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Abstract

A robust resource allocation (RA) algorithm for cognitive relay networks with multiple primary users considering joint
channel uncertainty and interference uncertainty is proposed to maximize the capacity of the networks subject to the
interference threshold limitations of primary users’ receivers (PU-RXs) and the total power constraint of secondary
user’s transmitter and relays. Ellipsoid set and interval set are adopted to describe the uncertainty parameters. The
robust relay selection and power allocation problems are separately formulated as semi-infinite programming (SIP)
problems. With the worst-case approach, the SIP problems are transformed into equivalent convex optimization
problems and solved by Lagrange dual decomposition method. Numerical results show the impact of channel
uncertainties and validation of the proposed robust algorithm for strict guarantee the interference threshold
requirements at different PU-RXs.

Keywords: Cognitive relay networks, Robust resource allocation, Channel and interference uncertainty, Worst-case
approach, Lagrange dual decomposition method

1 Introduction
Cognitive radio (CR) is a promising technology to allevi-
ate the looming spectrum scarcity crisis by opportunistic
accessing the licensed spectrum [1]. In underlay mode of
CR networks (CRNs), secondary users (SUs) can share
the same radio spectrums allocated to primary users
(PUs), provided that the interference to PUs’ receivers
(PU-RXs) generated by SUs’ transmitters (SU-TXs) are
below the specified interference thresholds [2]. At the
same time, orthogonal frequency division multiplexing
(OFDM) is widely accepted as a potential air interface
physical layer technology for CRNs owing to its high
flexibility for allocating radio resources [3]. In OFDM-
based CRNs, SUs adopt OFDM modulation and cannot
cause mutual interference. However, there exists the sce-
nario of severe channel attenuation between the pair
of SUs, and large power requirement for reliable data
transmission can bring harmful interference to PU-RXs
and degrade system performance in both CRNs and the
licensed networks. Therefore, end to end transmission for
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conventional CRNs cannot satisfy the quality of service
(QoS) requirements of PUs.
In order to increase spectrum efficiency, extend cover-

age area, and achieve spatial diversity gain, cooperative
relay technique is introduced into CRNs [4–6]. Decode-
and-forward (DF) [7] and amplify-and-forward (AF) [8]
are most widely known relay transmission protocols. In
DF case, relay decodes the signal received from cognitive
source, encodes it, and forwards the regenerated signal to
cognitive destination. As for AF protocol, relay amplifies
the signal received from cognitive source with amplify fac-
tor and then forwards it to cognitive destination. With the
help of cooperative relays, the transmit power of cognitive
source is reduced and the interference to PU-RXs is miti-
gated, which can prohibit the performance degradation of
primary network.
Resource allocation (RA) is a very important issue for

CRNs with cooperative relays, which can further improve
the system performance. Most existing literatures on RA
for OFDM-based relay CRNs assume that perfect channel
state information (CSI) is available [9, 10]. In [9], a joint
subcarrier selection and power allocation scheme using
variational inequality in OFDM-based cognitive relay net-
works is proposed to maximize the system throughput. In
[10], an asymptotically optimal subcarrier pairing, relay
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selection, and power allocation scheme is obtained in DF
relayed OFDM-based cognitive system under the individ-
ual power constraints in source and relays. These opti-
mization problems with perfect CSI are referred as the
nominal problems [11]. Due to time varying and ran-
dom nature of wireless system, this assumption is invalid.
Therefore, the solutions to nominal problems are not
robust.
Robust optimization theory has been applied in CRNs

to overcome uncertainty parameters in nominal problems
in recent years [12, 13]. Worst-case approach [14] and
Bayesian approach [15] are widely used in robust opti-
mization problems. For worst-case approach, uncertainty
parameters belong to a predefined uncertainty region, so
that this approach can strictly guarantee QoS of PU-RXs
for all realizations of the uncertainty in that region. Cur-
rently, most works on worst-case approach focus on how
to find a proper set to describe the characteristics of the
uncertainty parameters. However, there is no unified way
to define an uncertainty set, and the main principle is
to preserve the convexity of the original nominal prob-
lem and obtain a solvable optimization problem. In [16],
the authors study robust beamforming and power allo-
cation problem in cognitive relay networks with imper-
fect CSI modeled by Gaussian random variables. In [17],
the robust ergodic uplink resource allocation problem
for secure communication with imperfect CSI in relay-
assisted CRNs is investigated. The channel uncertainty
set is represented by an ellipsoid uncertainty region. In
[18], the authors study robust worst-case interference
control and use general norm and polyhedron model
to describe channel uncertainty set in underlay CRNs.
Bayesian approach handles uncertainty parameters with
certain statistical properties and satisfies QoS of PU-RXs
in a probabilistic manner. Generally, worst-case approach
is more appealing since the interference to PU-RXs should
be below the interference threshold under any circum-
stances, even in the presence of the worst-case scenario.
Recently, some research works have been conducted

