 g(0)

1 g(1)
1

Dg(0)
1 Dg(1)

1 Dg(0)
2 Dg(1)

2 g(0)
0 g(1)

0

⎤

⎥
⎦ ,

and since φ(0) = 0, φ(1) = 3, φ(2) = 4, and φ(3) = 5,
GP(D) of the (4, 3) punctured code is obtained from GB(D)

by deleting the second and the third columns as

GP(D) =
⎡

⎢
⎣

g(0)
0 g(1)

1 g(0)
2 g(1)

2
Dg(0)

2 g(1)
0 g(0)

1 g(1)
1

Dg(0)
1 Dg(1)

2 g(0)
0 g(1)

0

⎤

⎥
⎦

=
⎡

⎣
1 + D 1 + D2 1 D
D 1 D2 1 + D2

D3 D2 1 + D 1

⎤

⎦

Note that −→vK (Dg(D)) can be expressed as
−→vK (Dg(D)) = (

gK−2(D), · · · , g0(D),DgK−1(D)
)T

= Z−→vK (g(D))

whereZ isK×K matrix shown in (7) satisfyingZK = DIK .
Extending this property, we can easily derive the following
Lemma.

Lemma 1
−→vK (a(D)g(D)) = a(Z)

−→vK (g(D))

for any a(D) ∈ F2[D]
(
mod ZK + DIK

)
. (9)

3 Reconstruction algorithms for (n, 1)mother
code of (N,K) convolutional code

In this section, we first explain the settings of the recon-
struction problem, describe the existing algorithm in [4]
and our proposed algorithm, and then compare their
complexity.

3.1 Description of the reconstruction problem
In [4], for the recognition of the puncturing pattern P
and the PGM GM(D) of the rate 1/n mother code of the
punctured convolutional code of rate K/N , it is assumed
that the the K × N G(D) of the punctured convolu-
tional code are given from the existing reconstruction
algorithms (for example, the one in [3]), so that the recon-
struction is focused on recovering the puncturing pattern
P and GM(D) of the mother code of rate 1/n. As one can
see in [5], equivalent codes to a given punctured code
can be obtained from different P’s with different mother
codes. So GM(D) has to be searched for all possible P.
The searching for GM(D) is starting from the smallest n
such thatK/N exceeds 1/n. And then, for a selected punc-
turing pattern P, GP(D) is constructed as in Example 1
and checked if it is equivalent to G(D). Once GM(D) has
been found, it is transformed into the canonical form.

And finally, the puncturing pattern P and GM(D) with the
smallest degree is selected.
The major difference between the algorithm in [4] and

our proposed algorithm is the method of checking the
equivalence. Since the equivalence of GP(D) to G(D) is
defined as

GP(D) = T(D)G(D) (10)

where T(D) is a K×K transition matrix, the existing algo-
rithm tries to find out T(D) satisfying (10). On the other
hand, our proposed algorithm checks if GP(D) satisfies

GP(D)H(D)T =[ 0] , (11)

where H(D) is the dual of G(D) which is already on hand
since most of the reconstruction algorithm (including the
one in [3]) provides H(D) instead of G(D).

3.2 The existing algorithm
The existing algorithm tries to solve for T(D) satisfying
(10). From (8), for i < j such that φ(i) ≡ φ(j) mod n, we
have

Z(φ(j)−φ(i))/nGP(D)j = GP(D)i. (12)

Thus, in [4], using (10), the following set of equations
are obtained.

∀i, j such that φ(i) = φ(j)mod n,
Z(φ(j)−φ(i))/nT(D)G(D)j = T(D)G(D)i. (13)

They showed that for a properly selected puncturing
pattern, they can have enough number of independent
equations for obtaining K2 unknowns, and this linear
system can be easily solved.
The process of calculating T(D) is out of the scope of

this paper, so only the complexity of the existing algorithm
will be dealt with in the Subsection 3.4. The following
simple example explains how the mother code is obtained
in [4].

Example 2 Find GM(D) of rate 1/2 equivalent to the
(4, 3) convolutional code whose PGM and puncturing pat-
tern are shown below.

G(D) =
⎡

⎣
D 1 + D 1 + D + D2 1
1 1 + D 1 + D + D2 0
1 1 D 0

⎤

⎦ , P =
[
1 0 1
0 1 1

]

From (12), we can write down 2 vector equations.

