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Abstract

A pattern-based cognitive communication system (PBCCS) that optimizes non-periodic RF waveforms for security
applications is proposed. PBCCS is a cross-layer approach that merges the channel encoding and modulation. The
transmitter encodes sequences of bits into continuous signal patterns by selecting the proper symbol glossaries. The
cognitive receiver preprocesses the received signal by extracting a limited set of wavelet features. The extracted
features are fed into an artificial neural network (ANN) to recover the digital data carried by the distorted symbol. The
PBCCS system offers a flexible management for robustness against a high noise level and increases the spectral
efficiency. In this study, the spectral efficiency and robustness of a PBCCS scheme for an additive white Gaussian noise
(AWGN) channel is investigated. The results show that at an SNR of −5 dB, a 3-bit glossary achieves a bit error rate
(BER) of 10−5. Also, the link spectral efficiency (LSE) of the proposed system is 2.61 bps/Hz.

Keywords: Cognitive radio (CR), Pattern-based cognitive communication system (PBCCS), Artificial neural network,
Wavelet decomposition, Digital signal processing (DSP), Very-low-SNR

1 Introduction
The efficiency of bandwidth utilization takes an impor-
tant role in spectrum management [1, 2]. Due to fixed
spectrum assignment policies and its inadequate to meet
an unexpected increase in the number of higher-data-
rate devices, the spectrum is inefficiently used. Cognitive
radio (CR) [3–6] was proposed as a promising solution to
alleviate the spectrum scarcity problem through dynamic
management of the available spectrum. The pioneer work
ofMitola et al. [3] led to an efficient utilization of the spec-
tral bandwidth by allowing the secondary user (SU), who
is not serviced, to detect and access the primary network
spectrum gaps. CR allows detection of the state of the
spectrum to adjust its own system parameters (transmis-
sion power, frequency band, throughput and modulation
scheme) in real time [7]. The result is that the utilization
of the spectral bandwidth is performed with the soft-
ware flexibility in an adaptive manner with respect to the
system parameters.
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However, efficient spectral bandwidth usage under the
influence of higher noise is not the major consideration of
CR. Claude Shannon [8] showed that the SNR is a lead-
ing factor that influences the link spectral efficiency (LSE),
η = C/B, (in bps/Hz). SNR also limits the channel capac-
ity. Therefore, the utilization of spectral bandwidth and
the robustness to high SNR level are the keys to maximize
the channel capacity.
Thus, a pattern-based cognitive communication system

(PBCCS) was introduced to optimize the overall spec-
tral efficiency with respect to SNR [9, 10]. It is inspired
by the recognition capability of humans to concentrate
on a single conversation irrespective of the surround-
ing loudness. If human ears hear sounds from different
sources, the brain chooses to pay attention to a particu-
lar voice amongst a whole range of sound streams in an
environment. Similar to human cognitive capabilities, the
communication system in PBCCS selectively recognizes
and recovers the communication signal(s) a into known
symbol(s), even within the same frequency range.
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1.1 Related work
Conventional cognitive radio is equipped with various
techniques for making wireless systems more flexible
and robust to channel variation. Mitola, in his disserta-
tion [11], stated that, although many aspects of wireless
networks are artificial, they may still be enhanced by
machine learning (ML). Recently, machine learning algo-
rithms have become one of the key enabling features of
cognitive radio in many applications. In previous litera-
ture, many techniques and algorithms have been applied
to the cognitive radio engine [12, 13], such as the artificial
neural network (ANN), hidden Markov model (HMM),
fuzzy logic control, meta-heuristic algorithms (evolution-
ary/genetic algorithm) and rule-based systems [14–16].
On the other hand, the PBCCS structure is an extension

for CR, which is a cross-layer architecture. The control
unit of PBCCS is located in the data-link layer and com-
municates with the external glossary space that manages
the transmission process. Table 1 summarizes the sim-
ilarities and differences between PBCCS and cognitive
radio.
Generally, ANN has been adapted in the cognitive radio

engine for various modulation classification, known as
automatic modulation recognition (AMR) or automatic
modulation classification (AMC). For instance, ANN was
implemented for channel sensing [17–19] and spectrum
prediction [17, 20], etc. To enhance ANN classification
accuracy, ANN is usually combinedwith the extracted fea-
tures from the received signal, which allows the engine
to have the capability to identify the modulation scheme
at low SNR levels. Cyclic spectral analysis [17], wavelet
cyclic features [21], temporal feature-based modulation
[22, 23], carrier frequency and baud rate [24], and contin-
uous wavelet transform (CWT) [25] are some examples of
these features. Dahap et al. [26] proposed a digital recog-
nition algorithm that uses six features extracted from
instantaneous information and signal spectrum to dis-
criminate between different modulated signals. Table 2
shows a brief summary of these approaches. However,

most of the aforementioned approaches have been used to
classify low-order modulation technique, such as 2-ASK
and 2-PSK. In addition, a prior signal information such
as the carrier frequency is required. Additionally, if these
approaches classify high-order modulation schemes, they
construct a large ANN. The PBCCS is a kind of AMC
that has not only the ability to classify high-order modula-
tion, but also can encode the received analog signal at very
low SNR.
In this work, we choose to use the ANN model at the

PBCCS receiver owing to its powerful capabilities. ANN
can predict the correct class of the received signal even if
the input signals have not been seen before, which allow
the model to learn from training dataset and generalize
themodel to any received signal. Moreover, ANN is a non-
linear model and hence can predict the nonlinear received
signal better than the linear model. Finally, the ANN par-
allel processing and the appropriate simple structure are
two important properties for realizing ANN on hardware.
Furthermore, we have implemented a cognitive radio

solution, which offers flexibility between the available
spectrum and SNR. This solution has the capability to bal-
ance between LSE and the overall channel capacity under
a very low SNR. It constructs optimal communication
symbols, which compensate for the difference in data rates
under various noise levels. In addition, the PBCCS system
integrates the modulator and channel encoder through a
cross-layer approach. The binary data is encoded into the
appropriate waveform according to the selected glossary.
Each binary word is assigned to the artificially constructed
patterns. The transmitter selects the appropriate set of
patterns that maximize LSE.