on robust RA in cognitive relay networks consider-
ing the impacts of uncertainty parameters [19–21]. In
[19], the authors propose a joint relay pre-coder and
power allocation design to minimize the sum mean-
square error (MSE) of the transceiver node with channel
uncertainties between SU and SU. In [20], the out-
age performance of cognitive relay networks is ana-
lyzed with the channel uncertainties between SU and
PU. In [21], robust resource allocation problem for
cooperative CRNs is optimized with the channel uncer-
tainties between SU and SU, SU and PU. However,
the interference uncertainty is not considered in these
works.
Different from most existing literatures, this paper

investigates the robust RA problem for OFDM-based

cognitive relay network with multiple PUs, where chan-
nel uncertainty and interference uncertainty are all con-
sidered. Ellipsoid set and interval set are jointly used
to characterize the uncertainty region sets. Under the
total power budget constraint of SU-TX and relays,
the optimization objective is to maximize capacity
of the cognitive relay network while maintaining the
interference to PU-RXs under their prescribed thresh-
olds. The major contributions of this work are as
follows.

1. Robust RA problem is solved through robust relay
selection and power allocation separately under the
consideration of both channel uncertainty and
interference uncertainty characterized by ellipsoid
set and interval set.

2. Robust relay selection and power allocation problems
are formulated as semi-infinite programming (SIP)
problems. And they are converted into equivalent
convex optimization by worst-case approach and
solved by Lagrange dual decomposition method.

3. Closed form analytical solutions to robust relay
selection and power allocation have been derived.
Numerical results show that the proposed robust
algorithm outperforms the non-robust ones for
ensuring QoS of multiple PU-RXs under the
influence of the uncertainties.

The rest of this paper is organized as follows. The sys-
tem model and nominal RA problem formulation are
described in Section 2. The robust RA problem is pro-
posed and solved in Section 3. The performance of the
proposed robust algorithm is illustrated with simulation
results in Section 4. Finally, conclusions are drawn and
future works are given in Section 5.

2 Systemmodel and nominal RA problem
formulation

2.1 Systemmodel
We consider an OFDM-based cognitive relay network
with a primary network as shown in Fig. 1. The related
symbol explanations are given in Table 1. It is assumed
that there is no direct link between the cognitive source
(S) and the cognitive destination (D), so that S andD com-
municate with each other throughmultiple relays.We also
assume that there are K relays and N subcarriers. The
relays operate in time division half-duplex mode with DF
protocol. Signal transmissions are conducted in two time
slots. In the first time slot, S transmits signals to relay node
Rk , k ∈ [1 : K]. While in the second time slot, Rk forwards
the regenerated signals to D through the subcarrier which
has the same sequence number as the first time slot. The
capacity of the ith, i ∈ [1 : N] subcarrier in the two time
slots can be expressed as
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Fig. 1 System model
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Table 1 Symbol introduction

Symbol Specification

hiSRk Channel gain of the ith subcarrier transmitted on SRk link

hiRkD Channel gain of the ith subcarrier transmitted on RkD link

PiSRk Transmit power of the ith subcarrier transmitted on SRk link

PiRkD Transmit power of the ith subcarrier transmitted on RkD link

hiSPl Channel gain of the ith subcarrier transmitted from S to the lth

PU-RX (SPl link)

hiRkPl Channel gain of the ith subcarrier transmitted from Rk to the
lth PU-RX (RkPl link)

σ 2
ik Noise power of the ith subcarrier transmitted on SRk link

σ 2
iD Noise power of the ith subcarrier transmitted on RkD link

Jlik Interference power to the ith subcarrier transmitted on SRk
link caused by the lth PU-TX

JliD Interference power to the ith subcarrier transmitted on RkD
link caused by the lth PU-TX

where Ci
SRk and Ci

RkD represent the capacity of the ith sub-
carrier transmitted from S to Rk (SRk link) and from Rk
to D (RkD link), respectively. L is the number of primary
users. J lik and J liD can be modeled as the additive white
Gaussian noise (AWGN) described in [22]. In order to
simplify mathematical analysis, we assume that the inter-
ference power from PU-TXs plus the noise power to the
ith subcarrier in the first time slot and the second time slot
are equal, which can be denoted by σ 2

i = σ 2
ik +∑L

l=1 J lik =
σ 2
iD + ∑L

l=1 J liD as described in [23]. In fact, the achiev-
able rate of each subcarrier is the minimum rate of the two
time slots. Therefore, the capacity of the ith subcarrier for
the cognitive relay network can be given as

