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Abstract

Antenna plays a very important role in wireless communication. Array elements laid out nonuniformly could achieve
better frequency reliability and lower sidelobe level than uniform spaced elements. Designing desirable nonuniform
antenna array requires the tuning of distances between each element, excitation, amplitude, and so on. Such design
problem can be solved by genetic algorithm. Based on a recently genetic algorithm modification, this paper attempts
to invent a parallel framework to enhance the efficiency of genetic algorithm. The parallel framework increases
exploitation search of genetic algorithm. The effectiveness of the proposed algorithm is firstly demonstrated on toy
problems with different kinds of problem complexity. The proposed algorithm is then verified on nonuniform
antenna array design. Compared with genetic algorithm without parallelization, the novel algorithm attains better
design solution and saves a lot computation time.

Keywords: Nonuniform antenna array, Genetic algorithm, Parallel computing, Antenna design, Numerical
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1 Introduction
In radar sensor networks, antenna arrays are quite often
used to increase the diversity gain and reduce the prob-
ability of missed detection and false alarm [1, 2]. How to
deploy the antenna arrays is a science and art. Antenna
arrays could be deployed in uniform or nonuniform to
achieve the best performance in target detection [3–5].
Since Hertz and Marconi invented the first antenna, it

has becoming more and more important in social life, and
now, it is indeed an indispensable part of our daily life
[3]. Existing in a three-dimensional world that composed
of the scope of beam, three-dimensional radian, square
angle, and solid angle, antenna can be a transducer or a
transverter between the guided wave and free space wave,
which can be described by basic electrical paraments such
as input impedance, radiation resistance, gain, efficiency,
directional diagram, polarization mode, and beam width.
It can be seen that antenna is nowadays a crucial factor
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in wireless communication, though design-efficient and
reliable antenna is a difficult problem as such design is a
simulation-based time-consuming task [6]. Parallel execu-
tion of antenna design is able to greatly save simulation
time [7].
Genetic algorithm (GA) was proposed by J. Holland in

the 1970s. It is characteristic of imitating biological evolu-
tion mechanism in nature. The paradigm of GA is based
on Darwin’s evolution theory and Mendel’s heredity the-
ory. It could automatically acquire and accumulate the
acknowledgement of the search space in the exploring
process and reasonably control the search process toward
optimal solution [8]. GA generally begins with an initial
population, according to the fitness function, to evaluate
the fitness of all individuals, and then, it chooses excel-
lent individuals, intersects, and mutates to introduce new
individuals to population. Finally, GA is able to make
its population to evolve until met the given accuracy or
reached the largest genetic algebra [9].
Since the 1990s, GA has become popular in solving

both combinational problems and continuous optimiza-
tion problems [10, 11]. Wind farm micro-siting is the
decision problem for determining the optimal placement
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of wind turbines in consideration of the wake effect. An
enhanced genetic algorithm (EGA), which is customized
to the properties of wind farm dimensions, was proposed
to solve such problem. The experimental results show that
the EGA can obtain the decision both effectively and effi-
ciently as compared to other metaheuristic approaches
[12]. A better match to the field data was reached with the
optimization parameters set with the genetic algorithm. In
order to check to what extent the model replicated reality,
model validation was also addressed. Results showed that
a genetic algorithm is usefully applicable in the calibra-
tion process of the microscopic traffic simulation model
[13]. Parallel GA strategy has been applied to optimize
reservoir operation [14]. Alansi et al. implement GA in
field-programmable gate array for space division multiple
access techniques [15].
Besides GA, other evolutionary algorithms have been

applied in real-world problems [16–19]. Min et al. consid-
ered pulse compression and sidelobe suppression in [20].
Yan et al. studied parallel algorithm in cognitive radar
network [21]. Dhaliwal and Pattnaik compared several
evolutionary algorithms on the design of fractal antenna
[22]. Zhang et al. applied artificial bee colony algorithm to
solve antenna design [23].
As a famous evolutionary algorithm, GA shows good

performance in dealing with antenna design problem.
This paper attempts to propose a parallel framework
based on a three-parent crossover GA. This framework
plans to enhance exploitation of GA so that solutions
could be refined to a better extent than original algorithm
in the later evolutionary stage. The goodness of the pro-
posed framework is studied on both toy problems and
nonuniform antenna design problem.
In the following, Section 2 introduces the design of

nonuniform antenna array and related works. Section 3
describes three-parent crossover GA and the proposed
parallel framework. Section 4 reports numerical simu-
lation results and discussions. Conclusion is made in
Section 5.