1.2 Contribution
In our previous work [27], we have experimentally inves-
tigated the performance of PBCCS in an additive white
Gaussian noise (AWGN) channel by employing 2-level
Daubechies-2 wavelet (DB2) as a discrete wavelet trans-
formation (DWT) to preprocess the received signal. With

Table 1 Comparison between pattern based cognitive communication system and cognitive radio

PBCCS Cognitive radio

Objective To improve data transmission performance under bandwidth
limitations by maximizing the LSE value with respect to SNR
level.

To efficiently manage the spectrum by using the
unoccupied spectrum band when it is not used by
the licensed user.

Transmitter side It selects one signal pattern from the glossary space in adaptive
manner.

It uses the frequency bandwidth in an adaptive
manner with respect to channel availability.

Receiver side The distorted signal is recovered by a trained ANN. Recovering
the informationwithout separate demodulation, decoding and
error recovery operations.

Receivermust have awide-band front-end to detect
spectrum holes. It should take into account the
adaptive modulation feature, since some receivers
employs AMC. Many ML algorithms can be used.

Modulation technique AFPSKa QAM, QPSK, BPSK, . . . etc.

Cognition manager Glossary selector (GS) Cognitive engine(CE)

aAmplitude frequency phase shift keying
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Table 2 ANN within cognitive radio

Reference Brief summary

[21] Wavelet cyclic feature has been proposed to reduce
the complexity of calculating classical cyclic spec-
trum and a FFNNa has been used to classify
the received signals into BPSKb, QPSKc, MSK,d

and 2-FSKe. Cons: limited to low-order modulation
schemes.

[22] Based on the instantaneous temporal features (the
maximum value of the spectral power density,
the standard deviation of the direct and absolute
instantaneous phase values and the standard devi-
ation of the normalized instantaneous amplitude),
the authors have proposed a FFNN and probabilis-
tic ANN to classify the received signals into 2- and
4-ASKf, BPSK, QPSK, 2-, and 4-FSK, 8-PSKg, 16-QAMh.
Cons: Large ANN architecture and requires prior
information on some specific parameters to guar-
antee the highest accuracy and reliable recognition.

[23] Based on the instantaneous temporal features (the
maximum value of the spectral power density,
the standard deviation of the direct and absolute
instantaneous phase and the standard deviation
of the normalized instantaneous amplitude), the
authors have proposed a simple FFNN to classify the
received signals into five classes, namely; 2- and
4-ASK, BPSK, and QPSK. Cons: low-order modula-
tions were considered. This approach requires prior
information on some specific parameters to guar-
antee the highest accuracy and reliable recognition.

[25] Based on the extracted CWT instantaneous fea-
tures (the mean, variance and central moments
values), the authors have proposed an ANN to clas-
sify themodulation scheme into k-ASK, k-PSK, k-FSK,
k-QAM, OOK,i and MSK.

[26] Based on the extracted instantaneous temporal fea-
tures, the authors proposed a rule-based approach
to discriminate between 15 modulation schemes
(AMj, FMk, DSBl, LSBm, USBn, VSBo, combined
AM–FM, CW, Noise, 2-, and 4-ASK, 2- and 4-PSK, 2-,
and 4-FSK). Cons: due to limited number of features
and signal sensitivity, the approach was unable to
classify the same modulation schemes of different
order.

[37] FFNN, radial basis function ANN andmulti-class sup-
port vector machine (SVM) have been suggested to
classify the modulation technique of the received
signal into 2- and 4-FSK, 4-ASK, 8-ASK, 2-PSK, 4-PSK,
8-PSK, V32, 8-, 16-, 32-, and 64-QAM. Cons: it requires
prior information on specific parameters to guaran-
tee the highest accuracy and reliable recognition.

[38] An expert discrete wavelet adaptive network based
on fuzzy inference system has been proposed for
classifying the digital modulated signals into 8-ASK,
8-FSK, 8-PSK, and 8-QAM. Cons: very large ANN
structure, with four hidden layers.

[39] A system that is only based on wavelet transform
has been developed, where a comparison between
signals and templates in wavelet domain has been
adapted to classify the received signals into 2-ASK,
2-FSK, and BPSK. Cons: binary digital modulation
schemes were considered. It also requires prior
signal information, such as, carrier frequency and
symbol duration.

Table 2 ANN within cognitive radio (Continued)

[40] A system that is based solely on DWT and sig-
nals statistics was used to classify the modulated
received signals into 16-QAM, QPSK and BPSK. Cons:
degradation of performance at SNR appearedwhen
the ANN was trained on signals with lower SNR.

aFFNN: Feed-forward neural network
b BPSK: Binary phase shift keying
cQPSK: Quadrature phase shift keying
dMSK: Minimum shift keying
ek-FSK: k−bit Frequency shift keying
fk-ASK: k−bit Amplitude shift keying
gk-PSK: k−bit Phase shift keying
hk-QAM: k−bit Quadrature amplitude modulation
iOOK: On-off keying
jAM: Amplitude modulation
kFM: Frequency modulation
lDSB: Double sideband modulation
mLSB: Lower sideband modulation
nUSB: Upper sideband modulation
oVSB: Vestigial sideband

regards to this, in the current work, learning the appro-
priate communication patterns for the cognitive receiver
and the influence factors on the received symbols are
being studied. The main contributions of this paper are in
fourfold.

• We analyzed various DWT approaches, which have
an influence on the recognition rate of the ANN.

• We studied the effect of using 4- and 5-level DWT,
which reduce the size of the ANN.

• We analyzed various back-propagation learning
algorithms, which have an influence on system
performance as well as the speed of learning.

• Finally, we showed that the space complexity of the
receiver exhibits a reduced ANN structure in terms
of inputs and the hidden layer. As fewer resources
were used, the receiver could be implemented with
fewer hardware units.

1.3 Paper organization
The rest of this paper is organized in the following way.
Section 2 describes the structure of the PBCCSmodel and
its blocks in detail. It also gives a short introduction on
wavelet and neural networks. In Section 3, we evaluate
the performance of the PBCCS system. In Section 4, we
conclude the paper and recommend directions for future
work.