Ci
k = min

{
Ci
SRk ,C

i
RkD

}
(3)

As for DF protocol, Ci
k can achieve maximum capac-

ity when the signal to interference plus noise ratio (SINR)
at Rk equals to that at D, then we can have the following
relation for the ith subcarrier as [23]

aikP
i
SRk = bikP

i
RkD (4)

where aik =
∣∣∣hiSRk

∣∣∣2

σ 2
i

, bik =
∣∣∣hiRkD

∣∣∣2

σ 2
i

. We define Hi
k =

∣∣∣hiSRk
∣∣∣2
∣∣∣hiRkD

∣∣∣2
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∣∣∣2+
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∣∣∣2
and αi

k = Hi
k

σ 2
i
to represent the normalized
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channel gain and the equivalent channel gain of the ith
subcarrier in the two time slots, respectively. The total
transmit power on the ith subcarrier in the two time
slots is

Pik = PiSRk + PiRkD (5)

According to (4) and (5), the maximum capacity of the
ith subcarrier can be rewritten as

Ci
k = 1

2
log2

(
1 + αi

kP
i
k
)

(6)

Note that in cognitive relay network, both SU-TX and
relays have to take the interference thresholds of differ-
ent PU-RXs into account. Therefore, the interferences
introduced to the lth PU-RX in the two time slots are

ISPl =
K∑

k=1

N∑
i=1

ρi
kP

i
SRk

∣∣∣hiSPl
∣∣∣2 ≤ Ilth,∀l (7)

IRPl =
K∑

k=1

N∑
i=1

ρi
kP

i
RkD

∣∣∣hiRkPl
∣∣∣2 ≤ Ilth,∀l (8)

where ISPl and IRPl are the interference to the lth PU-RX
from the total subcarriers transmitted between S and all
relays (SR link) and between all relays and D (RD link),
respectively. ρi

k is a binary factor indicating whether the
ith subcarrier is allocated to Rk . And Ilth is the interference
threshold of the lth PU-RX.
According to the definition ofHi

k and Pik , (7) and (8) can
be rewritten as

ISPl =
K∑

k=1

N∑
i=1

ρi
kP

i
kH

i
kG

i
S,k,l ≤ Ilth,∀l (9)

IRPl =
K∑

k=1

N∑
i=1

ρi
kP

i
kH

i
kG

i
k,l,D ≤ Ilth,∀l (10)

where Gi
S,k,l =

∣∣∣hiSPl
∣∣∣2

∣∣∣hiSRk
∣∣∣2
is defined to represent the normal-

ized channel gain of the ith subcarrier for SPl link and SRk

link, and Gi
k,l,D =

∣∣∣hiRkPl
∣∣∣2

∣∣∣hiRkD
∣∣∣2

is defined to describe the nor-

malized channel gain of the ith subcarrier for RkPl link and
RkD link.

2.2 Nominal RA problem formulation
The optimization objective is to maximize the capacity of
the cognitive relay network while maintaining the inter-
ference to PU-RXs below their interference thresholds
under the total power constraint. Mathematically, this
optimization can be formulated as

Nominal RA problem (P0):

max
ρi
k , P

i
k�0

K∑
k=1

N∑
i=1

ρi
k
1
2
log2

(
1 + αi

kP
i
k
)

(11)

subject to

C1 : ISPl ≤ Ilth,∀l
C2 : IRPl ≤ Ilth,∀l
C3 :

∑K
k=1

∑N
i=1 ρi

kP
i
k ≤ Ptotal

C4 :
∑K

k=1 ρi
k = 1,∀i

C5 : ρi
k ∈ {0, 1} ,∀k, i

(12)

where C1 and C2 are the interference constraints of the
lth PU-RX in the first time slot and the second time slot,
respectively. C3 is the transmit power constraint, and
Ptotal is the maximum total transmit power. C4 and C5
are the relay selection constraints to indicate that only one
relay is selected by each subcarrier to guarantee the exclu-
siveness of subcarrier. If ρi

k = 1, Rk is allocated to the ith
subcarrier, otherwise not.
Apparently, P0 is a mixed binary integer programming

problem, and it is difficult to achieve a joint relay selection
and power allocation solution. Therefore, we will solve
this problem by dividing P0 into two sub-problems, i.e.,
relay selection and power allocation separately. Firstly, we
allocate subcarriers to relays through supposing uniform
power distribution over subcarriers (i.e., Pik = Ptotal

