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Abstract

This paper proposes an inter-frame dynamic double threshold (IF-DDT) spectrum sensing algorithm in order to
improve the sensing performance based on energy detection (ED) in cognitive radios (CRs). Based on both the activity
model of the primary user (PU) and the sensing mechanism of the secondary user (SU), the proposed algorithm
exploits the relationship between two adjacent sensing frames and designs dynamic double thresholds for each
sensing frame to enhance spectrum sensing performance when the received energy cannot give a reliable local
decision. The detection probability and false alarm probability of the proposed sensing scheme are analyzed, and an
algorithm for searching the optimal dynamic double thresholds is derived with very low complexity according to the
Neyman-Pearson (NP) test criterion. Theoretical analysis and simulation results show that the proposed algorithm
outperforms the ED algorithm.
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1 Introduction
Nowadays, wireless communications have been experi-
encing an increasing tension of the frequency resource
which, however, is far from fully utilized under the static
spectrum assignment policy [1]. Cognitive radio (CR)
technology provides a promising solution to the conflict
by allowing the second user (SU) to opportunistically
access the licensed spectrum band when it is temporarily
not occupied by the primary user (PU) [2].
Spectrum sensing is a critical aspect of CR systems

that aims to identify the working state of the PU (i.e.,
ON or OFF, indicating whether the licensed spectrum
is occupied or not, respectively) before allowing the SU
temporarily access the channel without causing harmful
interference to the PU. Typically, the SU operates spec-
trum sensing frame by frame, and each frame is divided
into two parts: the sensing duration and the data duration
[3–5]. The SU detects whether the licensed spectrum is
accessed within the sensing duration, and then transmits
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data within the data duration if the sensing result is OFF
(which identifies that the PU’s state is OFF); otherwise, the
SU keeps silent.
The accuracy of spectrum sensing is measured by two

probabilities: the false alarm probability (denoted as Pf )
and the detection probability (denoted as Pd). The false
alarm probability is defined as the probability that the PU’s
state is identified as ON when its real state is OFF, while
the detection probability is defined as the probability that
the PU’s state is identified as ON when its real state is also
ON. Clearly, a low false alarm probability improves the
efficiency of the unused spectrum, whereas a high detec-
tion probability reduces the resulting interference in the
licensed users [4, 6].
A number of spectrum sensing methods have been pro-

posed for CR systems, such as energy detection (ED),
cyclostationarity feature detection, second-order statis-
tics detection, matched-filtering detection, compressive
sensing detection [7, 8], and multiple antenna detection
[9]. The energy detection has been preferred due to its
feasible applicability and low implementation complex-
ity. The cyclostationarity feature detection differentiates
noise from PU signals by exploiting the cyclostationar-
ity features of the received signals. However, it has high
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computational complexity and requires the knowledge of
the cyclic frequencies which is difficult to be obtained.
The second-order statistics-based detection is subject
to the modulations of primary signals. The matched-
filtering detection is the optimum method only when
perfect information about the waveforms of the PU is
given. The compressive sensing detection makes use of
the sparse structure of primary signals. The multiple
antenna detection effectively overcomes the noise uncer-
tainty and improves the detection performance based on
the spatial correlation in the multi-antenna receiver. Nev-
ertheless, it requires the SU equipped with multi-antenna
receivers.
In order to avoid error detection caused by dramatic

energy decrease, the average signal power of several past
sensing frames is used in [10] for the ED schemes. How-
ever, conventional ED-based spectrum sensing schemes
usually employ only a single fixed threshold. When the
received energy of the SU nears the threshold, the deci-
sion for the PU’s state is subject to a high probability
of misjudgment, thus yielding a loss in sensing perfor-
mance. In order to alleviate this problem, the double-
threshold energy detection method is discussed in [11].
This method can decrease the interference of the SU to
the PU. However, how to set the two thresholds and deal
with the received energy falling between the two thresh-
olds are not discussed. Double-threshold energy detection
method is also discussed in cooperative spectrum sens-
ing environment [12]. In this method, each SU sends
its observed energy to the fusion center (FC) when the
energy falls between the two thresholds; otherwise, the
SU sends its decision results. The final decision is made
based on the soft combination of the received energy and
hard combination of the received decision results in the
FC. Therefore, the performance improvements of coop-
erative spectrum sensing schemes are obtained at the
cost of extra control messages and increased computation
complexities [13].
An alternative way of improving the ED schemes is

to take into account the PU’s activity model during the
sensing process. A model of two-state Markov chain is
used as an adequate mean accurately describing spec-
trum occupancy in the time domain in [14–17]. On the
one hand, the durations of the PU’s states (ON and OFF)
are respectively exponentially distributed [18, 19]. On the
other hand, the frame length of the SU is much shorter
than both the average durations of the PU’s ON and
OFF states [20, 21], which implies that the PU’s activi-
ties over successive sensing frames are not independent,
especially between adjacent frames. Furthermore, the PU
stays at the same state with a high probability during
the whole sensing frame [22]. These properties can be
exploited to improve the sensing performance of the
ED schemes.