2 PBCCS structure
The proposed system consists of two main parts, the
transmitter and receiver. Basically, the system employs
pattern-based encoding at the transmitter and a wavelet-
preprocessed artificial neural network based decoder at
the receiver. In this section, we describe the details of the
individual parts of PBCCS.
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2.1 The transmitter of PBCCS
The transmitter of PBCCS is responsible for three tasks:
1) selecting the appropriate glossary with respect to the
SNR level, 2) encoding the user data, and 3) transmitting
the signal through the antenna. In PBCCS, the modula-
tion is performed by using the sinusoidal pattern envelope
construction (SPEC) algorithm [10]. The SPEC algorithm
is used to prevent unwanted extra spectral usage, and it
guarantees that the signal’s pattern ends at its initial point
to ensure a zero-power density in average and has no
high-frequency components.
The SPEC algorithm has two essential parame-

ters—namely, “depth”, and “level”. Depth determines the
length of the pattern in terms of the time—i.e., number
of periods. Meanwhile, level identifies a value for each
feature of the signal pattern. It represents the maximum
and the minimum values of any signal characteristics
(amplitude (A), frequency (F) or phase (P) at depth i. All
possible outcomes in the SPEC algorithm are due to the
changes in the A, F, and P features of the signal.
Figure 1a shows the block diagram of the transmitter,

which consists of an encoder, a glossary space, and a glos-
sary selector. The glossary is an information encoding
method. It is composed of different patterns generated by

the SPEC algorithm. The SPEC is responsible for com-
bining different sinusoidal waveforms to form a symbol
as shown in Eq. (1). The generated signal of each symbol
has different waveforms that change over time in terms of
amplitude, frequency, and phase.

mi(t) =
J∑

i=0
ai ∗ xi(t) ∗ cos

(
2 ∗ π ∗ fi ∗ t + φi

)
(1)

where mi(t) is the ith pattern; ai ,fi and φi are the ampli-
tude, frequency and phase of the signal, respectively; J is
the total number of sinusoidal waves that the pattern con-
tains (determined by the depth parameter); and xi(t) is
defined as

xi(t) =
{
1 if 2 ∗ π ∗ i ≤ t < 2π ∗ (i + 1) + 2π ,
0 otherwise (2)

Each block of k input data bits di, i = 1, 2, . . . , 2k is
mapped to patternmi(t). All symbols,mi(t), are combined
to form a k-bit glossary space. Figure 2 illustrates a 3-
bit glossary space, containing eight signal patterns. In this
work, the performance of 3-bit, 4-bit, and 5-bit glossary
spaces, with 8, 16, and 32 patterns, respectively, is studied.

(a)

(b)

Fig. 1 The block diagram of the PBCCS. The transmitter (a) PBCCS Transmitter Block diagram selects a 3-bit glossary space, so the corresponding
“101” waveform is transmitted. The receiver (b) PBCCS Receiver Block diagram receives a distorted signal and produces the corresponding bits
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Fig. 2 The 3-bit glossary space with 5 levels, each of which has 7 patterns (depth is set to 6). The signal’s amplitude is [ 0.1, 0.2, 0.45, 0.7, 0.9] V,
frequency is [ 4.600, 5.000, 5.600, 6.600, 7.400] kHz, and phase shift is [−π/2 −π/4 0 π/4 π/2] rad

The transmitted symbol, m(t), contains a sequence of
known data symbols, m1(t),m2(t), .... According to the
selected glossary, the pattern that matches the data index
is selected and applied to the RF front-end.
The glossary selector is the core component in the trans-

mitter’s design, because it selects the most appropriate
glossary from the glossary space as part of the adapta-
tion process. It takes the glossary space information and
channel spectral situation—i.e., the SNR value from the
environment, as an input to determine the most proper
glossaries set in the glossary space by computing the max-
imum likelihood value. For example, Fig. 1 shows that the
measured SNR is -8 dB. Therefore, the glossary selector
switches to a 3-bit glossary and maps ‘101’ to the sixth
pattern (shown in Fig. 2).

2.2 The receiver of PBCCS
The main modules of the receiver are the discrete wavelet
transform unit and ANN, as illustrated in Fig. 1b. The aim
of using ANN at the receiver is to predict the original bits
of the distorted received signal. The receiver does not con-
struct a similar analog signal or estimate its parameter.
Instead, it classifies the input samples to a known pattern,
so that the correct bits can be inferred. In the following
subsections, we briefly describe the functionality of each
part of the receiver.

2.2.1 Features extraction and reduction
One of the aspects of signal classification is the selec-
tion of proper classification features. The goal of fea-

ture extraction is to obtain a set of features that can
discriminate different received signals. In this work, the
discrete wavelet transform (DWT) [28] is used to extract
the signal features.
The discrete wavelet transform is a linear signal pro-

cessing technique that transforms a signal r(t) from the
time domain to the “wavelet” domain—i.e., wavelet coef-
ficients. A transformation from the time domain to the
“wavelet” domain is analogous to the Fourier transform.
The key difference betweenwavelet transform and Fourier
transform is that wavelets are local in both time (via
translation) and frequency (via dilation), whereas Fourier
analysis is local only in frequency but not in time. Because
the generated waveforms contain numerous nonstation-
ary or transitory characteristics, which are often the most
important parts of signals, Fourier analysis is unsuitable to
describe such characteristics. Moreover, the received pat-
tern signal can be represented by a compact form and hold
most features that distinguish it from other patterns. As
a result, the wavelet analysis is appropriate to capture the
changes in the pattern’s frequency over time and achieves
better lossy compression, which dramatically reduces the
size of ANN.
In general, the received signal, r(t), can be modeled in

the AWGN channel as follows:

r(t) = ms(t) + wn(t) (3)

wherems(t) denotes the original pattern signal, and wn(t)
is white Gaussian noise with normal distribution. r(t) is
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discretized in time so that n−point discrete signal r[n] is
constructed. The DWT is defined by Eq. (4) as follows:

W (j, k) =
∑

j

∑

k
r(k)ψjk(n), j, k ∈ Z (4)

ψjk(n) = 2−j/2ψ
(
2−jn − k

)
(5)

where W (j, k) are the wavelet transform coefficients;
ψjk(n) is the mother wavelet, and j and k are the scale
parameter and shift parameter, respectively. In practice,
it is inconvenient to apply Eq. (4) in calculating the
coefficients. The DWT can be implemented as a series
of high-pass and low-pass filters, called the recursive
wavelet transform, which decomposes the signal x[n] into
two parts. The wavelet decomposition depends mainly
on orthonormal filter banks. Figure 3 shows the signal
decomposition by a two-channel wavelet structure, where
x[n] is the input signal, h[n] is the high-pass filter, g[n]
is the low-pass filter, and ↓ 2 is the down-sampling by
a factor of two. In this way, each filter creates a series
of coefficients that represent and compact the original
information of the signal.
Mathematically, a signal x[n] is composed of high and

low frequencies as shown in Eq. (6). It shows that the
obtained signal can be represented by using half the coef-
ficients because they are decimated by 2.

x[k]= xhigh[k − 1]+xlow[k − 1] (6)

The filtered and decimated output of low-pass part is
recursively passed through identical wavelet filter banks
to add the dimension of varying resolution at every stage.
Equations (7) and (8) are mathematical expressions of
filtering a signal through a digital high-pass filter h[n] ,

and low-pass filter g[n]. This operation corresponds to
convolution with an impulse response of k−tap filters.

yhigh[k]=
∑

n
x[n] .h[2k − n] (7)

ylow[k]=
∑

n
x[n] .g[2k − n] (8)

where n becomes 2n representing the down-sampling pro-
cess. The output of the low-pass filter, ylow[k], provides
approximation signal, whereas the output of the high-pass
filter, yhigh[k], provides detailed signal. In addition, Eqs. (7)
and (8) show that using DWT can not only greatly reduce
the number of input nodes, but also effectively expresses
the features of the received signal, thereby enhancing the
ability of neural networks to recognize the signal.
A variety of different wavelet families has been pro-

posed in the literature. In this work, the simplest wavelet
family—i.e., the Haar wavelet and triangle wavelet are
selected [28]. In addition, the 4- and 10-coefficient wavelet
family (the second and the fifth orders of Daubechies
wavelet—i.e., DB2, DB5), and the 6-coefficient wavelet
family coiflets (C6) proposed by Daubechies are used [29].
The decomposition low-pass filter parameters of the Haar,
DB2 and DB5 wavelet are shown in Fig. 4.

2.2.2 Recognition layer
After extracting the proper features from the received sig-
nal, classifying these patterns into appropriate classes is
the final step to recognize the symbol. In this work, the
artificial neural network (ANN) [30, 31] is considered as
a recognition layer to recover the transmitted data, and it
forms the cognitive part of the PBCCS receiver.
The main reason for choosing the preprocessed wavelet

with ANN is its high sensitivity for recognizing the ampli-
tude, frequency and phase changes in the communica-
tion signal. The output that is produced by the ANN is

Fig. 3 The block diagram of a two-channel four-level DWT decomposition (J = 4) that decomposes a discrete signal into two parts
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(a) (b) (c)

Fig. 4 Low-pass filter parameters of different wavelet families. a Haar,
b DB2, c DB5

decoded in the final stage into the correct bit sequence, as
shown in Fig. 5.
In this work, the most common ANN model, namely

multilayer perceptron (MLP), is used. MLP is a type of
feed-forward neural network (FFNN) model that maps
the input data onto a set of appropriate outputs. It con-
sists of at least three layers—i.e., the input layer, one or
more hidden layers and an output layer. The network is
fully connected from one layer to the next as a directed
acyclic graph (Fig. 5). Each neuron is capable of multi-
plying the inputs by its weight and sum up the results.
In other words, the neuron operations are performed by
multipliers and adders.

Mathematically, for n arbitrary distinct received samples
(xi, ti), where xi is the extracted features’ vector from the
received signal, xi =[ xi1, xi2, . . ., xin]T ∈ R

n and ti is the
target vector, ti = [ti1, ti2, . . ., tim]T ∈ R

m. n and m are
the size of the input feature and the target vectors, respec-
tively. The target vector ti represents the actual sequence
of bits that the recognition layer must produce.
A single hidden layer of a FFNN (Fig. 5) with an activa-

tion function, g(.) and k hidden neurons is mathematically
modeled as

g
( n∑

i=1
wji · xi + bj

)
= yj, j = 1, 2, . . ., k (9)

where wji = [
wj1,wj2, . . .,wjk

]T is the weight vector con-
necting the jth hidden neurons with the inputs and bj is
the bias value of the jth hidden neuron. The bias allows the
sigmoid function curve to be shifted horizontally along
the input axis while leaving the shape of the function
unchanged. wji · xi denotes the inner product of wji and xj.
The result of the jth output neuron can be mathemati-

cally computed as shown in Eq. (10):

g

⎛

⎝
k∑

i=1
βji · yi + bj

⎞

⎠ = Oj, j = 1, 2, . . .,M (10)

where M is the total number of output neurons. βji =
[
βj1,βj2, . . .,βjm

]T is the weight vector connecting the jth
hidden neurons and output neurons and bj is the bias
value of the jth output neuron.
Because the final goal is to find the relation between

the input xi and the target ti, the activation function g(.)
can approximate these n received samples with zero mean

Fig. 5 Feed-forward ANN (FFNN) with one hidden layer and an output layer. The extracted features are fed into ANN with n input nodes, and k and
m are the number of hidden and output neurons, respectively. The output bits are the bits that were recognized by the FFNN
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error, such that
N∑
j=1

∥∥ti − yi
∥∥ = 0. Thus, there exist βi,wi

and bi such that

n∑

i=1
βig

(
wi · xj + bi

) = tj, j = 1, 2, . . .,m (11)

The back-propagation algorithm (BP) [30] is used to
compute the weights and biases of the ANN by mini-
mizing the error function in weight space using gradient
descent.
The received sequence of bits, â = â1, â2, . . . , âm

is approximated from the output neurons as shown in
Eq. (12):

âj =
{
1 if Oj ≥ 0.5,
0 otherwise (12)

where Oj is the jth the output neuron.
As a final point, the structure of the FFNN should be

modular and simple, so that the hardware architecture can
be efficiently realized on floating point digital signal pro-
cessor (DSP) or a field programmable gate array (FPGA).
As there are various combinations of designing a FFNN,
an efficient design should include the following aspects

• Input neurons: the number of neurons is equivalent
to the sample size of the DWT vector.