N ). Sec-
ondly, power allocation is carried out under the given
relay selection scheme. Note that relay selection scheme
needs to solve a discrete optimization problem, which is
NP-hard. Thus, we relax the integrality constraint on ρi

k
from ρi

k ∈ {0, 1} to ρi
k ∈ (0, 1] and relax

∑K
k=1 ρi

k = 1
to
∑K

k=1 ρi
k ≤ 1, which can transform the discrete opti-

mization problem into a continuous linear optimization
problem [24].
Nominal relay selection problem (P1):

max
ρi
k

K∑
k=1

N∑
i=1

1
2
log2

(
1 + ρi

kα
i
kPtotal
N

)
(13)

subject to

C1 :
∑K

k=1
∑N

i=1 ρi
kH

i
kG

i
S,k,lPtotal ≤ NIlth,∀l

C2 :
∑K

k=1
∑N

i=1 ρi
kH

i
kG

i
k,l,DPtotal ≤ NIlth,∀l

C3 :
∑K

k=1 ρi
k ≤ 1, ∀i

C4 : ρi
k ∈ (0, 1] ,∀k, i

(14)

This time P1 is a convex problem, and we can obtain an
optimal solution to ρi

k after applying Karush-Kuhn-Tucker
(KKT) conditions [24]. Therefore, Rk with maximum ρi

k is
allocated to the ith subcarrier, which can be expressed as

K(i) = argmax ρi
k

k
,∀i (15)
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where K(i) ∈ [1 : K] presents the relay selected by the ith
subcarrier. Under this relay selection scheme, P0 can be
converted into
Nominal power allocation problem (P2):

max
PiK(i)�0

N∑
i=1

1
2
log2

(
1 + αi

K(i)P
i
K(i)

)
(16)

subject to

C1 :
∑N

i=1Hi
K(i)G

i
S,K(i),lP

i
K(i) ≤ Ilth,∀l

C2 :
∑N

i=1Hi
K(i)G

i
K(i),l,DP

i
K(i) ≤ Ilth,∀l

C3 :
∑N

i=1 PiK(i) ≤ Ptotal
(17)

P2 is also a convex optimization problem with linear
constraints so that an optimal power allocation analytical
solution can also be obtained by using KKT conditions.
We define this nominal relay selection and power alloca-
tion algorithm under the assumption of the perfect CSI as
non-robust algorithm.

3 Robust RA algorithm
In cognitive relay networks, channel gain is very impor-
tant information for RA. However, perfect channel gain
is extremely difficult to obtain due to estimation errors,
quantization errors, and feedback delays. The interference
power at relay and SU-RX are also inaccuracy due to the
measurement errors. The assumption of perfect CSI is so
idealistic that it can lead to system performance degra-
dation. In this paper, we study robust RA problem with
joint channel uncertainty and interference uncertainty.
Based on the robust optimization theory, the uncertainty
parameter is modeled by the sum of the estimated value
(i.e., nominal value) and additive error (i.e., perturbation
part). Mathematically, the uncertainty parameter can be
expressed as g = ḡ+Δg, where g is the actual value, ḡ is the
estimated value, and Δg is the estimated error. We adopt
ellipsoid set to describe the channel uncertainty and inter-
val set to describe interference uncertainty respectively.
According to the definition of the ellipsoid uncertainty,
Hi
k , G

i
S,k,l, and Gi

k,l,D can be formulated as

H =
{
Hi
k

∣∣∣∣∣H̄
i
k + ΔHi

k :
N∑
i=1

∣∣ΔHi
k
∣∣2 ≤ ε2l ,∀k,∀l

}
(18)

G =
{
Gi
S,k,l

∣∣∣∣∣Ḡ
i
S,k,l + ΔGi

S,k,l :
N∑
i=1

∣∣ΔGi
S,k,l
∣∣2 ≤ η2l ,∀k,∀l

}

(19)

F =
{
Gi
k,l,D

∣∣∣∣∣Ḡ
i
k,l,D+ΔGi

k,l,D :
N∑
i=1

∣∣ΔGi
k,l,D

∣∣2 ≤ δ2l ,∀k,∀l
}

(20)

where H, G, and F denote the channel uncertainty sets.
εl ∈[ 0, 1), ηl ∈[ 0, 1), and δl ∈[ 0, 1) are the maximum
deviations of Hi

k , G
i
S,k,l, and Gi

k,l,D, respectively. We define
ψ as the uncertainty set of αi

k . Based on the definition of
the interval uncertainty, αi

k can be formulated as

ψ = {
αi
k
∣∣ ᾱi

k + Δαi
k :

∣∣Δαi
k
∣∣ ≤ ξ ikᾱ

i
k
}

(21)

where ξ ik ∈[ 0, 1) is the upper bound of the uncertainty
that determines the size of the uncertainty region. After-
wards, we study robust RA problem with these uncer-
tainty parameters. According to (18)–(21), P1 can be
transformed as
Robust relay selection problem (P3):

max
ρi
k

K∑
k=1

N∑
i=1

1
2
log2

(
1 + ρi

kPtotal
(
ᾱi
k + Δαi

k
)