In [22], the received energy sequence over successive
sensing frames is modeled as a continuous hiddenMarkov
chain, and the final decision is made according to the
combined observations from all previous sensing frames.
However, this scheme needs to perform simultaneously
spectrum sensing and data transmission and hence suffers
from implementation difficulties due to self-interference
[23]. In [24] and [25], the PU activity is modeled as a
Markov chain, and the final decision is also based on
history observations but using different combining rules
from that of [22]. However, in the schemes in [24] and [25],
each sensing frame is further divided intomany short slots
for either dynamic spectrum sensing or data transmis-
sion. This frequent sensing-transmitting alternating strat-
egy may cause synchronization difficulty on the receiving
terminal.
In this paper, using a two-state Markov chain model of

the PU’s activity, an inter-frame dynamic double threshold
(IF-DDT) ED scheme is proposed. Firstly, the relation-
ship between two adjacent sensing frames is analyzed, and
the IF-DDT scheme for each sensing frame is designed
based on dynamic double thresholds. Then, according to
the Neyman-Pearson (NP) test criterion, an optimization
problem is formulated to acquire the optimal dynamic
double thresholds which maximize the detection proba-
bility while maintaining a maximum tolerable false alarm
probability. Finally, the optimization problem is trans-
formed into an easily solvable problem and an algorithm
for searching the optimal dynamic double thresholds are
derived with very low complexity. Theoretical analysis and
computer simulations show that the proposed IF-DDT
scheme can achieve performance improvement due to
dynamic double thresholds even when the received energy
cannot give a reliable local decision. Compared to ref-
erence [11], theoretical analysis and the implementation
method are provided for the proposed double-threshold
energy detection scheme.
The remainder of this paper is organized as follows. In

Section 2, the system model is presented. In Section 3,
the IF-DDT scheme is proposed, and the optimal dynamic
double thresholds are derived. Section 4 evaluates the pro-
posed scheme for spectrum sensing through simulations.
Finally, Section 5 concludes the paper.

2 Systemmodel
We consider a CR system with one PU, one SU, and a sin-
gle channel licensed to the PU. The PU operates between
ON and OFF states alternately, while the SU executes
spectrum sensing to the licensed channel and oppor-
tunistically transmits data in a frame-wise manner. In the
sequel, the PU’s ON and OFF states are represented by
integers “1” and “0,” respectively. The systemmodel is pre-
sented in Fig. 1 , which shows the PU’s activity model and
the SU’s sensing mechanism.
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Fig. 1 The PU’s activity and the SU’s sensing mechanism

2.1 The PU’s activity model and the SU’s sensing
mechanism

Let T1 and T0 denote the durations that the PU stays
respectively in ON and OFF states as shown in Fig. 1. It
is well accepted that the durations are exponentially dis-
tributed with expectationsT1 = α andT0 = β [25]. The
PU’s average activity period is defined asTPU = T1 + T0,
and the PU’s traffic load is defined as ηPU = T1/TPU.
We assume that the SU allocates each frame k with a

dynamic length TFk , consisting of fixed sensing duration
τ and varying data transmission duration TFk − τ for k =
1, 2, . . .. Furthermore, we assume that the lengths satisfy
the conditions that τ � TFk ,TFk � T1, and TFk � T0.
Let zk ∈ {0, 1} denote the real state of the PU within the

sensing duration of any specific frame k at the SU. On the
above assumptions, it is clear that there is a high probabil-
ity that zk remains unchanged within a whole frame and
that zk is closely related to the past state zk−1 with respect
to the preceding frame k − 1 for k > 1 [18, 20, 26].
The PU’s activity can bemodeled as a two-state discrete-

time Markov chain with the stationary distribution

P{zk = 0} = α

α + β
, P{zk = 1} = β

α + β
, (1)

and the transition matrix

Pk−1 =
[
p00,k−1 p01,k−1
p10,k−1 p11,k−1

]

= 1
α + β

[
α + βe−(α+β)TFk−1 β − βe−(α+β)TFk−1

α − αe−(α+β)TFk−1 β + αe−(α+β)TFk−1

]

(2)

where pij,k − 1 � P{zk = j|zk−1 = i} denotes the
state transition probability over two adjacent frames
k − 1 and k for i, j ∈ {0, 1}; it is easy to identify that
pi0,k − 1 + pi1,k − 1 = 1 for i = 0, 1.
Although the frame length TFk varies with k, it holds

that (α + β)TFk − 1 � 1 on the above assumptions.
It follows in general that p00,k − 1 > p01,k − 1 and
p11,k − 1 > p10,k − 1. This states an inertia property of

the PU activity that zk is more likely to remain the same
as zk − 1 between any two adjacent frames k − 1 and k.
In the CR system model, the SU is assumed to have full
knowledge of parameters α and β [20, 22, 25].