• Hidden neurons: due to low complexity and high
applicability perspective [10], a single hidden layer
with few number of neurons should be used. The
number of neurons will be determined by the cross
validation method.

• Output neurons: The number of output neurons
should be identical to the size of the glossary
space—i.e., total number of patterns. However, each
glossary differs in the number of symbols that it
represents. For instance, the 3−bit glossary has 8
symbols while 4−bit glossary has 16 symbols.
Therefore, the size of the glossary can be added to
determine the width of the output sequence bits.

3 Experimental results
In this section, the performance of the proposed PBCCS
based on the extracted features (discussed in Section 2) is
verified in an AWGN channel. At the end of this section,
the proposed approach complexity is presented.

3.1 Simulation settings
Simulations were carried out to transmit 2k different sym-
bols (k-bit glossary) at various SNR levels. The SNR levels
were in the range of [−15, 25] dB. The ANN parameters
are shown in Table 4. All experiments were performed
using Matlab software.

3.2 Constructing the glossary
Each test pattern is constructed with five sub-signal.
According to the SPEC algorithm, patterns are generated
with bandwidth-limited switching among different fre-
quency, phase, and amplitude levels. The features of the
communication signal (frequency, phase, and amplitude)
are chosen from five different levels, listed in Table 3. The
depth is set to 6, which indicates that each signal symbol
is constructed from 7 sub-patterns.
Synthetic signals that represent the symbols was vali-

dated on hardware. For this purpose, we used an FMC150
[32] daughter card attached to a Xilinx ML605 board [33].
The FMC150 is a dual 14-bit channel ADC and dual
channel 16-bit DAC FMC daughter card. Figure 6 shows
the synthesized signal by the hardware against a sim-
ulated signal generated by Matlab. There are 7 sub-
patterns in each signal. The frequencies of each pattern
are 1.25, 5, 6.25, 5, 1.25, 2.5, and 1.25 MHz. The ampli-
tude and phase are identical to the values presented in
Table 3. The frequency of the simulated signal might
slightly differ from the real one owing to the register preci-
sion of the FMC150—i.e., the measured frequency of each
sub-pattern is 1.229, 4.9020, 6.1728, 4.9020, 1.229, 2.457,
and 1.229 MHz. The mean voltage of the baseband signal
is 2.9710 ∗ 10−4, which is approximately zero.

3.3 Learning process andmodel evaluation
Before assessing the system, two datasets were generated
for each symbol. These sets should be used for learning
(training) and testing (evaluating). The learning set is used
to derive the model offline, whereas the test set is used
to estimate model’s accuracy online, as shown in Fig. 7.
Symbols that were used during the learning stage would
not be involved in the testing stage. Moreover, the learn-
ing dataset should be larger than the testing dataset, so
that the model can be built from a large space of sampled
signals. For example, the dataset of the 3-bit glossary con-
tains 248, 000 symbols and 74, 400 symbols for learning
and testing, respectively. In other words, 70% of the total
symbols were used for learning.
To assess the accuracy of the wavelet filter banks and

ANN model, we use the success rate of the recognition
symbol as an indication of the effectiveness of the receiver
to correctly recognize the received symbols. It indicates
the capability of the trained model to classify the received
symbols in the testing set, which were not seen before.

Table 3 Base signal specifications

Feature -L2 -L1 L0 L1 L2

Frequency (kHz) 4.600 5.000 5.600 6.600 7.400

Phase (rad) −π/2 −π/4 0 π/4 π/2

Amplitude (V) 0.1 0.2 0.45 0.7 0.9
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Fig. 6 Synthetic signal (baseband signal) by using Matlab compared with the real synthetic signal generated by the hardware. Fs = 122.88 MHz

It also expresses the probability of correct classification,
which is computed as follows:

Success Rate = 1
N

�N
i xi ∗ 100 (13)

where N is the total number of test symbols and xi is
an indicator whose value is 1 if the ith symbol is cor-
rectly received. In other words, Success Ratemeasures the
symbol error rate (SER).
In addition to the success rate, the BER performance

is used to assess the accuracy of the whole system. It
expresses the number of bit errors per second divided by
the total number of transferred bits.

3.4 Classification performance of different wavelet
families

In this section, we study the effect of applying differ-
ent wavelet families on the performance of the receiver
for 3-bit glossary. The received signal has 880 samples.
The number of input nodes was subsequently reduced
from 220 to 55 and 27 to identify the most relevant input
features to ANN by employing 2-, 4-, and 5-level DWT
decomposition ( j = 2, 4 and 5). The ANNmodel was then
trained for different numbers of neurons in the hidden

layer. These experiments were repeated 10 times, and the
success rate was averaged.
Figure 8a illustrates the effect of using the Haar wavelet

for various numbers of neurons in the input and hidden
layers. It shows that the average success rate of the model
is more than 90% for all scenarios. By using 27 neurons at
the input layer, the success rate is greater than 94% with
12 neurons or more at the hidden layer.
In Fig. 8b, the effect of using a triangle wavelet is shown,

which is similar to Fig. 8a. However, the success rate of the
model with 55 neurons outperforms the model that has
220 inputs. The improvement of the input size reduction
to 55 inputs by using DB2 is illustrated in Fig. 8c. The suc-
cess rate is greater than 97% with more than 12 hidden
neurons (with the exception of the case with 27 inputs).
DB5 wavelet has similar performance compared to the