N

)
(22)

subject to

C1 :
∑K

k=1
∑N

i=1 ρikPtotal
(
H̄i
k + ΔHi

k

) (
Ḡi
S,k,l + ΔGi

S,k,l

)
≤ NIlth, ∀l

C2 :
∑K

k=1
∑N

i=1 ρikPtotal
(
H̄i
k + ΔHi

k

) (
Ḡi
k,l,D + ΔGi

k,l,D

)
≤ NIlth,∀l

C3 :
∑K

k=1 ρik ≤ 1, ∀i
C4 : ρik ∈ (0, 1] , ∀k, i
C5 : Hi

k ∈ H, Gi
S,k,l ∈ G, Gi

k,l,D ∈ F , αik ∈ ψ

(23)

P3 is a SIP problem [25] subject to an infinite number
of constraints with respect to the sets of H, G, F , and
ψ . Through worst-case approach, we can make all the
constraints be in the worst-case scenario, and P3 is trans-
formed into an equivalent problem with finite constraints.
We first transform (22) by Δαi

k = −ξ ikᾱ
i
k , which denotes

the worst-case equivalent channel gain. Then, according
to the Cauchy-Schwartz inequality [26], we have

max
Hi
k∈H

N∑
i=1

(
H̄i
k + ΔHi

k

)
ρik =

N∑
i=1

H̄i
kρ

i
k + max∑N

i=1
∣∣∣ΔHi

k

∣∣∣2≤ε2l

N∑
i=1

ΔHi
kρ

i
k

≤
N∑
i=1

H̄i
kρ

i
k +

√√√√ N∑
i=1

(
ρik

)2
√√√√ N∑

i=1
|ΔHi

k |2

=
N∑
i=1

H̄i
kρ

i
k + εl

N∑
i=1

ρik , ∀k, ∀l

(24)

Similarity, C1 and C2 in P3 can be further formulated as

C1 :
K∑

k=1

N∑
i=1

ρi
kPtotal

(
H̄i
k + εl

) (
Ḡi
S,k,l + ηl

) ≤ NIlth,∀l

(25)

C2 :
K∑

k=1

N∑
i=1

ρi
kPtotal

(
H̄i
k + εl

) (
Ḡi
k,l,D + δl

) ≤ NIlth,∀l

(26)
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We can see that the transformed P3 is convex and it can
be solved by the Lagrange dual decomposition method
[27]. The optimal robust relay selection factor ρi

k can be
derived in the form of

ρi
k
∗ =

[
1

2 ln 2 (A1 + A2 + λi)
− N

ᾱi
k
(
1 − ξ ik

)
Ptotal

]+
,∀k

(27)

where

A1 =
L∑

l=1
ϕlPtotal

(
H̄i
k + εl

) (
Ḡi
S,k,l + ηl

)

A2 =
L∑

l=1
βlPtotal

(
H̄i
k + εl

) (
Ḡi
k,l,D + δl

)

[ x]+ � max(0, x). ϕl � 0, βl � 0 and λi � 0 are the
Lagrange multipliers updated by the sub-gradient method
with recursive forms

ϕl(t + 1) =
[
ϕl(t) − sl1

(
NIlth −∑K

k=1
∑N

i=1 ρikPtotal
(
H̄i
k + εl

)
(
Ḡi
S,k,l + ηl

))]+
, ∀l

(28)

βl(t + 1) =
[
βl(t) − sl2

(
NIlth −∑K

k=1
∑N

i=1 ρi
kPtotal(

H̄i
k + εl

) (
Ḡi
k,l,D + δl

) )]+
,∀l

(29)

λi(t + 1) =
[
λi(t) − si3

(
1 −

K∑
k=1

ρi
k

)]+
,∀i (30)

where t is the iteration number, sl1 ,s
l
2, and si3 are the small

positive step sizes. In the sequel, we optimize the robust
power allocation problem after obtaining the robust relay
selection factor.
Robust power allocation problem (P4):

max
PiK(i)�0

N∑
i=1

1
2
log2

(
1 + PiK(i)

(
ᾱi
K(i) + Δαi

K(i)

))
(31)

subject to

C1 :
∑N

i=1
(
H̄i
K(i) + ΔHi

K(i)

) (
Ḡi
S,K(i),l + ΔGi

S,K(i),l

)
PiK(i) ≤ Ilth, ∀l

C2 :
∑N

i=1
(
H̄i
K(i) + ΔHi

K(i)