2.2 Statistics for ED
We consider the additive white Gaussian noise (AWGN)
for the licensed channel. Let N denote the number of sig-
nal samples of the SU. For the frame k, the nth baseband
signal sample is expressed as

xk(n) =
{
wk(n), zk = 0
sk(n) + wk(n), zk = 1 (3)

where n = 1, 2, . . . ,N ; wk(n) denotes the inde-
pendent and identically distributed (i.i.d.) AWGN sam-
ples with zero-mean and normalized unit variance; and
sk(n) denotes the PU’s signal samples with constant
transmit power. Hence, the average received signal-to-
noise ratio (SNR) per sample at the SU is expressed as
γ = E

(|sk(n)|2).
As the test statistic of spectrum sensing, the received

energy in frame k is given by

Uk =
N∑

n=1
|xk(n)|2 (4)

Then, the test statistic Uk follows the chi-square distri-
bution with N degrees of freedom. By the central limit
theorem, if the sample length N is large enough (N � 1),
Uk approximately follows the Gaussian distributions

Uk =
{
N(N , 2N), zk = 0
N(N(1 + γ ), 2N(1 + 2γ )), zk = 1 (5)

where N(μ, σ 2) is the notation of the Gaussian distribu-
tion with mean μ and variance σ 2.

2.3 The conventional ED rule
In most conventional ED schemes, the PU’s real states
are assumed independent during different frames. Let dk
denote the sensing result of the PU’s real state zk in frame
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k. The decision rule is expressed as a simple comparison
between the received energy UK and a threshold λED,k as
follows

dk =
{
1, Uk ≥ λED,k
0, Uk < λED,k

(6)

The false alarm probability PEDf ,k and the detection prob-
ability PEDd,k are obtained as [19]

PEDf ,k � P{dk = 1|zk = 0} = Q

(
λED,k − N√

2N

)
(7)

PEDd,k � P{dk = 1|zk = 1} = Q

(
λED,k − N(1 + γ )√

2N(1 + 2γ )

)
(8)

where γ is the average received SNR and

Q(x) = 1√
2π

∫ ∞

x
e−

t2
2 dt

In conventional ED schemes, it is usual to preset a fixed
threshold λED,k = λED for all k. Thus, the probabil-
ity measures PEDf ,k and PEDd,k are independent of k. It has
been shown that the single fixed threshold scheme yields a
high probability of erroneous decision when the received
energy Uk nears the threshold λED,k [11].

3 The IF-DDT scheme
In this section, we propose an IF-DDT spectrum sens-
ing scheme by exploiting the inertia property of the PU’s
activity described in Section 2.1. Following the presenta-
tion of the decision rule, we formulate an optimization
problem to acquire the optimal dynamic double thresh-
olds. Furthermore, we finally transform the optimiza-
tion problem into an easily solvable problem and derive
the optimal dynamic double thresholds with very low
complexity.

3.1 The decision rule using IF-DDT
To improve the probability of correct decision in the
ED schemes, we consider double dynamic thresholds, by
which we may elaborate the received energies into three
decision ranges in order to exploit the inertia property
of the PU’s activity. The decision rule using IF-DDT is
expressed as follows

dk =
⎧⎨
⎩
1, Uk ≥ λ1,k
0, Uk < λ0,k
dk−1, otherwise

(9)

where λ1,k and λ0,k represent the double dynamic thresh-
olds for frame k at the SU, and λ0,k � λ1,k .
For k = 1, the two thresholds should be identically

initialized as λ0,1 = λ1,1 . For k > 1, if the received

energy Uk lies in the open range (λ0,k , λ1,k), the sensing
result dk for frame k retains the same as the sensing result
dk − 1 for the preceding frame k − 1.
It is easy to show that the Markov chain for the PU’s

activity is reversible according to the steady-state distribu-
tion in Eq. (1), the transition matrix in Eq. (2), and hence
the detailed balance equation [24, 27]

P{zk−1 = i, zk = j} = P{zk = i, zk−1 = j}
Define the reverse transition probability as

p∗
ij,k � P{zk−1 = j|zk = i} (10)

where i, j ∈ {0, 1}. Then, p∗
ij,k = pij,k − 1 is derived.

According to the decision rule using IF-DDT in Eq. (9),
the probabilities Pf ,k and Pd,k are obtained as follows (see
Appendix 1)

Pf ,k = Q

(
λ0,k − N√

2N

)
P0,k + Q

(
λ1,k − N√

2N

)
(1 − P0,k)

(11)

Pd,k = Q

(
λ0,k − N(1 + γ )√

2N(1 + 2γ )

)
P1,k

+ Q

(
λ1,k − N(1 + γ )√

2N(1 + 2γ )

)
(1 − P1,k)

(12)

where

P0,k � P{dk−1 = 1|zk = 0} = Pf ,k−1p∗
00,k + Pd,k−1p∗

01,k
(13)

P1,k � P{dk−1 = 1|zk = 1} = Pf ,k−1p∗
10,k + Pd,k−1p∗

11,k
(14)

For ease of understanding the IF-DDT scheme, Fig. 2
shows the definitions for multiple events and associated
probabilistic measures on the reversible Markov chain.