T(D)

⎡

⎣
D
1
1

⎤

⎦ = Z2T(D)

⎡

⎣
1 + D + D2

1 + D + D2

D

⎤

⎦ ,

T(D)

⎡

⎣
1 + D
1 + D
1

⎤

⎦ = ZT(D)

⎡

⎣
1
0
0

⎤

⎦ ,
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where T(D) =
⎡

⎣
t0,0(D) t0,1(D) t0,2(D)

t1,0(D) t1,1(D) t1,2(D)

t2,0(D) t2,1(D) t2,2(D)

⎤

⎦. Since we have

6 linearly independent equations with 9 unknowns, we can
freely set the value of 3 unknowns. For example, if we set

T(D) =
⎡

⎣
0 0 D2

t1,0(D) t1,1(D) t1,2(D)

t2,0(D) t2,1(D) t2,2(D)

⎤

⎦

and solve the system, we have

T(D) =
⎡

⎣
0 0 D2

D2 1 + D3 1 + D4

D + D2 D D2 + D3

⎤

⎦ .

Thus, we have

GP(D) = T(D)G(D)

=
⎡

⎣
D2 D2 D3 0
D4 D + D2 1 D2

D 0 D2 D + D2

⎤

⎦

And finally, we have the mother code GM(D) as

GM(D) = [
1 + D3 + D4 + D5 + D6 D2]

3.3 The proposed algorithm
Our proposed algorithm uses (11) instead of (10) to obtain
GP(D). Let H(D) =[ h(i,j)(D)] be (N − K) × N dual PGM,
where h(i,j)(D) ∈ F2[D]. Then, (11) can be expressed as

N−1∑

i=0
hj,i(D)GP(D)i = 0 (14)

for 0 ≤ j ≤ N − K − 1.
As shown in (8), we know that the column vectors

GP(D)i’s are of the form Zu−→vK
(
g(r)(D)

)
for some u, 0 ≤

u ≤ K − 1, and r, 0 ≤ r ≤ n − 1. Thus, by substituting
(8) into (14) and regrouping those columns GP(D)i such
that φ(i) ≡ r (mod n), (14) can be transformed into the
following set of equations,

n−1∑

r=0
S(j)
r (Z)

−→vK
(
g(r)(D)

)
= 0, (15)

for 0 ≤ j ≤ N − K − 1. Note that S(j)
r (Z) is the poly-

nomial of Z of degree less than K over F2[D]. In (15),
if all the nonzero coefficient matrices S(j)

r (Z) are invert-
ible and the number of independent equations among the
(N − K) equations in (15) is less than n, then we can find
all −→vK

(
g(r)(D)

)
’s so in turn, the (n, 1) mother code. Now,

in the following example, let us show how the proposed
algorithm applies to the same code in Example 2.

Example 3 Consider the same (4, 3) convolutional code
in Example 2. The dual matrix can be easily derived as

H(D) = [
1 1 + D2 D 1 + D

]

For the puncturing pattern P =
[
1 0 1
0 1 1

]
and the rate

1/2 mother code gM(D) = [
g(0)(D) g(1)(D)

]
, GP(D) can

be written as

GP(D) =
[
Z2g(0)(D) Zg(1)(D) g(0)(D) g(1)(D)

]
,

where g(r)(D) implies −→v3
(
g(r)(D)

)
. The condition in (14)

gives us

S(0)
0 (Z)g(0)(D) = S(0)

1 (Z)g(1)(D), (16)

where S(0)
0 (Z) = Z2 +DI and S(0)

1 (Z) = (
1 + D2)Z+ (1+

D)I.
By setting g(1)(D) = 1, we have g(0)(D) = D−2 + D +

D2 +D3 +D4 from (16). By multiplying D2 to both g(0)(D)

and g(1)(D), we get the same GM(D) as in Example 2. And
finally, we have to check whether GP(D) has rank 3 to
ensure GM(D) to be the true mother code.

The remaining part is the proof of the invertibility of
S(j)
r (Z)’s. We will show that any nonzero S(j)

r (Z) is nonsin-
gular by proving the set of all possible S(j)

r (Z)’s form a field.
The following lemma is well known from [6].