) (
Ḡi
K(i),l,D + ΔGi

K(i),l,D

)
PiK(i) ≤ Ilth, ∀l

C3 :
∑N

i=1 P
i
K(i) ≤ Ptotal

C4 : Hi
K(i) ∈ H, Gi

S,K(i),l ∈ G, Gi
K(i),l,D ∈ F , αiK(i) ∈ ψ

(32)

Obviously, P4 is still a SIP problem, so we need
to transform it into an equivalent optimization prob-
lem limited by the finite constraints with the worst-
case approach. First, (31) can be reformulated as

max
PiK(i)�0

∑N
i=1

1
2 log2

(
1 + PiK(i)ᾱ

i
K(i)

(
1 − ξ iK(i)

))
. Then C1

and C2 in P4 can be formulated as

C1 :
N∑
i=1

(
H̄i
K(i) + εl

) (
Ḡi
S,K(i),l + ηl

)
PiK(i) ≤ Ilth,∀l

(33)

C2 :
N∑
i=1

(
H̄i
K(i) + εl

) (
Ḡi
K(i),l,D + δl

)
PiK(i) ≤ Ilth,∀l

(34)

We can see that the transformed P4 is also convex and
its Lagrange function is

L
({

PiK(i)
}
, {μl}, {νl},ω

)
=

N∑
i=1

1
2
log2

(
1 + PiK(i)ᾱ

i
K(i)

(
1 − ξ iK(i)

))

+
L∑

l=1
μl

⎛
⎝Ilth−

N∑
i=1

(
H̄i
K(i) + εl

)(
Ḡi
S,K(i),l + ηl

)
PiK(i)

⎞
⎠

+
L∑

l=1
νl

⎛
⎝Ilth−

N∑
i=1

(
H̄i
K(i) + εl

)(
Ḡi
K(i),l,D + δl

)
PiK(i)

⎞
⎠

+ ω

⎛
⎝Ptotal −

N∑
i=1

PiK(i)

⎞
⎠

(35)

where μl � 0, νl � 0, and ω � 0 are the Lagrange
multipliers. (35) can be solved by the dual decomposition
method, i.e.,

min
μl ,νl ,ω

g̃ ({μl} , {νl} ,ω) (36)

The dual function of (35) is defined as

g̃({μl}, {νl},ω) � max
PiK(i)�0

L({PiK(i)}, {μl}, {νl},ω) (37)

Substituting (35) to (37), we can get

g̃ ({μl} , {νl} ,ω) = max
PiK(i)�0

[
D0 +

N∑
i=1

D
(
PiK(i)

)]
(38)

where

D0 =
L∑

l=1
(μl + νl) Ilth + ωPtotal (39)

D
(
PiK(i)

)
= 1

2
log2

(
1 + PiK(i)ᾱ

i
K(i)

(
1 − ξ iK(i)

))

−
L∑

l=1
μl
(
H̄i
K(i) + εl

) (
Ḡi
S,K(i),l + ηl

)
PiK(i)

−
L∑

l=1
νl
(
H̄i
K(i) + εl

)(
Ḡi
K(i),l,D + δl

)
PiK(i) − ωPiK(i)

(40)
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We can get the optimal solution of (38) though optimiz-

ing (40) by solving
∂D(PiK(i))

∂PiK(i)
= 0, the optimal robust power

allocation is derived in the form of

PiK(i)
∗ =

⎡
⎣ 1
2 ln 2 (B1 + B2 + ω)

− 1

ᾱi
K(i)

(
1 − ξ iK(i)

)
⎤
⎦

+

(41)

where

B1 =
L∑

l=1
μl
(
H̄i
K(i) + εl

) (
Ḡi
S,K(i),l + ηl

)

B2 =
L∑

l=1
νl
(
H̄i
K(i) + εl

) (
Ḡi
K(i),l,D + δl

)

The Lagrange multipliers can be updated by the sub-
gradient method as

μl(t + 1) =
[
μl(t) − sl4

(
Ilth −∑N

i=1

(
H̄i
K(i) + εl

)
(
Ḡi
S,K(i),l + ηl

)
PiK(i)

)]+
,∀l

(42)

νl(t + 1) =
[
νl(t) − sl5

(
Ilth −∑N

i=1

(
H̄i
K(i) + εl

)
(
Ḡi
K(i),l,D + δl

)
PiK(i)

)]+
,∀l

(43)

ω(t + 1) =
[
ω(t) − s6

(
Ptotal −

N∑
i=1

PiK(i)

)]+
(44)

where sl4, s
l
5, and s6 are the small positive step sizes. The

iterations are repeated until the robust power allocation
process converges. We define this robust relay selection
and power allocation algorithm under the influence of
different uncertainty parameters as robust algorithm.
The computational complexity of the proposed robust

algorithm can be counted roughly as follows. We address
the robust resource allocation problem with two steps,
i.e., relay selection and power allocation separately. First,
we allocate subcarriers to relays assuming uniform power
distribution over subcarriers. Each subcarrier selects the
best relay (i.e., the relay with highest ρi

k
∗) for itself with

computational complexity K. We assume T1 is the num-
ber of iterations with sub-gradient method to get ρi

k
∗.