3.2 Derivation of thresholds
To derive the double thresholds, there exists two hypoth-
esis testing criterions: the Neyman-Pearson (NP) test [8]
and the Bayesian test [28]. We consider only the NP
test criterion, which aims at maximizing Pd,k with the
constraint Pf ,k ≤ Pf ,target, or alternatively minimizing
Pf ,k with the constraint Pd,k ≥ Pd,target , where Pf ,target
and Pd,target represent the tolerable maximum false alarm
probability and minimum detection probability, respec-
tively.
For any sensing frame k > 1, the probabilities P0,k

and P1,k are considered constant since p∗
ij,k are determined

by Eq. (2), and Pf ,k − 1 and Pd,k − 1 are obtained at frame
k − 1. Thus, by Eqs. (11) and (12), it is clear that Pf ,k
and Pd,k are strictly decreasing with λ0,k and λ1,k , respec-
tively. According to the NP test criterion, the search for
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Fig. 2 Probabilities and transitions associated with multiple events in the reversible Markov chain model

the optimal thresholds λ∗
0,k and λ∗

1,k with respect to each
frame k is formulated as the optimization problem below

max
λ0,k ,λ1,k

Pd,k(λ0,k , λ1,k)

s.t. λ1,k ≥ λ0,k ≥ 0
Pf ,k(λ0,k , λ1,k) ≤ Pf ,target (15)

where Pd,k and Pf ,k are written as bivariate functions of
thresholds.

Theorem 1 Pd,k reaches the maximum value P∗
d,k only

when Pf ,k = Pf ,target , i.e., the optimization problem in
Eq. (15) can be rewritten as (proved in Appendix 2)

max
λ0,k ,λ1,k

Pd,k(λ0,k , λ1,k)

s.t. λ1,k ≥ λ0,k ≥ 0
Pf ,k(λ0,k , λ1,k) = Pf ,target (16)

Based on the second constraint in Eq. (16), we define the
Lagrange function

f (λ0,k , λ1,k , c) = Pd,k(λ0,k , λ1,k)
+ c
(
Pf ,target − Pf ,k(λ0,k , λ1,k)

) (17)

where c is the Lagrange multiplier.
Taking the first-order partial derivative of Eq. (17) with

respect to λ0,k and λ1,k , respectively

∂f (λ0,k , λ1,k , c)
∂λ0,k

= 0,
∂f (λ0,k , λ1,k , c)

∂λ1,k
= 0 (18)

then⎧⎪⎨
⎪⎩

1√
1+2γ e

(λ0,k−N)2
4N − [λ0,k−N(1+γ )]2

4N(1+2γ ) = cP0,kP1,k

1√
1+2γ e

(λ1,k−N)2
4N − [λ1,k−N(1+γ )]2

4N(1+2γ ) = c 1−P0,k
1−P1,k

(19)

Eliminating c in Eq. (19) by simplemanipulations, we get

(λ1,k − a)2 − (λ0,k − a)2 = b (20)

where

a = N
2
, b = 2N(1 + 2γ )

γ
ln

P1,k(1 − P0,k)
P0,k(1 − P1,k)

(21)

Then, recalling the second constraint in Eq. (16), we
obtain

Q

(
λ0,k − N√

2N

)
P0,k + Q

(
λ1,k − N√

2N

)
(1 − P0,k) = Pf ,target

(22)

So we convert the optimization problem in Eq. (16) into
a nonlinear programming problem consisting of Eqs. (20)
and (22).
Clearly, the existence of the solution to the optimization

problem depends upon the system parameters, including
the sample length N , the average SNR value γ , the frame
lengths TFk , the expectation of ON and OFF state period
T1, T0, and the target false alarm probability Pf ,target.
On the other hand, the solution to the nonlinear pro-
gramming problem cannot be expressed in a closed form.
Therefore, in order to facilitate a heuristic approach for
the solution, we derive the range for the above nonlinear
programming problem firstly.
Notice that the function Q(x) is a strictly decreasing

function. Under the initial constraint that λ1,k ≥ λ0,k ≥ 0
and the basic probability property that 0 < P0,k , 1− P0,k <

1, we can derive a necessary condition on the threshold
λ0,k below

min
[
Pf ,target
P0,k

,Q
(

−
√
N
2

)]
≥ Q

(
λ0,k − N√

2N

)
≥ Pf ,target

(23)