2 Nonuniform antenna design and related works
Relatively, though in the early 1960s nonuniform array has
begun to be studied, its synthesis remains to be solved
[24]. Usually, the synthesis is considered in a given num-
ber of arrays and array response, determining the array
element position and incentive distribution. Among them,
under a given number of elements and a given shape of
antenna, the most important subject is how to design
array element space and incentive of phase distribution
reasonably so as to make lowest the array’s peak side-
lobe level. On the one hand, array element response is
the complex exponential function of its position; hence,
the synthesis problem of array element is a nonlinear
optimization problem; on the other hand, considering

engineering application, the array element space must sat-
isfy certain constraint (e.g., no less than a given value)
to reduce the mutual coupling among elements. In addi-
tion, the ratio of the largest and the smallest array element
incentive (i.e., current taper ratio (CRT)) need to be close
to 1, which will make the antenna transmission power as
large as possible.
Antenna array is comprised of a set of array elements

sequentially arranged based on given discipline. Nonuni-
form linear antenna array is shown in Fig. 1. We consider
thinned array case in which elements are not required
to be placed in grid pattern. In thinned array, elements
would be arranged anywhere given the distance between
adjacent elements was no less than a predefined value for
reducing cross-coupling of adjacent elements.
The model of nonuniform linear antenna array can be

expressed as:

min
di,(2≤i≤N−1)

f (d2, d3, . . . , dN−1)

s.t. di − dj ≥ dc, 1 ≤ j < i ≤ N
dc > 0

, (1)

where N is the number of array elements, di denotes the
position of the ith element, L is the array aperture with
d1 = 0 and dN = L. Function f is the peak sidelobe level
(PSLL), and the objective is to minimize PSLL.
With the assumption that all elements have equal ampli-

tude and same direction, far directional pattern could be
expressed as:

E(u) =
N∑

i=1
ejkudi , (2)

where k = 2π/λ,u = cos θ − cos θ0 with θ is the sweeping
angle from the direction of array, and θ0 is the position
targeted by the main beam.
The binary particle swarm optimization in conjunction

with the time-domain discrete Green’s function method
was proposed for designing of printed ultra wideband
(UWB) antennas [4]. A topology optimization method
based on themethod of moments for configuration design
of planar metallic antenna was proposed in [25]. Bhatia
et al. proposed a novel design of modified printed cir-
cular monopole antenna with defective ground structure
for wideband applications. The basic design of antenna

Fig. 1 Diagram of nonuniform linear antenna array
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was comprised of a partial rectangular ground plane.
The antenna design was further modified by employing
a triangular notch in the ground plane to enhance the
impedance bandwidth [26].

3 The used algorithms
This section describes three-parent crossover GA and our
parallel framework.

3.1 Three-parent crossover genetic algorithm
Three-parent crossover GA (GA-TPC) was proposed by
Elsayed and his colleagues [27]. A diversity operator is
used in this algorithm to keep good population diversity.
The algorithm attains good performance in competition
problems on real parameter optimization. By taking this
version, it probably outperforms old GA versions in deal-
ing with antenna design problems.
The structure of GA-TPC consists of four steps: initial

population, tournament selection, three-parent crossover,
and diversity operator. The later three steps constitute
main generation of this algorithm.
Initial population.Asmost evolutionary algorithms, ini-

tial population of GA-TPC is randomly created based on
uniform distribution in problem’s feasible search space as
shown below:

xi = xmin + ri
(
xmax − xmin

)
, (3)

where xi is the ith solution (1 ≤ i ≤ Np where Np is
the population size), ri denotes a vector of real numbers
randomly generated between 0 and 1, and xmax and xmin

are the boundary vectors of search space. For most practi-
cal problems, feasible ranges of decision variables are easy
to set; in case feasible initial solutions are hard to create,
feasibility detection should be added to the algorithm.
Tournament selection. Parent selection is realized by