After N subcarriers all finish the relay selection, the com-
putational complexity of this relay selection procedure is
O(NKT1). Then, power allocation is carried out under
the given relay selection scheme. The power allocation
problem is decomposed into N parallel power allocation
sub-problems. In every sub-problem, we assume T2 is the
number of iterations to obtain PiK(i)

∗ with sub-gradient

method. After N evaluations, the computational com-
plexity of the power allocation is O(NT2). To sum up,
the overall computational complexity isO(N(KT1 + T2)),
which is linear to N.

4 Simulation results
In this section, we useMonte Carlo simulation withMAT-
LAB software to show the effectiveness and the outper-
formance of our proposed robust algorithm. Setting of
simulation parameters are described in Table 2. Chan-
nel gains hiSRk , h

i
RkD, h

i
SPl , and hiRkPl are assumed to be

frequency flat Rayleigh fading channels. They are inde-
pendent and identically distributed (i.i.d.) circularly sym-
metric complex Gaussian (CSCG) random variables (RVs)
and distributed as h ∼ CN

(
0, 1

(1+d)τ

)
, where τ is the

path loss coefficient and d is the distance among differ-
ent nodes in the system. Without lose of generality and to
make the realization of the proposed algorithm simple and
better understood, we assume σ 2 = σ 2

i , ξ = ξ ik , εl = εH̄i
k ,

ηl = ηḠi
S,k,l , and δl = δḠi

k,l,D, respectively. For notational
brevity, let ζ = ξ = ε = δ = η and ζ ∈ [0, 1) repre-
sent the normalized upper bound for the all uncertainty
regions. The simulations have been conducted for 20,000
independent channel realizations.
Figure 2 shows the relay selection factors of all subcar-

riers in both robust algorithm and non-robust algorithm.
The relays in these two algorithms are distinguished by
different colors. Based on the relay selection scheme in
these two algorithms, Rk with maximum ρi

k is allocated to
the ith subcarrier. In other words, each subcarrier selects
the best relay for itself. As for non-robust algorithm, we
can observe that the relays selected by subcarriers are
R1,R2,R2,R1,R1, and R1 in sequence. When ζ = 0.1, the
robust relay selection results are the same as the non-
robust algorithm which validates the robustness of the
proposed robust relay selection scheme.
Under the aforementioned relay selection scheme, Fig. 3

illustrates the power allocation schemes to subcarriers for
the two algorithms.We can see that the power allocated to
subcarriers in the non-robust algorithm is higher than that

Table 2 Setting of simulation parameters

Parameters Value

K 2

L 2

N 6

τ 4

Ptotal 0.05W

σ 2 1 × 10−13W

I1th 1 × 10−12W

I2th 0.5 × 10−12W
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Fig. 2 Relay selection factor of subcarrier

in robust algorithm. According toC1 andC2 inP4, we can
find that the transmit power in the robust algorithm has
to be reduced to keep the interference thresholds of PU-
RXs below their preset limit values under the influence of
the uncertainties.
Figure 4 shows the saved power versus the increase

number of iterations. We define the saved power as the
difference value of the total transmit power Ptotal and the
actual transmit power

∑N
i=1 PiK(i). We find that the saved

power in non-robust algorithm converges to zero, which
indicates that the non-robust algorithm makes full use
of the total transmit power. However, due to the existing
uncertainties, the robust algorithm cannot take advan-
tage of the total transmit power. Moreover, the saved
power increases with the increase of uncertainties, since
the robust algorithm has to reduce more transmit power
to cope with the increasing uncertainties.
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Fig. 3 Power allocation to subcarrier
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Fig. 4 Saved power