DB2, as shown in Fig. 8d. Similar result was also obtained
by using a coiflets (C6) wavelet as shown in Fig. 8e. The
figure shows that with 55 input nodes and 10 hidden
nodes, the performance is improved compared with the
experiment of 220 input nodes.
To analyze the previous results, the success rates of

PBCCS are elaborated in the [−20, 15] dB range for var-
ious network configurations in the hidden layer (Fig. 9).
When the SNR is equal to or greater than −12 dB, the

Fig. 7 The functional blocks of the experiments
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(a) (b)

(c)

(e)

(d)

Fig. 8 The probability of correct classification (average success rate) vs. number of hidden neurons by using different wavelet transforms and various
input size in an AWGN channel. a Haar wavelet, b Triangle wavelet, c Daubechies (DB2) wavelet, d Daubechies (DB5) wavelet, e Coiflets (C6) wavelet

(a) (b)

Fig. 9 The probability of correct classification (success rates) in AWGN channel when applying a DB2 wavelet connected to FFNN with 10, 14, 20, 24,
30, 34, and 40 hidden neurons. a Using 5-Level DB2 DWT (27 coefficients), b Using 4-Level DB2 DWT (55 coefficients)
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success rate is greater than 99.0% for all configurations,
which means that there is no error in the received sym-
bols (SER = 0.1). Below −12 dB, the success rate linearly
decreases to 65%. In all cases, using 10 hidden neurons or
more layer does not improve the success rate.
In summary, we found that for 3-bit glossary the DB2

wavelet has better performance compared with other
wavelet families studied in our tests. It is also found that
with a 27−input ANN, the performance is better than
that when using many extracted features. Furthermore,
the use of 14 hidden neurons or more has a similar recog-
nition rate to a network that contains 8 hidden neurons.
As a result, an ANN that is based on 5-level DWT can be
realized with 27 inputs and as minimum as 14 hidden neu-
rons. This reduction will use fewer resources during the
hardware design realization.

3.5 Classification performance of various learning
algorithms

In this section, we examined four popular back-
propagation learning algorithms—namely, (Levenberg-
Marquardt (LM), scaled conjugate gradient (SCG),
gradient descent with momentum and adaptive learning
rate back-propagation (GDX) and Bayesian regularization
back-propagation (BR) in terms of speed and the num-
ber of iterations to achieve the same performance goal
(MSE)=0.01. The ANN parameters are set according to
Table 4. For LM algorithm, the maximum number of iter-
ations was set to 25 to limit the learning time as shown
in Table 5. It is worth mentioning that we choose the best
parameters for LM algorithms by experimental study.
The average training accuracies of each algorithms over

various ANN structures are shown in Fig. 10a. It indi-
cates that all learning algorithms achieve 96%. The LM
algorithm is failed in some experiments because the
algorithm reaches the maximum number of iterations
(Fig. 10b). Figure 10c shows that as the number of hid-
den units increases, the learning time of both LM and BR
algorithms is significantly increased, whereas the learning

Table 4 ANN parameters

Parameters Value

Number of layers 2

Number of input nodes 220, 55, 27

Number of output neurons 3, 4, 5

Activation function Sigmoid

Training algorithm Scaled conjugate gradient

Gradient error level 1 × 10−6

Performance function Mean squared error

Number of neurons in hidden layer Varied from 8 to 40

Maximum number of epochs to train 3000

Table 5 ANN parameters

Parameter Value

Maximum number of epochs to train 25

Initial μ value 0.1

Decrease factor (α) 0.2

Increase factor (β) 6

Minimum performance gradient 10−5

Performance function Mean squared error

time of both SCG andGDX algorithms is constant and less
than 20 m. The average learning time of BR and LM with
40 hidden units network are 3 and 2 h, while the number of
iterations is less than 25 and 100 iterations, which means
that both algorithms have high computation complexity.
The average MSE versus number of hidden neurons are

shown in Fig. 10d. Smaller values that are close to zero
are better because they indicate that the MLP had fitted
the data well. SCG, GDX, and BR learning algorithms have
better performance compared with LM algorithm because
the number of iterations of LM was limited to 25 itera-
tions. Increasing the number iterations will improve the
MSE values but has dramatically effect on learning time.

3.6 System performance with k-bit glossary spaces in
AWGN Channel

Based on the previous results, DB2wavelet decomposition
was applied to extract 27 features from the received signal.
We simulated the BER by applying 3∗105 at each SNR level
and measuring the number of uncorrected received bits.
In Fig. 11, the SNR curves illustrate the 3-, 4-, and 5-bit
glossary performance with various hidden neurons. The
total area under each curve indicates the overall system
performance under different noise and data bit error rate
(BER) levels. It means that the carve with minimum area
has a better performance. It is depicted in Fig. 11a that the
BER is 10−5 at −5 dB for most ANN configurations. Sim-
ilarly, Fig. 11b presents that the curve for 20 neurons has
SNR of approximately −2 dB at 10−5. Also, it shows that
the system performance improves with increasing number
of neurons due to the fact that the recognition capability
could be enhanced as the number of hidden neurons is
increased. Figure 11c shows similar performance as shown
in Fig. 11b except that SNR is approximately 4 dB at 10−5.
Figure 11 shows a strange behavior as the BER carve

reaches 10−5, where some errors increases again. We
expect that the ANN could not distinguish between the
samples either because the learning process is not enough
or it overfits the data.
In summary, we found that the best performance of 4-

and 5-bit glossary space is achieved when the number
of hidden neurons is between 20 and 40 neurons. This
means that the BER of an ANN with a hidden layer of 20
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(a) (b)

(c) (d)

Fig. 10 Comparison between SCG, LM, GDX and BR learning algorithms with respect to a Average success rate (accuracy). b Average number of
iterations. c Average Learning time. d Average MSE performance

neurons is approximately equal to an ANN configuration
with higher hidden units. This phenomenon indicates that
an increasing number of hidden neurons does not always
improve the performance. As a result, the best PBCCS
performance can be realized with a fixed-structure ANN
of 27 inputs nodes and 20 hidden neurons for 3-, 4-, and
5-bit glossaries.