Thus, the range of λ0,k is
[
λ∗
0,k , λ

∗
]
,it is given by

λ∗
0,k �

√
2NQ

−1
{
min

[
Pf ,target
P0,k

,Q
(

−
√
N
2

)]}
+ N

(24)

λ∗ �
√
2NQ

−1(Pf ,target) + N (25)
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With incorporating the range of λ0,k , we obtain a neces-
sary condition on the threshold λ1,k as follows

Pf ,target ≥ Q

(
λ1,k − N√

2N

)
≥

Pf ,target − Q

(
λ∗
0,k−N√
2N

)
P0,k

1 − P0,k
(26)

and the range
[
λ∗, λ∗

1,k

]
of λ1,k is given by

λ∗
1,k �

√
2NQ

−1

⎛
⎜⎝Pf ,target − Q

(
λ∗
0,k−N√
2N

)
P0,k

1 − P0,k

⎞
⎟⎠+ N

(27)

In practice, it is easy to show that λ∗ > a since
Pf ,target < 0.5 and Q

−1(Pf ,target) > 0. By analysing
Eq. (20) and Eq. (24), we can obtain the relationship of λ∗

1,k ,
λ∗
0,k , and a as follows:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ∗
0,k = 0, λ∗

1,k < +∞ Pf ,target
P0,k ≥ Q

(
−
√

N
2

)

0 < λ∗
0,k ≤ a, λ∗

1,k → +∞ Q

(
− 1

2

√
N
2

)
≤ Pf ,target

P0,k < Q

(
−
√

N
2

)

λ∗
0,k > a, λ∗

1,k → +∞ Pf ,target
P0,k < Q

(
− 1

2

√
N
2

)

(28)

Combined with the range of λ0,k and λ1,k in three
cases in Eqs.(28), (20), and (21) can be further demon-
strated in the two-dimension Cartesian coordinate system

as showed in Fig. 3. When Pf ,target
P0,k ≥ Q

(
−
√

N
2

)
, Eqs. (20)

and (21) are demonstrated in Fig. 3a; whenQ
(

− 1
2

√
N
2

)
≤

Pf ,target
P0,k < Q

(
−
√

N
2

)
, Eqs. (20) and (21) are demonstrated

in Fig. 3b; and when Pf ,target
P0,k < Q

(
− 1

2

√
N
2

)
, Eqs. (20) and

(21) are demonstrated in Fig. 3c.

3.3 Solution analysis
Based on Eqs. (20) and (21), λ1,k can respectively be seen
as the functions of λ0,k within the range obtained above.
First, g1

(
λ0,k
)
and g2

(
λ0,k
)
are defined respectively as

g1
(
λ0,k
)
�

√
2NQ

−1

⎛
⎝Pf ,target − Q

(
λ0,k−N√

2N

)
P0,k

1 − P0,k

⎞
⎠+ N

(29)

g2
(
λ0,k
)
�
√(

λ0,k − a
)2 + b + a (30)

And g
(
λ0,k
)
is further defined as

g
(
λ0,k
)
� g1

(
λ0,k
)− g2

(
λ0,k
)

(31)

Obviously, the zero point of g
(
λ0,k
)
is the solution of

λ0,k to the nonlinear programming problem in Eqs. (20)
and (21) meanwhile.
The first-order differential function of g

(
λ0,k
)
is then

deduced as

g′ (λ0,k) � g′
1
(
λ0,k
)− g′

2
(
λ0,k
)

= − P0,k
1 − P0,k

e
1
4N
[
(λ1,k−N)2−(N−λ0,k)

2] − λ0,k − a
λ1,k − a

(32)

where λ1,k = √
2NQ

−1

(
Pf ,target−Q

(
λ0,k−N√

2N

)
P0,k

1−P0,k

)
+ N .

Together with Eq. (28), the negativity of g′ (λ0,k) in the
range of three cases in Eq. (28) is proved as follows.

(1) Pf ,target
P0,k < Q

(
− 1

2

√
N
2

)
. It can be easily obtained that

λ0,k−a
λ1,k−a > 0, and thus, we can get g′ (λ0,k) < 0 .

(2) Pf ,target
P0,k ≥ Q

(
− 1

2

√
N
2

)
.

(i) λ0,k ∈ (a, λ∗) . Similar to (1), it can be obtained
that g′ (λ0,k) < 0 .

a b c

Fig. 3 a–c Analysis of the solution to the nonlinear programming problem
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(ii) λ0,k ∈ (λ∗
0,k , a), Eq. (20) can be transformed into

[
1 − 1

2
er f c

(
N − λ0,k

2
√
N

)]
P0,k (33)

+1
2
er f c

(
λ1,k − N
2
√
N

)
(1 − P0,k) = Pf ,target

where er f c(x) = 2Q(
√
2x).