tournament selection method with tournament size
tc = 2 and with elitism 1, which means the best individual
always keeps in the selection pool.
Three-parent crossover is realized by the following four

steps. First, pick three individuals from the selection pool
obtained in tournament selection step. Note that this
selection is done without any duplication. Then, rank the
chosen three individuals from the best to the worst based
on their fitness. Third, based on normal distribution with
zero mean and standard deviation σ (N(0, σ)), a random
number is generated. Fourth, three candidate offsprings
are produced below:

v1 = x1 + r1 (x2 − x3) , (4)

v2 = x2 + r2 (x3 − x1) , (5)

v3 = x3 + r3 (x1 − x2) , (6)

where vi are candidate offsprings, ri (i = 1, 2, 3) are
generated according to (N(0, σ)).
Diversity operator. Instead of mutation operator, diver-

sity operator is used with a diversity probability to diver-
sify offsprings. Which parent undergoes this operator and
the extent of diversity are two issues faced by this oper-
ator. For the former issue, an archive pool of size m is
chosen from the parent population depending on fitness.
For the later issue, three probabilities are respectively set
for three children. Diversity operator for three children
vi, i = 1, 2, 3 is given below:

ui,j =
{
xarcj if ri,j < pi
vi,j otherwise , j = 1, 2, . . . ,D , (7)

where ui, i = 1, 2, 3 are offsprings after current genera-
tion. Survivor selection of GA-TPC is alike to other GA
versions. A new population is build by choosing the best
Np individuals from offsprings and archive pool.

3.2 The proposed parallel framework
To run an algorithm in parallel, either multiple central
processing units (CPUs) or multiple cores of a central pro-
cessing unit (CPU) can be used [28]. As nearly all personal
computer is a single CPU but multiple-core environment,
we decide to design a parallel framework running in mul-
tiple cores as shown in Fig. 2. Preliminary experiment
shows that the ratio of running time decrease; compar-
ing original GA-TPC with parallel GA-TPC is the greatest
when the number of cores is 2. Hence, Fig. 2 shows an
example carrying out two cores. That is, two threads are
sponsored at the same time to execute two GA-TPC algo-
rithms. These two GA-TPC algorithms have the same
procedures and the same algorithmic parameters.
Specifically, GA-TPC is split to two stages as in Fig. 1.

One is a coarse exploration search, while the other is a
fine exploitation search. In coarse search stage, algorith-
mic parameters are set making the algorithm performing
more search in whole search space. In fine search stage, a
good initialization is created as follows:

xi = xbest + ri
(
xmax
p − xmin

p

)
, (8)

where xbest is the best so far individual produced in coarse
search stage, ri (i ∈[ 1,Np]) are random vectors gener-
ated according to (N(0, 1)), xmax

p and xmin
p are respectively

the vector of maximal and minimal values of all dimen-
sions in the final population of coarse search stage. The
physical meaning of this operation is to create a popula-
tion of individuals normally distributed around the best
so far individual. The standard deviation of normal distri-
bution relies on the range of decision variables obtained
in the first stage. Besides good initialization, algorithmic
parameters are set causing the algorithm performingmore
exploitative search in the fine search stage.
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Fig. 2 The proposed parallel framework for GA-TPC algorithm

In terms of algorithmic parameter, large Np assigns high
explorative ability of GA, whereas small Np causes GA
more exploitative ability. Moreover, GAwith largeNp con-
verges slower than it with small Np. The convergence rate
of GA is also related with crossover rate, though three-
parent crossover relies on normal distribution and does
not have crossover rate parameter. As to probabilities in
diversity operator, pi (i = 1, 2, 3) are set to 0.01, 0.1, and
0.1, respectively. They are fixed based on our experience
and the author’s suggestion.

4 Numerical simulation
In this section, the proposed parallel framework is studied
and compared with GA without parallel.