Lemma 2 Let F be any field. Then, F[ x] (modm(x)) is a
field if m(x) is an irreducible polynomial.

Theorem 1 Let F2(D) be the quotient field of the poly-
nomial ring F2[D]. Let Z be the K × K matrix given in (7).
Then, F2(D)[Z]

(
mod ZK + DIK

)
is a field.

Proof Due to Lemma 2, it is enough to show that
ZK + DIK is irreducible. Assume the contrary, then
ZK + DIK must have a factor Zl + cl−1(D)Zl−1 + · · · +
c1(D)Z + c0(D)I for some l < K , which implies that
the matrices I,Z,Z2, . . . ,Zl must be linearly dependent.
But the first rows of the matrices I,Z, . . . ,ZK−1 are
[ 1 0 0 · · · 0], [ 0 1 0 · · · 0], [ 0 0 1 · · · 0], · · · , [ 0 0 0 · · · 1]
whichmeans that they are all linearly independent. There-
fore, F2(D)[Z] (mod ZK + DIK is a field.

3.4 Complexity comparison
In this section, we will compare the computational com-
plexity of the previous algorithm and the proposed algo-
rithm. For the comparison, we will set the unit operation
to be a polynomial multiplication. In the previous algo-
rithm, for a given puncturing pattern, we have to solve
l, K(N − n) ≤ l ≤ K(N − 1) independent equations,
each having K2 unknowns. Finding the bases of the solu-
tion space with Gaussian elimination for a linear system in
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K2 unknowns will require O(K6) polynomial operations,
since the complexity of solving the linear system in K2

unknowns is the same as the complexity of finding inverse
matrix of K2 × K2 matrix in big-O notation. In the pro-
posed algorithm, the linear systems we have to solve is
given in (15). We can solve (15) by simple Gauss elimi-
nation. It is not difficult to see that solving (15) requires
at most n matrix inversions and n2 + 2n matrix multipli-
cations of S(j)

r (Z)’s. Note that S(j)
r (Z)’s are polynomials of

Z given in (7). Due to the structural property of Zl, the
inversions and multiplications of S(j)

r (Z) requires only the
computations of their first rows. Thus, the computational
complexity of these K ×K matrices S(j)

r (Z)’s is not O
(
K3)

but O
(
K2). Therefore the overall complexity of the pro-

posed algorithm is O
(
K2n2

) ≈ O
(
K4). The remaining

issue of analysis is that is the validity of setting a polyno-
mial operation as unit operation, since the complexity of
the polynomial operation(meaning the multiplication of
two polynomials) is dependent on the degrees of the poly-
nomials. In [4], the polynomials of interest are the entries
of G(D), whereas the polynomials of interest in the pro-
posed algorithm are the entries of the first row of S(j)

r (Z),
which are the polynomials in H(D). It is very difficult to
estimate the degrees of the polynomials in H(D) from
these in G(D). The maximal degree of the polynomials in
H(D) can be either greater or less than that of the poly-
nomials in G(D). Our complexity comparison is based on
the assumption that both degrees are almost the same. In
our example 2, both degrees are the same as 2. It can be
easily shown that the maximal degree of the polynomi-
als in H(D) is at most K times that of the polynomials in
G(D). Even in this worst case, the computational complex-
ity of our proposed algorithm is no more than O

(
K6), the

complexity of the algorithm in [4].

4 Conclusions
In this paper, we propose a new searching algorithm
for reconstructing (n, 1) mother code and its punctur-
ing pattern. While the existing algorithm is based on
the equivalence of G(D) and GP(D), the proposed algo-
rithm uses the dual relation betweenH(D) andGP(D). We
showed that the linear system derived from the dual rela-
tion GP(D)TH(D) =[ 0] can be easily solved by doing at
most nmatrix inversions and atmost n2+2nmatrixmulti-
plications of theK×K coefficient matrices S(j)

r (Z)’s having
a nice structural property, so that the computational com-
plexity of the proposed algorithm is onlyO(K4) compared
to that of the existing algorithm O(K6). An additional
advantage of the proposed algorithm is that the mother
code can be recognized without computing G(D) of the
punctured convolutional code since most of the convolu-
tional code recognition algorithm provides H(D) before
deriving G(D).
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