3.7 Spectral efficiency
The ability of the system to balance between the spec-
tral efficiency under a very low SNR is an advantage of
the proposed scheme. For each glossary, we construct

a random signal of 2000 symbols to measure the aver-
age data rate and the occupied bandwidth. Table 6 shows
the spectral efficiency, η, of the previous constructed
glossaries.
The most significant feature of the proposed method is

its competence to operate in a region beyond the Shannon
boundary. The Shannon boundary is drawn in Fig. 12 by
using the Shannon limit theorem (equation (6.5—49), [2]),
which is rewritten as follows:

Eb
N0

>
2η − 1

η
(14)

(a) (b) (c)

Fig. 11 Bit error rate for three different glossaries in an AWGN channel. Each curve represents the number of neurons at the hidden layer. a with
3-bit glossary, b with 4-bit glossary, c with 5-bit glossary
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Table 6 Spectral efficiency of PBCCS at Pe = 10−5 bit error
probability

Glossary 3-bit 4-bit 5-bit

M (symbols) 8 16 32

SNR value (dB) -5 -2 4

Data rate (kbps) 2.508 3.553 4.6

Average BW (kHz) 0.960 0.881 0.9135

LSE,η, (bps/Hz) 2.61 4.0318 5.03

where,

η < log2
(
1 + EbR

N0W

)
= log2

(
1 + η

Eb
N0

)
(15)

Equation 14 states the condition of reliable communi-
cation in terms of bandwidth efficiency, η, and power
efficiency in terms of Eb/N0. Figure 12 shows the mini-
mum value of Eb/N0 = −1.59 for which reliable com-
munication is possible. The marks in the figure show the
best working point regarding the glossary at a 10−5 bit
error rate andM−QAM. This figure depicts that the 4-bit
glossary and 16-QAM have the same spectral efficiency,
but the 4-bit glossary is more robust to high levels of
AWGN than 16-QAM. Similarly, 5-bit glossary is more
robust than 32−QAM at the same spectral efficiency,
η = 5.
However, the most interesting finding is that the 3−bit

glossary breaks down the Shannon limits. This phe-
nomenon occurs because the ANN can perfectly discrim-
inate among the eight signals of the 3−bit glossary. In the
learning step, the ANN model has constructed a model

Fig. 12 Comparison between PBCCS andm-QAM in an AWGN
channel at Pe = 10−5 bit error probability. The neural network
contains 20 hidden neurons

that allows the PBCCS to classify any unseen signal, in a
manner analogous to memory. Another reason for break-
ing down the Shannon limit is the usage of non-periodic
signals. Shannon’s law is restricted to periodic signals [34].
The PBCCS constructs a non-periodic and uncorrelated
communication waveforms that provide a manageable
SNR capability between high noise redundancy and high
data bandwidth requirements under observed spectrum
conditions.
It is worth mentioning that this result depends on the

difference between the bandwidth of recovered digital
data based on a priori information in the glossary and
the raw physical data bandwidth inside the communica-
tion medium. In addition, the synchronization overhead
between the transmitted symbols is not considered.

3.8 Bit error rate comparison
A comparative analysis between the PBCCS and of
the matched filter is shown in Fig. 13. The total area
under each curve indicates the overall system perfor-
mance under different noise and data BER levels. Accord-
ing to Fig. 13, 3−, 4−, 5-bit glossary constructed by
PBCCS modulation have 20 dB, 21 dB and 22 dB better
performances at 10−5 BER than 8-QAM, 16-QAM, and
32-QAM, respectively. It is worth noting that each k-bit
symbol space has 2k symbols asm-QAM becausem = 2k .
Also, 3−, 4−, 5-bit glossary outperforms the 4−, 8−, 16-
PSK by 16, 17, and 23 dB.

Fig. 13 The simulated performance of PBCCS andm-QAM in an
AWGN channel. The neural network contains 20 hidden neurons
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The bit error probability for 16-QAM is given by
(equation (4.2—85), [2]):

Pb16−QAM = 3Q
(√

4Eb
5No

)
− 9

4

[
Q

(√
4Eb
5No

)]2

(16)

where Q(x) is the Q-function. Q(.) is a monotonically
decreasing function of its argument; the probability of
error decreases as the ratio 4Eb

5No
increases. This means that

the decision boundary of the QAM technique depends
on increasing the signal energy, which makes the binary
signals dissimilar. However, the PBCSS depends not only
on the signal energy but also on the extracted features
from the received signal by DWT and the nonlinearmodel
of ANN, which enable the PBCCS model to reduce the
probability of error.

3.9 System performance comparison with AMC
Because this work and similar works have used different
methodologies in signal type recognition, direct compar-
ison with these works is difficult. Table 7 compares the
PBCCS with some of AMC techniques. A brief summary
of each recognition approach was given in Table 2. It is
clear that the proposed PBCCS outperforms the previous
approaches (at -11 dB) because the symbols that are stored

in the glossary was designed with properties that allow the
ANN to discriminate between them.

3.10 Receiver space complexity
After simulating the proposed approach, the next step
is to verify the design on real hardware such as a field-
programmable gate array (FPGA) and application-specific
integrated circuit (ASIC). We prefer using FPGA because
the parallel structure of an ANN and the similarity of
neurons makes its design simple and straightforward.
Each FPGA comes with limited resources, which poses

challenges for real implementation. Space complexity
gives an indication of the number of used functional units.
It approximates the numbers of connections, multipliers
and adders that the real design will occupy when it is
implemented on an FPGA.
The transmitter could be implemented by means of

memory. Each glossary requires one memory (blocked
RAM (BRAM)), which is indexed by the transmitted
bits. For example, Xilinx Virtex VI xc6vlx240t-1ff1156 has
416 BRAMs, each storing 36 Kb [33]. Figure 14 shows
the block diagram of the PBCCS transmitter, where the
preamble was used for the synchronization. It shows only
3-bit glossary with 13 × 16 BRAM.
At the receiver, each neuron of the implemented ANN

has a set of multipliers that are used to multiply the

Table 7 Comparison between different works in terms of features, ANN model and the achieved SNR with the recognition accuracy

Reference Application Applied features Type of ANN Recognition accuracy (%)

[22] AMC Instantaneous temporal
feature-based

FANN (5,19,8) and PANN
(5,1800,8)

Overall success rate at -5 db are
65.63% and 55.5% respectively.