4.1 Experimental setting
Denote parallel GA-TPC as the algorithm instantiating
GA-TPC in the proposed parallel framework. A state-of-
the-art related parallel method is taken for experiment
comparison [14], which improves non-dominated sort-
ing genetic algorithm by incorporating multiple recom-
bination operators. This method is denoted as parallel
GA-MR. The simulation configuration is as follows. Algo-
rithmic parameters of GA-TPC, parallel GA-TPC, and
parallel GA-MR are given in Table 1. In this table, for GA-
TPC, Np and σ are set the same as in [27]. For parallel
GA-TPC, N1

p and σ 1 are for parameters used in stage 1,
while N2

p and σ 2 are for stage 2. All Np are multiple of 3 as
three offsprings are generated by three-parent crossover.
σ 2 is greater than σ 1 to keep good diversity in stage 2.
A set of 10 toy functions are taken as the first study.
Functions as well as their properties are listed in Table 2.
This table shows 5 unimodal functions and 5 multimodal
functions used in simulation. They are commonly used
in preliminary study of the performance of an algorithm
[29]. For toy functions, problem dimension D is set to
10. The second study is done on nonuniform antenna
array design. As described in Section 2, the parameters
of antenna model is N = 17, L = 9.744λ, dc ≥ 0.5λ
and θ0 = π/2. As d1 and dN are start and end points of
antenna, problem dimension D is N − 2 = 15.
In the study of toy functions and antenna design, the

maximal number of objective function evaluations (MFE)
is fixed at 5000D. For each test case, an algorithm is inde-
pendently run 25 times to reach an average performance
of the algorithm. For parallel GA-TPC, computational
resources are equally split to stages 1 and 2. That is
MFE = 2500D for stage 1 and MFE = 2500D for stage 2. It
can be seen from the parallel framework that communica-
tion between multiple cores happens when creating initial
population at stage 2. Because computational resource is
equally split and the same algorithm structure is used,
it is expected that multiple cores would finish running
nearly the same time so that wasteful waiting of the syn-
chronization of multiple cores is reduced to minimum.
Thus, good parallel efficiency could be reached in the pro-
posed parallel framework. Both algorithms and problems
are programmed in Matlab. The simulation is performed
on a personal computer with four-core 3.40 GHz CPU and
4 GB random access memory.

Table 1 Configuration of GA-TPC, parallel GA-TPC, and parallel
GA-MR algorithms

Algorithm Parameters

GA-TPC Np = 90, σ = 0.5

Parallel GA-TPC N1
p = 60, σ 1 = 0.5, N2

p = 30, σ 2 = 1.0

Parallel GA-MR Np = 320, Ng = 8, Pg = 80, Rm = 0.5, Pc = 1000
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Table 2 Toy functions: 5 unimodal functions and 5 multimodal
functions

Number Function Property

f1 Spherical function Unimodal, separable,
scalable

f2 Axis parallel hyper-ellipsoid,
weighted sphere

Unimodal, separable,
scalable

f3 Perm function Unimodal, nonseparable,
scalable

f4 High-conditioned elliptic
function

Unimodal, separable,
scalable

f5 Schwefel’s problem 1.2 Unimodal, nonseparable,
scalable

f6 Rosenbrock’s function Multimodal, nonseparable,
scalable

f7 Rastrigin’s function Multimodal, separable,
scalable

f8 Griewank function Multimodal, nonseparable,
scalable

f9 Ackley’s function Multimodal, nonseparable,
scalable

f10 Zakharov function Multimodal, nonseparable,
scalable

4.2 Results on toy functions
Table 3 shows the statistics of optimal objective function
values attained by GA-TPC and parallel GA-TPC. This
table also contains hypothesis test of the median func-
tion values over 25 runs. It can be seen from the table
that both algorithms find global optimum of f3 and f9.
Parallel GA-TPC reaches global optimum on f1, f2, and
f4, while GA-TPC could not attain satisfiable accuracy on
the three functions. For f5 and f7, parallel GA-TPC could
not outperform GA-TPC, though the difference is not

Table 3 Optimal function values found by GA-TPC and parallel
GA-TPC over 25 independent runs