Figure 5 demonstrates the interference power to each
PU-RX from SR link and RD link in the proposed robust
algorithm, non-robust algorithm, method in [9], and
method in [10]. In this paper, we assume different PU-
RX has different interference threshold. It is also more
suitable to practical systems than the assumption that
the interference constraints of different PU-RX under the
same interference level. Figure 5a, b shows that the pro-
posed robust algorithm can strictly guarantee the inter-
ference threshold of each PU-RX, and the interference to
each PU-RX in non-robust algorithm, method in [9]and
method in [10] are all exceed their interference thresholds,
which means that the non-robust algorithm cannot satisfy
the QoS of PU-RXs with uncertainty parameters.
Figure 6 shows the capacity convergence results of the

two algorithms with the increase number of iterations.
We can see that the two algorithms can quickly converge
to the equilibrium points. It can also be observed that,
although we have maximized the capacity of the cognitive
relay network through the robust algorithm with uncer-
tainty parameters, the capacity of the robust algorithm
is still lower than that of the non-robust algorithm with
perfect CSI. The reason is that the non-robust algorithm
can make full use of the total transmit power regard-
less of the influence of the uncertainty parameters on the
interference power to PU-RXs, but the robust algorithm
reduces the transmit power to overcome the uncertainties
for the QoS of PU-RXs. In addition, the capacity of the
robust algorithm decreases with the increase of the uncer-
tainty parameter. Figures 5 and 6 indicate that the robust
algorithm outperforms the non-robust algorithm for the
perspective of ensuring the QoS of PU-RXs at the expense
of system capacity loss.
Figure 7 illustrates the capacity of the non-robust

algorithm and the robust algorithm versus the interfer-
ence threshold under the influence of uncertainties. In
order to make simulations more simplified, we assume



Yang and Zhao EURASIP Journal onWireless Communications and Networking  (2017) 2017:107 Page 9 of 11

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

a

b

x 10
−12

Number of iterations 

In
te

rf
er

en
ce

 p
ow

er
 (

W
)

 

 
Interference threshold of PU−RX1
Interference threshold of PU−RX2
I
SP1

 (Robust algorithm)

I
SP2

 (Robust algorithm)

I
SP1

 (Non−robust algorithm)

I
SP2

 (Non−robust algorithm)

I
SP1

 (Method in [9])

I
SP2

 (Method in [9])

I
SP1

 (Method in [10])

I
SP2

 (Method in [10])

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

x 10
−12

Number of iterations

In
te

rf
er

en
ce

 p
ow

er
 (

W
)

 

 
Interference threshold of PU−RX1
Interference threshold of PU−RX2
I
RP1

 (Robust algorithm)

I
RP2

 (Robust algorithm)

I
RP1

 (Non−robust algorithm)

I
RP2

 (Non−robust algorithm)

I
RP1

 (Method in [9])

I
RP2

 (Method in [9])

I
RP1

 (Method in [10])

I
RP2

 (Method in [10])

Fig. 5 a, b Interference power to each PU-RX from SR link and RD link (ζ = 0.2)

that the interference thresholds of different PU-RXs are
the same. From Fig. 7, we can see that the capacity of
the robust algorithm is lower than that of the non-robust
one and decreases with the increase of the uncertainties
in accordance with Fig. 6. Moreover, we can find that
the capacity of these two algorithms increases with the
increase of the interference threshold at first.When power
allocation reaches its maximum in the two algorithms, the

capacity does not change and becomes constant regard-
less of the increase of interference threshold.
Figure 8 shows the capacity of the non-robust algorithm

and the robust algorithm versus the power budget with
the assumption of Ith = I1th = I2th = 0.8 × 10−12W . As
expected, the capacity of the robust algorithm is lower
than that of the non-robust algorithm and decreases with
the increase of the uncertainties. We can also observe
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Fig. 6 Convergence of capacity

that the capacity of the two algorithms increases with the
increasing power budget at the beginning. However, when
the interference to PU-RXs reaches the preset thresholds,
the capacity stops increasing and remains constant despite
of the increase of power budget.
Figure 9 gives the effect of the interferencethreshold and

the power budget on the capacity under the assumption
of ζ = 0.2 .With the increase of the interference thresh-
old, the capacity increases in both robust and non-robust
algorithm initially. However, when interference threshold
becomes larger to some extent, interference constraint
becomes inactive. Power budget becomes the limiting
constraint and plays a dominant role. We can also
observe that the higher power budget is, the larger the
capacity is.
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5 Conclusions
In this paper, we have studied robust RA problem in
the underlay OFDM-based cognitive relay network with
joint channel uncertainty and interference uncertainty.
Based on worst-case approach and Lagrange dual decom-
position method, closed form analytical solutions to
robust relay selection and power allocation have been
derived. Numerical results demonstrate the robustness
of the proposed robust relay selection scheme. The
robust algorithm is superior to the non-robust algo-
rithms in terms of guaranteeing the interference thresh-
olds of different PU-RXs, but the capacity of the robust
algorithm is little lower than that of non-robust algo-
rithm for overcoming the uncertainties and also decreases
with the increase of the uncertainties. In our future
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Fig. 9 Effect of interference threshold and power budget on capacity
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works, we will extend this frame work to two-way cog-
nitive radio networks with multiple SUs or multiple
antennas.
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