With λ0,k < a, it can be deduced that

N − λ0,k

2
√
N

>
N − a
2
√
N

=
√
N
4

(34)

and

λ1,k − N
2
√
N

= 1√
2
Q

−1

⎛
⎝Pf ,target − Q

(
λ0,k−N√

2N

)
P0,k

1 − P0,k

⎞
⎠

>
1√
2
Q

−1

⎛
⎝Pf ,target − Q

(
−

√
N

2
√
2

)
P0,k

1 − P0,k

⎞
⎠

>
1√
2
Q

−1

⎛
⎝P0,k − Q

(
−

√
N

2
√
2

)
P0,k

1 − P0,k

⎞
⎠

>
1√
2
Q

−1
(
1 − Q

(
−

√
N

2
√
2

))

=
√
N
4

(35)

Notice that in Eq. (35), P0,k > Pf ,target since Pd,k − 1 >

Pf ,target must hold to ensure a valid detection and
Pf ,k − 1 = Pf ,target in Eq. (13). With γ � 1 and N � 1,
the approximation er f c(x) ≈ 1√

πx e
−x2 can be taken in

Eq. (33), and thus, we can get

P0,k
1 − P0,k

e
1
4N
[
(λ1,k−N)2−(N−λ0,k)

2]

= N − λ0,k
λ1,k − N

+ P0,k − Pf ,target
1 − P0,k

√
π

N
(N − λ0,k)e

1
4N (λ1,k−N)2

(36)

By taking Eq. (36) into Eq. (32), it can be proved that
g′(λ0,k) < 0 when λ0,k ∈

(
λ∗
0,k , a

)
; the nonlinear pro-

gramming problem is then transformed into a problem
of searching for the zero point of a strictly decreasing
function, which can be easily solved by the dichotomy or
Newton’s method. It should be noticed that no zero point
exists when g

(
λ∗
0,k

)
< 0 since g (λ∗) < 0.

4 Simulation results
In this section, numerical results are presented to evaluate
the effectiveness of the IF-DDT sensing scheme. The pro-
posed algorithm is tested under various average activity
periods and traffic loads of the PU.

4.1 Simulation setup
Firstly, the thresholds of the IF-DDT scheme are simu-
lated. Secondly, the actual false alarm of the new algorithm
is provided to examine the correctness of the thresh-
olds. Thirdly, the performance of the IF-DDT algorithm
is quantified in different average PU active periods and
PU traffic loads, respectively. Finally, the total error prob-
ability of the IF-DDT scheme is provided to verify the
detection performance.
In the simulations, the sample lengthN is set to be 1000,

the sensing frame length TFk is set to be 10 ms according
to the IEEE 802.22 standard, and a Markov chain with 106
frames is randomly generated to model the PU state vary-
ing in each simulation. The detection performance of the
proposed IF-DDT scheme is compared with that of the
ED scheme and the double-threshold (DT) energy scheme
in [11].

4.2 Numerical results
Figure 4 verifies the double thresholds of the IF-DDT
algorithm changing with the frame index k. Figure 4a,
b is plotted at low and high SNR, respectively. In both
of the subfigures, T0 = T1 = 200 ms is set. In
addition, the gray areas in the subfigures denote that the
real state of the PU is ON; otherwise, it is OFF. When
the received energy locates between the double thresh-
olds and correctly detected under the IF-DDT scheme, the
corresponding point is marked with a circle.
From Fig. 4a, b, we can see that the double thresholds

quickly converge to stable values and actually keep invari-
ant. It means that the calculation for the thresholds of
the subsequent sensing frames can be saved as long as
the system parameters remain unchanged. Furthermore,
the marked points show that in lots of frames where the
received energy cannot give a reliable local decision, the
conventional ED algorithm seem powerless but our algo-
rithm tends tomake the right judgment. It is also indicated
that the gap between the double thresholds is smaller
when the SNR is high.
Figure 5 tests the actual false alarm probability of the

ED scheme, IF-DDT scheme, and DT scheme versus SNR
when Pf ,target = 0.01, 0.05, 0.1, respectively. Other sim-
ulation settings are T0 = T1 = 200 ms. As shown
in the figure, the actual false alarm probability of the DT
scheme is slightly higher than the target false alarm proba-
bility, but the actual false alarm probability of the IF-DDT
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a

b

Fig. 4 Thresholds of the IF-DDT sensing scheme. a Thresholds for T̄0 = T̄1 = 200 ms and SNR = − 14 dB. Thresholds of the IF-DDT sensing
scheme. b Thresholds for T̄0 = T̄1 = 200 ms and SNR = − 8 dB

scheme and ED scheme is always equal to the target false
alarm probability. In other words, the dynamic double
thresholds derived fromEq. (15) ensure that the constraint
on false alarm probability is met.
Figure 6 shows the detection probability versus SNR

with different PU active periods. The average PU active
parameters are set to be T0 = T1 = 100, 200, 500 ms,
respectively. As shown in Fig. 6, the IF-DDT algorithm
shows superior performance to the conventional ED and

Fig. 5 False alarm probability testing for T0 = T1 = 200 ms

DT scheme even when the average period of the PU is
short. For example, at the SNR of −10 dB, the detection
probability of the IF-DDT algorithm reaches 0.92 when
T0 = T1 = 100 ms, comparing with PEDd = 0.81
for the ED scheme and PDTd = 0.84 for the DT scheme.