Algorithm GA-TPC Parallel GA-TPC U test

f (·) med std med std p-value

f1 6.56E−04 2.64E+00 0.00 0.00 4.58E−08

f2 6.07E−08 6.38E−03 0.00 0.00 1.10E−06

f3 0.00 0.00 0.00 0.00 N/Aa

f4 6.17E−08 5.19E−04 0.00 0.00 1.90E−05

f5 1.16E+12 9.85E+13 1.49E+12 1.68E+13 0.4377

f6 1.04E+01 1.16E+02 6.43E+00 1.88E+01 0.0052

f7 3.98E+00 1.68E+00 4.97E+00 3.22E+00 0.0708

f8 1.28E−01 1.30E−01 9.07E−02 5.13E−02 0.0478

f9 0.00 0.00 0.00 0.00 N/Aa

f10 4.39E−02 7.88E−01 0.00E+00 2.31E−01 6.34E−08

aN/A: hypothesis test is not available as algorithms have the same median values
Median and standard deviation are respectively abbreviated as med and std

significant at level α = 0.05. For f3 and f9, both algo-
rithms reach global optimum. For the other 6 functions,
Parallel GA-TPC significantly outperforms GA-TPC at
level α = 0.05. Thus, it is able to conclude that the
proposed parallel framework improves the effectiveness
of GA-TPC.
Figure 3 shows the running time comparison of GA-

TPC and Parallel GA-TPC algorithms on toy functions. In
this figure, “x” axis denotes the 10 functions, “y” axis is the
time ratio of GA-TPC over Parallel GA-TPC. Time ratio
is shown in dotted line. The solid line is ratio 1 designat-
ing algorithms costing same computational time. It can be
seen from Fig. 3 that time ratio curve from f1 to f10 is above
1.8. This means that computational time is saved about
80% when using the proposed parallel framework. Note
that the ratio of f1 is above 2, this is because this function
is executed first and Matlab needs some time to warm up.
For other functions, the function call in Matlab is much
faster than f1.
Table 4 shows the statistics of the optimal results

attained by parallel GA-MR and parallel GA-TPC. This
table also contains statistical Mann-Whitney U test (U
test) of the median best function values over 25 runs.
It can be seen from the table that both algorithms find
global optimum of f1, f3, and f9. Parallel GA-TPC reaches
global optimum on f2 and f4, while parallel GA-MR could
not attain satisfiable accuracy on both functions. For f7,
parallel GA-TPC could not outperform parallel GA-MR,
though the difference is not significant at level α = 0.05.
For f8 and f10, parallel GA-TPC significantly outperforms
parallel GA-MR at level α = 0.05. Thus, it is able to
conclude that the proposed parallel framework compares
favorable with the state-of-the-art parallel modifications
of GA.

Fig. 3 Running time comparison of GA-TPC and Parallel GA-TPC
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Table 4 Results found by parallel GA-MR and parallel GA-TPC
over 25 independent runs

Algorithm Parallel GA-MR Parallel GA-TPC U test

f (·) med std med std p value

f1 0.00 0.00 0.00 0.00 N/Aa

f2 4.92E−05 1.43E−07 0.00 0.00 8.66E−05

f3 0.00 0.00 0.00 0.00 N/Aa

f4 5.60E−08 8.93E−05 0.00 0.00 5.25E−05

f5 9.90E+14 9.54E+13 1.49E+12 1.68E+13 0.3077

f6 7.29E+00 1.96E+01 6.43E+00 1.88E+01 0.2072

f7 4.05E+00 2.86E+00 4.97E+00 3.22E+00 0.0644

f8 2.08E−01 1.36E−01 9.07E−02 5.13E−02 0.0130

f9 0.00 0.00 0.00 0.00 N/Aa

f10 2.02E−06 5.47E−01 0.00E+00 2.31E−01 0.0379

aN/A: hypothesis test is not available as algorithms have the same median values
Median and standard deviation are respectively abbreviated as med and std