[23] AMC Instantaneous temporal
feature-based modulation

FANN (4,7,5) the overall success rate at -5 dB
is 99.65%.

[25] AMC Continuous wavelet
transform (CWT)

N/A The overall success rate at 0 dB
is 99.6% (using 10 features).

[26] AMC Instantaneous information
and signal spectrum

N/A The overall success rate at 3 dB
is 98.6% (using 10 features).

[37] AMC Combination of the higher
order moments, higher
order cumulants and
instantaneous characteristics
of digital modulations

Radial basis function
(RBF) probabilistic neural
network (PNN)

The overall success rate at -3 dB
is 87.50%. The overall success
rate at -3 dB is 86.45%.

[38] AMC 7-level DWT Adaptive Network Based
Fuzzy Inference Systems of
5 hidden layers

The overall success rate using
DB2 at -5 dB is 98%.

[39] AMC Haar Wavelet Transform N/A The overall success rate at -7 dB
is 99.71%.

[40] AMC Haar Wavelet Transform N/A The overall success rate at 5 dB
is 97.93%.

[27] Modulation classification
and signal encoding

1-level DB2 DWT FFNN(30,14,3) The overall success rate a -11
dB for 3-bit glossaries is 96.0%.

PBCCS Modulation classification
and signal encoding

5-level DB2 DWT FFNN(27,14,3),
FFNN(27,14,4),
FFNN(27,14,5)

The overall success rate at
-11 dB for 3-bit, 4-bit and 5-bit
glossaries are 99.0%, 90.3% and
72.79%, respectively.
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Fig. 14 The block diagram of the PBCCS transmitter

weight of the connections with the received data val-
ues. For example, if there are 26 2-input nodes, then
each hidden neuron requires 26 multipliers and 26 2-
input adders (including one adder to the bias). Because
multipliers are more expensive than the adders and each
FPGA comes with a limited number of them, they, in
fact, significantly influence the design. For instance, Xilinx
Virtex VI xc6vlx240t-1ff1156 has 768 multipliers (named
DSP48E1) [33].
Table 8 shows a comparison between the architecture

of the proposed approach compared with the one that is
based on time delay ANN (TDNN) [10]. It shows that
the total number of multipliers in the FFNN is drastically
reduced compared with the TDNN. Moreover, the 3-bit
glossary space requires 26 ∗ 20 ∗ 3 = 1560 connections.
This indicates the number of internal connections among
the input, hidden and output layers of any used neural
network, whereas TDNN requires 120 ∗ 20 ∗ 3 = 7200
connections.
In addition to the impact of the neural network, the

wavelet decomposition has effect on the space complexity

Table 8 Space complexity comparison between the proposed
approach and time delay ANN [10]

Parameters Wavelet and ANN Time delay ANN

k = 3 k = 4 k = 3 k = 4

Number of layers 2 2 2 2

bit size of glossary space 3 4 3 4

Input neurons 27 27 120 120

Hidden neurons 20 20 20 50

Output neurons 3 4 3 4

Number of multipliers 600 620 2460 2480

of the receiver. Similar to the finite impulse response
(FIR) filter, the wavelet decomposition convolves wavelet
coefficients with the received signals. This convolution
process requires as many multiplication resources as the
number of filter taps. For example, DB2 and DB5 can be
implemented as 4-tap and 10-tap FIR filters, respectively.
Furthermore, it is an iterative process—i.e., the output of
one stage is an input to the next stage (Fig. 3). The direct
implementation DWT, known as the multiply-accumulate
structure (MAC), requires as many resources as the
number of stages times the numbers of filter taps—i.e.,
5-level DB2 requires 20 multipliers. An alternative but
efficient implementation could be achieved by means of
the distributed arithmetic algorithm (DAA) [35, 36]. DAA
efficiently realizes the sum-of-products computation by
means of memory (LUT), adders and shift registers, with-
out employing any multipliers. That is, the total number
of multipliers at the receiver will not be affected by the
DWT implementation.

4 Conclusions
PBCCS was designed to increase the spectral efficiency
by constructing a secure and non-periodic communica-
tion signals. In addition, PBCCS minimizes the bit error
rate through optimized signal patterns that are decoded
solely by DWT preprocessed signals and artificial neural
network.
In this article, we analyzed the performance of ANN

to recover original transmitted symbols using wavelets as
a feature extractor. We applied different wavelet decom-
position techniques to study their effects. Several exper-
iments were conducted to find the most appropriate
wavelet family for PBCCS. The results obtained are
intended to be a guidance tool in selecting the most
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appropriate operating point of the glossary selector with
the discrete wavelet family at the receiver. We found out
that the DB2 wavelet decomposition filter shows better
performance compared with the other studied wavelet
families. Thanks to DWT, a simple ANN structure was
constructed with few hidden neurons, which is impossi-
ble for a third-party to predict. In addition, we studied
the effect of various back-propagation learning algorithm.
We could conclude that in terms of learning time and per-
formance, both SCG and GDX are better to handle large
dataset that includes thousands of signals. Finally, because
of robustness to stationary noise, the proposed approach
has a great advantage of less bit error, unlike the standard
modulation techniques, which has higher bit error rate.
The simulation results also reveal that by using 5-level

DWT and a neural network, SNR values of -5 dB, -2 and
4 dB are achieved at a BER of 10−5 for 3-bit, 4-bit and 5-
bit glossary spaces, respectively. The advantage is obvious,
because the transmitter can adapt the bit rate accord-
ing to SNR values. Therefore, adaptive glossary and its
performance can be considered in a future work.
An initial evaluation of hardware implementation was

demonstrated, and the applicability of the proposed mod-
ulation technique and the recognition layer were dis-
cussed. In brief, according to our preliminary works on the
FPGA platform, the system can be realized with limited
level glossaries in the existing technology. The next future
step of this work is validating the simulation and prelimi-
nary laboratory testbed results under real application and
environmental conditions.
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