Fig. 6 Pd versus SNR for Pf ,target = 0.1 and ηPU = 0.5
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This improvement benefits from the dynamic double-
threshold strategy, with which the detector tends to make
the correct judgment when the received energy is not reli-
able enough. What is more, when the PU actives with
longer period and thus becomes more inertial, the IF-
DDT algorithm gains higher detection probability which
depicts that the PU active period has much impact on the
performance of the new sensing scheme. In addition, it
is clearly shown that the simulation results well coincide
with the theoretical analysis in all cases.
Figure 7 tests the performance of the IF-DDT scheme

when the PU’s traffic load varies. And as expected, the new
scheme gains obvious performance improvement com-
pared with the convention ED and DT schemes. It is also
verified that when the PU’s average activity period is fixed,
the detection probability of the proposed algorithm does
not vary much with the PU’s traffic load. For example, at
the SNR of−12 dB, the detection probability is 0.78, which
is slightly higher by 0.03 and 0.06, respectively, than that
in the other cases. The difference is even slighter in higher
SNR region.
It is important to investigate the detector’s capability on

timely and correctly identifying the spectrum hole when
the spectrum is not occupied by the PU and vacating
the spectrum when the PU starts to occupy the autho-
rized spectrum. Therefore, to compare the performance in
terms of both the detection probability and the false alarm
probability, we define an erroneous decision probability Pe
as follows:

Pe = POFFPf + PON(1 − Pd) (37)

Figure 8 shows Pe among IF-DDT scheme, ED scheme,
and DT scheme versus SNR. The simulation environment
is the same as that in Fig. 6. The figure shows that IF-
DDT scheme provide the lowest Pe among these schemes.
In addition, the Pe of the IF-DDT scheme decreases as
the average period of the PU becomes longer. This is due
to the fact that when the average period increases, the
PU’s state between contiguous frames tends to be more
inertial, and then, the decision rule in Eq. (9) is more reli-
able; therefore, the decision based on the energy falling
between the two thresholds is more reasonable. Further-
more, the performance of ED and DT schemes are much
worse than those of the IF-DDT scheme.
Figures 6, 7, and 8 reveal:

1. IF-DDT sensing scheme outperforms the
conventional ED scheme and DT scheme

2. The proposed method is more robust to the PU’s
activity period and traffic load.

5 Conclusions
In this paper, the PU’s activity model and the SU’s sens-
ing mechanism are utilized and an inter-frame-based
dynamic double-threshold spectrum sensing scheme,
which exploits the relationship of two adjacent sensing
frames, is proposed to enhance energy detection perfor-
mance. When the received energy cannot give a reliable
local decision to distinguish the ON and OFF states of the
PU, the detector retains the previous sensing result. The
detection probability and false alarm probability of the
proposed sensing scheme are analyzed, and the optimal

Fig. 7 Pd versus SNR for Pf ,target = 0.1 and TPU = 400 ms
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Fig. 8 Pe versus SNR for Pf ,target = 0.1 and ηPU = 0.5

double thresholds are derived with very low complex-
ity according to the Neyman-Pearson (NP) test criterion.
This sensing scheme is simple but shown to outperform
the ED algorithm from both theoretical analysis and sim-
ulation results.
In this paper, our algorithm is based on energy detec-

tion. However, it can be extended to other traditional
spectrum sensing method, such as coherent detection and
feature detection, where the PU’s activity model and the
SU’s sensing mechanism have not been exploited. The
same way can be followed to obtain the corresponding
dynamic double thresholds and the detection probability
together with the false alarm probability.

Appendix 1: Derivation of Eqs. (12) and (13)
According to the definition for Pf ,k and the decision rule
given by Eq. (9),

Pf ,k � P {dk = 1|zk = 0}
= P

{
Uk ≥ λ1,k |zk = 0

}
+ P

{
λ0,k < Uk < λ1,k , dk−1 = 1|zk = 0

}
= P

{
Uk ≥ λ1,k |zk = 0

}
+ P

{
λ0,k < Uk < λ1,k |zk = 0

}
P
{
dk−1 = 1|zk = 0

}

= Q

(
λ1,k − N√

2N

)
+
[
Q

(
λ0,k − N√

2N

)
− Q

(
λ1,k − N√

2N

)]
P0,k

(38)

where

P0,k � P
{
dk−1 = 1|zk = 0

}
= P

{
dk−1 = 1, zk−1 = 0|zk = 0

}
+P
{
dk−1 = 1, zk−1 = 1|zk = 0

}
= P

{
dk−1 = 1|zk−1 = 0

}
P
{
zk−1 = 0|zk = 0

}
+P
{
dk−1 = 1|zk−1 = 1

}
P
{
zk−1 = 1|zk = 0

}
= Pf ,k−1p∗

00,k + Pd,k−1p∗
01,k (39)