4.3 Results on antenna design
Both GA-TPC and parallel GA-TPC are applied to deal
with nonuniform linear antenna array design. The results
are shown in Table 5. This table gives the min, med,
and max objective function values found by algorithms as
well as the associated solutions. Clearly, parallel GA-TPC
attains better results than GA-TPC on the three metrics.
Hence, the proposed parallel framework is effective on
antenna design. Moreover, it is observed from Table 5 that
for the min and med solutions, distance d2 − d1 of paral-
lel GA-TPC is longer than that of GA-TPC; on the other
hand, d2 − d1 of the max solution of parallel GA-TPC is
shorter than that of GA-TPC. This indicates that antenna
array design problem has a multimodal landscape and
parallel GA-TPC is able to reach a better solution, while
GA-TPC searches around margin of promising solution
but could not converge to the promising solution.
By conducting U test on 25 trials on this problem,

parallel GA-TPC significantly outperforms GA-TPC with
significance level α = 0.05. In terms of running time, the
design simulation of GA-TPC costs 5295.2 (s) over 25 tri-
als, while the design simulation of parallel GA-TPC takes
2891.5 (s). The time ratio on this problem is 1.83, which is
alike to the ratio on toy functions. Thus, it is reasonable to
conclude that the proposed parallel framework can effec-
tively and efficiently improve the performance of GA-TPC
algorithm.

5 Conclusions
Recently, many researchers or users apply genetic algo-
rithm (GA) to design antennas. As antenna design is a
difficult and a simulation-based time-consuming task, GA
is a useful tool to deal with such problem. This paper
focuses on improving the efficiency of GA based on the

Table 5 Results found by GA-TPC and parallel GA-TPC over 25
independent runs for antenna design

Algorithm GA-TPC Parallel GA-TPC

Metric min med max min med max

f −20.88 −20.57 −19.43 −21.36 −21.02 −20.78

d1 0 0 0 0 0 0

d2 0.72 0.67 1.65 0.99 0.77 0.78

d3 1.56 1.52 2.31 1.74 1.55 1.56

d4 2.21 2.22 2.92 2.59 2.26 2.24

d5 2.73 2.81 3.47 3.21 2.75 2.75

d6 3.31 3.39 4.03 3.71 3.28 3.29

d7 3.77 3.82 4.51 4.30 3.76 3.81

d8 4.23 4.34 5.03 4.73 4.30 4.37

d9 4.73 4.89 5.44 5.22 4.81 4.69

d10 5.25 5.31 5.97 5.61 5.24 5.24

d11 5.62 5.77 6.45 6.11 5.65 5.75

d12 6.25 6.30 6.98 6.57 6.25 6.28

d13 6.75 6.92 7.47 7.09 6.74 6.75

d14 7.33 7.34 7.97 7.49 7.31 7.31

d15 8.07 8.10 8.52 8.16 8.09 8.14

d16 8.89 8.87 9.03 9.02 8.84 8.88

d17 9.74 9.74 9.74 9.74 9.74 9.74

Minimum, median, and maximum are respectively abbreviated as min, med, and
max

idea of parallel computing. Different existing approaches,
our research is based on a state-of-the-art version of
GA, denoted as GA-TPC. Moreover, in the proposed par-
allel framework, algorithm evolution is equally split to
two stages. In stage 1, algorithm search is guided toward
exploration through the use of large population size and
relatively large standard deviation (std) in normal dis-
tribution. In stage 2, algorithm search is guided toward
exploitation through using small population size and large
std. Moreover, initial individuals of stage 2 are created
around the best individual returned in stage 1. The distri-
bution of individuals in stage 2 also relies on the variance
of individuals in the last population of stage 1.
The proposed framework is instantiated on GA-TPC,

denoted as parallel GA-TPC. Tested on both toy prob-
lems and antenna design problem, parallel GA-TPC finds
better solutions than GA-TPC and a state-of-the-art par-
allel modification of GA (i.e., parallel GA-MR). Moreover,
parallel GA-TPC reaches smaller std of function values of
final solutions than GA-TPC and parallel GA-MR. This
means that the proposed framework is effective and sta-
ble. Furthermore, computational time of parallel GA-TPC
is saved about 80% compared with the time of GA-TPC
under the same simulation environment.
The proposed framework shows good performance

in antenna design, though it has an overhead that the
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extension of the framework to more cores is not easy. The
difficulty of multiple cores extension attributes to algo-
rithmic parameter setting. Dividing algorithm evolution
to two stages is intuitively feasible as GA has exploration
and exploitation. Using more cores means to split evo-
lution to more stages which has to be meaningful and
effective. This direction will be studied in the future.
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