Similarly, the detection probability Pd,k can be derived
as

Pd,k � P {dk = 1|zk = 1}
= P

{
Uk ≥ λ1,k |zk = 1

}
+ P

{
λ0,k < Uk < λ1,k , dk−1 = 1|zk = 1

}
= P

{
Uk ≥ λ1,k |zk = 1

}
+ P

{
λ0,k < Uk < λ1,k |zk = 1

}
P
{
dk−1 = 1|zk = 1

}

= Q

(
λ1,k − N(1 + γ )√

2N(1 + 2γ )

)

+
[
Q

(
λ0,k − N(1 + γ )√

2N(1 + 2γ )

)
− Q

(
λ1,k − N(1 + γ )√

2N(1 + 2γ )

)]
P1,k

(40)

and

P1,k � P
{
dk−1 = 1|zk = 1

} = Pf ,k−1p∗
10,k+Pd,k−1p∗

11,k
(41)

Appendix 2: Proof of Theorem 1
Consider first k > 1 . In Eqs. (10) and (11), P0,k and P1,k
can be viewed as constants in the open range (0, 1) . Thus,
the probabilities Pf ,k and Pd,k are both strictly decreasing
functions of λ0,k and λ1,k , respectively.
Assume that

(
λ′
0,k , λ

′
1,k

)
is the optimal solution to

Eq. (16) such that λ′
0,k < λ′

1,k , Pf ,k
(
λ′
0,k , λ

′
1,k

)
< Pf ,target,

and Pd,k
(
λ′
0,k , λ

′
1,k

)
= P∗

d,k , where P∗
d,k is the maximum

value for Pd,k . Then, there must exist a smaller value
λ∗
0,k < λ′

0,k such that

Pf ,k
(
λ′
0,k , λ

′
1,k
)

< Pf ,k
(
λ∗
0,k , λ

′
1,k
) = Pf ,target (42)

Pd,k
(
λ′
0,k , λ

′
1,k
) = P∗

d,k < Pd,k
(
λ∗
0,k , λ

′
1,k
)

(43)

which contradicts the assumption of the maximum value
P∗
d,k .
On the other hand, if λ′

0,k < λ′
1,k , we may also

reduce λ′
1,k to λ∗

1,k ∈[ λ′
0,k , λ

′
1,k) with λ′

0,k given, such that
Pf ,k

(
λ′
0,k , λ

∗
1,k

)
= Pf ,target , followed by Pd,k

(
λ∗
1,k , λ

′
0,k

)
>

P∗
d,k .
In the special case k = 1 , the probabilities Pf ,1 and Pd,1

become strictly decreasing functions of λ1 as described
underneath Eq. (9). Similarly, it can be proved that Pd,1
reaches P∗

d,1 only when Pf ,1 = Pf ,target using a proper
threshold λ∗

1.
Therefore, it is concluded that Pd,k reaches the maxi-

mum value P∗
d,k only when Pf ,k = Pf ,target with pair

thresholds
(
λ∗
0,k , λ

∗
1,k

)
for all k > 1.
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Appendix 3: Proof of Eq. (23)
The proof is composed of two steps:
Firstly, Pf ,target

P0,k ≥ Q

(
λ0,k−N√

2N

)
can be derived from

Eq. (20). From λ0,k−N√
2N = −

√
N
2 + λ0,k√

2N ≥ −
√

N
2 and the

monotonic decreasing property of Q function, we obtain

Q

(
−
√

N
2

)
≥ Q

(
λ0,k−N√

2N

)
.

Therefore min
[
Pf ,target
P0,k ,Q

(
−
√

N
2

)]
≥ Q

(
λ0,k−N√

2N

)
.

Secondly, from λ0,k ≤ λ1,k , we have λ0,k−N√
2N ≤ λ1,k−N√

2N ,

then Q

(
λ0,k−N√

2N

)
≥ Q

(
λ0,k−N√

2N

)
.

On the one hand, Q
(

λ0,k−N√
2N

)
P0,k + Q

(
λ0,k−N√

2N

)
(1 −

P0,k) = Q

(
λ0,k−N√

2N

)
. On the other hand,Q

(
λ0,k−N√

2N

)
P0,k +

Q

(
λ0,k−N√

2N

)
(1−P0,k) ≥ Q

(
λ0,k−N√

2N

)
P0,k+Q

(
λ1,k−N√

2N

)
(1−

P0,k) = Pf ,target. Therefore, Q
(

λ0,k−N√
2N

)
≥ Pf ,target.
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